
Supporting Information for “Estimating restricted mean

treatment effects with stacked survival models”

Andrew Wey, David Vock, John Connett, and Kyle Rudser

Section 1 provides further analyses for the lung transplant example. Section 2 briefly

discusses the consistency of stacked survival models under a misspecified censoring distri-

bution. Section 3 presents numerous extensions to the simulation study in the main paper,

while Section 4 proves the inequality that places an upper bound on the mean-squared error

of the restricted mean treatment effect (RMTE).

1 Additional Lung Transplantation Analyses

We present additional analyses regarding the lung transplantation example from the main

paper. Table 1 presents descriptive statistics for the covariates stratified by low volume and

high volume centers, which demonstrates the need for an adjusted analysis due to the many

covariate imbalances.

We define the restricted mean R2(τ) value as

R̂2(τ) = 1− ŜSres(τ)

ŜStot(τ)
, (1)

where ŜSres(τ) and ŜStot(τ) are censored-data extensions of, respectively, the residual sum

1



of squares and total sum of squares based on inverse probability-of-censoring weighting:

ŜSres(τ) =
∑
iεΓa

∆̃i(τ)

G(min{ti, τ})
×
{

min(ti, τ)−
∫ τ

0

Ŝ(t|xi, ai)dt
}2

(2)

ŜStot(τ) =
∑
iεΓa

∆̃i(τ)

G(min{ti, τ})
×
{

min(ti, τ)−
∫ τ

0

Ŝ(t|ai)dt
}2

, (3)

where ∆̃i(τ) = I(min{ti, τ} ≤ ci),
∫ τ

0
Ŝ(t|xi, ai)dt is the estimated restricted mean based on

the conditional survival function estimator for treatment ai, and
∫ τ

0
Ŝ(t|ai)dt is the estimated

treatment-specific restricted mean based on the treatment-specific Kaplan-Meier survival

curve. Recall that Γa is the set of patients on treatment a. This helps emphasize that, in our

situation, the R2(τ) depends on the given treatment-specific conditional survival function.

Table 2 presents the R2(τ) value for each treatment-specific survival model included in

the stack. In general, the restricted mean R2(τ) value and, thus, the explained variation

is low for each treatment-specific survival model. However, explained variation is neither

a sufficient nor necessary condition for correcting imbalances between two non-randomized

groups. For example, a correctly specified model can explain a low proportion of variation

due to a large error term, which plays a significant role in explained variation measures such

as R2 (Royston, 2006).

2 Misspecification of Censoring Distribution

In the main paper, we note that stacked survival models are, under certain conditions,

consistent even when the censoring distribution is misspecified. In this section, we sketch

the necessary conditions and arguments to show consistency. In this situation, we estimate

the censoring distribution with a Kaplan-Meier, which we assume converges to a constant

function even for situations when the censoring distribution depends on the covariates; that

is, Ĝ(t)→ G(t) for all t ε (0, τ) and there exists a δ > 0 such that G(τ) > δ. Wey et al. (2015)
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show that the Brier Score approaches its expectation. Note that E[ ∆(tr)
G(T (tr))

|T,x] = 1
G(T (tr))

×

E[∆(tr)|T,x] = G(T (tr)|x)
G(T (tr))

, which is finite and bounded away from zero. Let C(x) ≡ G(T (tr)|x)
G(T (tr))

,

then the asymptotic minimization problem becomes

α̂ = arg min
α
Ex

{
C(x)

s∑
r=1

[So(tr|x)− {So(tr|x)
l∑

k=1

αk +
m∑

k=l+1

αkSk(tr|x)}]2
}
, (4)

where the Sk(t|x) for k = 1, ..., l are the correctly specified survival models. Equation 4

minimizes the expected value of a non-negative function and, therefore, is minimized when∑l
k=1 αk = 1, which holds under the identifiability constraint outlined in Wey et al. (2015);

see assumption A3.

3 Furthering the Simulation Study

We present several extensions to the simulation study. Section 3.1 investigates the bias and

MSE of the restricted mean estimators in simulations at a larger sample size. Section 3.2

investigates the influence of time point selection in minimizing the Brier Score for stacked

survival models. Lastly, Section 3.3 presents simulation scenarios with covariate independent

censoring rather than covariate dependent censoring.

3.1 Larger Sample Sizes

We evaluate the performance of the simulation scenarios at a larger sample size (n = 900).

The idea is that a larger sample size may improve the performance of the semi-parametric

and non-parametric models included in the set of candidate survival models.

Tables 3 and 4 present the bias and MSE for the exponential and gamma distributed

scenarios presented in the main paper at a sample size of n = 900. The Stacked estima-

tor with and without RSF generally performs relatively well although there is usually an
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individual estimator that performs better for a given scenario (e.g., the Weibull estimator

in the exponential scenario with linear covariate effects). Finally, while the RSF estimator

performed surprisingly well for estimating the restricted mean treatment effect in the main

paper, the relative performance of the RSF actually worsened particularly for the exponen-

tial scenarios. Despite being a non-parametric estimator of a conditional survival function,

the ISSE for RSF surprisingly worsened relative to the Cox model with larger sample sizes

compared to the scenarios presented in the main paper. It is possible that RSF requires that

the minimum number of observations in each node increases to ensure better performance

with larger sample sizes.

3.2 Stacking Question: Selection of ts

As noted by Wey et al. (2015), the selection of time points for minimizing the Brier Score

can have a substantial effect on the performance of stacked survival models. Wey et al.

(2015) found minimizing over nine equally spaced quantiles of the observed event distribution

performed well for estimating the conditional survival function. However, when estimating

restricted mean treatment effects, stacked survival models may perform better by restricting

to time points within the support of interest, i.e., between 0 and τ . For example, in the

simulation scenarios, the largest time point of interest is τ = 50. Yet Table 5 shows that,

for the gamma distributed scenarios, nine equally spaced quantiles of the observed event

distribution results in approximately 40% of these points beyond τ = 50. We evaluate the

performance of stacking when the time points are restricted to less than τ = 50 for the

exponential and gamma distributed scenarios in the main paper.

Tables 6 and 7 compares the performance of stacking when the nine equally spaced

quantiles of the observed event distribution are restricted to times less than τ = 50 to the

performance of stacking over nine equally spaced quantiles of the unrestricted observed event

distribution. Restricting the time points had a negligible effect on bias and MSE, but it is
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associated with up to 5% larger ISSE in the gamma scenarios.

3.3 Covariate Independent Censoring

The censoring distribution in the simulation study of the main paper is covariate-dependent,

and the Stacked estimator performs well despite a misspecified Kaplan-Meier estimator of the

censoring distribution. This section evaluates the performance of the Stacked estimator in

the presence of covariate-independent censoring for the exponential and gamma distributed

scenarios, which implies a correctly specified Kaplan-Meier estimator of the censoring distri-

bution. For the linear scenarios, the intercept of the censoring distribution ensures a similar

censoring rate as the covariate dependent censoring scenarios. In contrast, for the non-linear

scenarios, the intercept of the censoring distributions have to be modified to ensure similar

censoring rates. In particular, the parameter values for the censoring distributions are de-

fined as: γ0
2 = −5 and γ1

2 = −6 for the exponential non-linear scenarios, and γ0
4 = 3.9 and

γ1
4 = 3.4 for the gamma non-linear scenarios.

Tables 8 and 9 present the covariate independent censoring results for, respectively, the

exponential and gamma distributed scenarios. The Stacked estimators are competitive in

each scenario regardless of the distribution or functional form of the covariates, which is

qualitatively similar to the simulation scenarios in the main paper. The bias is surprisingly

large in the non-linear scenarios for every estimator although the Stacked estimators remain

competitive with the Splines estimator in both scenarios.

4 Influence of the Conditional Survival Function

This section proves that the mean-squared error of the treatment-specific conditional survival

functions places an upper bound on the MSE of the restricted mean treatment effect.

Similar to Wey et al. (2015), we define the mean-squared error for a conditional survival
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function estimator of the ath treatment as the integral of the squared error at time t over

(0, τ):

MSEτ{Ŝ(a)} = E

∫ τ

0

[Ŝ(a)(t|x)− S(a)(t|x)]2dt,

where the expectation is with respect to the covariate distribution and the sampling distri-

bution of the estimator. A significant difference between this investigation and Wey et al.

(2015) is the addition of the treatment indicator a. We can then show that the mean

squared error of restricted mean treatment effect is bounded by the mean-squared error of

the treatment-specific conditional survival functions:

Theorem 1. Let the mean squared error of a restricted mean treatment effect be MSE[γ̂(τ)] =

E{γ̂(τ)− γ(τ)}2, then

MSE[γ̂(τ)] ≤ τ ×
[
MSEτ{Ŝ(0)}+ MSEτ{Ŝ(1)} − 2× [Covτ{Ŝ(0), Ŝ(1)}+ Biasτ{Ŝ(0), Ŝ(1)}]

]
.

The result - which is a consequence of a sequential application of Jensen and Schwarz in-

equalities - helps justify the strong association of the restricted mean treatment effect mean

squared error with the performance of the conditional survival function estimator. The bias

is also bounded, but the limit is less tight due to a positive variance term. This results

in a less strong, but still positive, association of bias with the mean-squared error of the

conditional survival function.

Proof: We need to first make a distinction between the sampling distribution for the estima-

tor of the conditional survival function, which we call the ‘learning sample’ (LS) distribution,

and the covariate distribution X. It is important to note that the learning sample distribu-
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tion is independent of the covariate distribution (and the survival time distribution).

E{γ̂(τ)− γ(τ)}2 = ELS

{
EX|LS

∫ τ

0

[Ŝ(1)(t|x)− Ŝ(0)(t|x)]dt−

EX|LS

∫ τ

0

[S(1)(t|x)− S(0)(t|x)]dt

}2

≤ ELSEX|LS

{∫ τ

0

[Ŝ(1)(t|x)− S(1)(t|x)+ (5)

S(0)(t|x)− Ŝ(0)(t|x)]dt
}2

≤ τ × ELS,X
∫ τ

0

[
Ŝ(1)(t|x)− S(1)(t|x)+ (6)

S(0)(t|x)− Ŝ(0)(t|x)
]2

dt

= τ × ELS,X
∫ τ

0

[
[Ŝ(1)(t|x)− S(1)(t|x)]2+

[S(0)(t|x)− Ŝ(0)(t|x)]2−

2× [Ŝ(1)(t|x)− S(1)(t|x)][Ŝ(0)(t|x)− S(0)(t|x)]
]
dt

= τ ×
{

MSEτ{Ŝ(0)}+ MSEτ{Ŝ(1)} − 2× [Covτ{Ŝ(0), Ŝ(1)}+

Biasτ{Ŝ(0), Ŝ(1)}]
}
,

where the last line holds by adding and subtracting the expectation of the appropriate condi-

tional survival function, line (5) holds by Jensen’s inequality, and line (6) holds by Schwarz’s

inequality. Finally, Covτ{Ŝ(0), Ŝ(1)} = ELS,X
∫ τ

0
[Ŝ(1)(t|x)−ELS|X Ŝ(1)(t|x)][Ŝ(0)(t|x)−ELS|X Ŝ(0)(t|x)]

and Biasτ{Ŝ(0), Ŝ(1)} = ELS,X
∫ τ

0
[ELS|X Ŝ

(1)(t|x)− S(1)(t|x)][ELS|X Ŝ
(0)(t|x)− S(0)(t|x)].
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Table 1: Descriptives for the covariate included in the lung transplantation analysis by
low volume and high volume centers. Continuous variables are summarized by means and
standard deviations, while categorical variables are presented as frequencies and percents.

Covariate Low Volume Centers High Volume Centers
(n = 3646) (n = 1853)

Single Transplant 1248 (34.2%) 536 (28.9%)
Male 2151 (59.0%) 1131 (61.0%)
Donor Age > 55 years 253 (6.9%) 200 (10.8%)
Disease Grouping

Obstructive 1254 (34.4%) 567 (30.6%)
Vascular 100 (2.7%) 79 (4.2%)
Cystic 468 (12.8%) 196 (10.6%)
Restrictive 1824 (50.0%) 1011 (54.6%)

African American Donor∗ 689 (18.9%) 384 (20.7%)
Smoking Donor 330 (9.1%) 251 (13.5%)
Ventilation Status 569 (15.6%) 343 (18.5%)
Recipient Age (Years) 54.4 (12.9) 56.6 (13.1)
Lung Allocation Score 45.6 (15.9) 47.8 (17.2)
Height Difference† -1.9 (9.3) -1.1 (9.6)
Six Minute Walk 723 (420) 477 (477)
O2 Use 6.0 (5.6) 6.5 (5.8)
∗Versus non-African American donors
†Between donor and recipient
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Table 2: The estimated R2(τ = 3) value for the models in each treatment-specific (i.e., center
volume-specific) stacked survival model for the lung transplant example. The R2(τ) value is
generalization of the R2 value from linear regression [see Equation (1)].

Model Low Volume Centers High Volume Centers
Cox 0.036 0.034
Cox with Splines 0.049 0.066
log-Normal 0.040 0.023
Weibull 0.045 0.036

Table 3: Simulation results for the exponential distributed scenarios: N = 900, NSIM =
1000, and a marginal censoring rate of 30% for the linear scenario and 20% for the non-linear
scenario. ‘Percent Relative Bias’ is the ratio of the bias and true restricted mean difference.
‘MSE Ratio’ is the ratio of MSE relative to the Cox estimator. ‘ISSE(0)’ and ‘ISSE(1)’
are the treatment-specific ratios of integrated squared survival error, which corresponds to
the mean-squared of the treatment-specific conditional survival function, relative to the Cox
estimator. γ(50) is the true restricted mean treatment effects for τ = 50.

Percent
Scenario Estimator Relative Bias MSE Ratio ISSE(0) ISSE(1)

Linear
γ(50) =
−12.318

Cox 0% 1.00 1.00 1.00
Splines 0% 1.09 4.83 4.56
log-Normal 3% 1.05 2.34 1.83
Weibull 0% 0.92 0.88 0.89
RSF 18% 4.31 14.38 11.73
Stacked with RSF 1% 0.97 1.26 1.13
Stacked without RSF 0% 0.94 1.13 1.04

Non-Linear
γ(50) =
−10.334

Cox -9% 1.00 1.00 1.00
Splines 2% 0.58 0.55 0.57
log-Normal 4% 0.63 1.13 1.15
Weibull 8% 0.86 0.96 0.98
RSF -12% 1.06 2.37 2.15
Stacked with RSF 2% 0.58 0.45 0.49
Stacked without RSF 3% 0.57 0.45 0.48
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Table 4: Simulation results for the gamma distributed scenarios: N = 900, NSIM = 1000,
and a marginal censoring rate of 30% for the linear scenario and 30% for the non-linear
scenario. ‘Percent Relative Bias’ is the ratio of the bias and true restricted mean difference.
‘MSE Ratio’ is the ratio of MSE relative to the Cox estimator. ‘ISSE(0)’ and ‘ISSE(1)’
are the treatment-specific ratios of integrated squared survival error, which corresponds to
the mean-squared of the treatment-specific conditional survival function, relative to the Cox
estimator. γ(50) is the true restricted mean treatment effects for τ = 50.

Percent
Scenario Estimator Relative Bias MSE Ratio ISSE(0) ISSE(1)

Linear
γ(50) = −6.599

Cox -7% 1.00 1.00 1.00
Splines -6% 1.04 4.38 4.40
log-Normal -4% 0.92 1.22 1.43
Weibull 2% 0.66 0.80 0.92
RSF -1% 0.85 8.61 14.13
Stacked with RSF -1% 0.73 1.01 1.14
Stacked without RSF -1% 0.74 0.96 1.03

Non-Linear
γ(50) = −6.407

Cox -15% 1.00 1.00 1.00
Splines -8% 0.67 0.91 0.61
log-Normal -7% 0.57 0.86 0.96
Weibull 0% 0.40 0.95 0.97
RSF 3% 0.47 1.66 2.10
Stacked with RSF -6% 0.55 0.68 0.51
Stacked without RSF -6% 0.57 0.69 0.50

Table 5: The number of ts for the stacked survival model that occur beyond τ = 50 for the
simulation scenarios in the main paper. For each simulation iteration, the ts were the nine
equally spaced quantiles of the observed event distribution.

Number Exponential Gamma
Past τ Linear Non-Linear Linear Non-Linear

0 0 4 0 0
1 19 957 0 0

τ = 50 2 880 39 2 0
3 101 0 405 316
4 0 0 589 679
5 0 0 4 5
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Table 6: Simulation results for restricting the minimization procedure for the exponential
distributed scenarios: N = 300, NSIM = 1000, and a marginal censoring rate of 30% for the
linear scenario and 20% for the non-linear scenario. ‘Relative Bias’ is the ratio of the bias
and true restricted mean difference. ‘MSE Ratio’ is the ratio of MSE relative to the ‘Stacked’
estimator. ‘ISSE Ratio’ is the ratio of integrated squared survival error, which corresponds
to the average mean-squared across the treatment-specific conditional survival functions,
relative to the ‘Stacked’ estimator. The ‘Equally Spaced’ estimators use nine equally spaced
quantiles of the unrestricted observed event distribution, while the ‘Restricted < 50’ es-
timators use nine equally spaced quantiles of the observed event distribution restricted to
τ = 50.

Estimator Relative Bias MSE Ratio ISSE Ratio

Linear
γ(50) =
−12.318

Equally Spaced 0.02 1.00 1.00
Restricted < 50 0.01 1.00 1.01
Equally Spaced 0.03 1.00 1.00
Restricted < 50 0.02 0.98 1.00

Non-Linear
γ(50) = 7.929

Equally Spaced 0.06 1.00 1.00
Restricted < 50 0.07 1.01 1.01
Equally Spaced 0.06 1.00 1.00
Restricted < 50 0.06 0.99 1.02
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Table 7: Simulation results for the gamma distributed scenarios: N = 300, NSIM = 1000,
and a marginal censoring rate of 30% for the linear scenario and 30% for the non-linear
scenario. ‘Relative Bias’ is the ratio of the bias and true restricted mean difference. ‘MSE
Ratio’ is the ratio of MSE relative to the ‘Stacked’ estimator. ‘ISSE Ratio’ is the ratio of
integrated squared survival error, which corresponds to the average mean-squared across the
treatment-specific conditional survival functions, relative to the ‘Stacked’ estimator. The
‘Equally Spaced’ estimators use nine equally spaced quantiles of the unrestricted observed
event distribution, while the ‘Restricted < 50’ estimators use nine equally spaced quantiles
of the observed event distribution restricted to τ = 50.

Estimator Relative Bias MSE Ratio ISSE Ratio

Linear
γ(50) = −6.599

Equally Spaced -0.01 1.00 1.00
Restricted < 50 -0.02 1.01 1.04
Equally Spaced -0.02 1.00 1.00
Restricted < 50 -0.03 1.01 1.05

Non-Linear
γ(50) = −6.407

Equally Spaced -0.06 1.00 1.00
Restricted < 50 -0.06 1.03 1.03
Equally Spaced -0.07 1.00 1.00
Restricted < 50 -0.08 1.02 1.05

Table 8: Simulation results for covariate independent censoring with the exponential dis-
tributed scenarios: N = 300, NSIM = 1000, and a marginal censoring rate of 30% for the
linear scenario and 20% for the non-linear scenario. ‘Percent Relative Bias’ is the ratio of
the bias and true restricted mean difference. ‘MSE Ratio’ is the ratio of MSE relative to the
Cox estimator. The γ(50) is the true restricted mean treatment effect τ = 50.

Percent
Estimator Relative Bias MSE Ratio

Linear
γ(50) =
−12.318

Cox 1% 1.00
Splines 1% 1.18
Stacked 2% 0.99
Stacked (with RSF) 3% 1.01

Non-Linear
γ(50) = 7.929

Cox 42% 1.00
Splines 34% 0.78
Stacked 38% 0.85
Stacked (with RSF) 37% 0.84
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Table 9: Simulation results for covariate independent censoring with the gamma distributed
scenarios: N = 300, NSIM = 1000, and a marginal censoring rate of 30% for the linear
scenario and 30% for the non-linear scenario. ‘Percent Relative Bias’ is the ratio of the bias
and true restricted mean difference. ‘MSE Ratio’ is the ratio of MSE relative to the Cox
estimator. The γ(50) is the true restricted mean treatment effect τ = 50.

Percent
Estimator Relative Bias MSE Ratio

Linear
γ(50) = −6.599

Cox -6% 1.00
Splines -5% 1.22
Stacked -2% 0.95
Stacked (with RSF) -3% 0.95

Non-Linear
γ(50) = −6.407

Cox -28% 1.00
Splines -13% 0.70
Stacked -20% 0.75
Stacked (with RSF) -19% 0.72
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