	Adult Human	Adult Primate	Adult Pig	Adult Rat
Lobes [1,3]	5 (3 right, 2 left)	6 (4 right, 2 left)	6 (4 right, 2 left)	5 (4 right, 1 left)
Interlobar and segmental connective tissue [3]	Extensive and interlobular	Little if any	Extensive and interlobular	Little
Total lung capacity (mL) [4, 5]	6,500	230	5,000	11
Alveolar size (μm) [1, 6, 7]	~200-400	196	~130-134	~70-90
Septal thickness (μm) [8, 9]	~ 3.3	~ 2.2	~7-8	~1.2
Visceral Pleural thickness (mm) [9]	~70-100 um	~ 10-25	~ 50-80	~2-5
Lung compliance (cm H20) [4, 10]	~4,000	~750	~750	~11
Visceral pleura lymphatics [3]	Extensive	Few	Extensive	Very Few
Nonrespiratory bronchiolole (nonalveolarized) [3]	Several generations	Fewer generations	Several generations	Several generations
	Several generations	Several generations	Absent or short	Absent or short
Respiratory bronchiole (alveolarized) [3, 5]			single generation	single generation

- 1. Hoyt, J.R., Hawkins, J. V., St Clair, M. B., & Kennett, M. J., *The Mouse in Biomedical Research: Normative Biology, Husbandry, and Models* 2nd ed. 2006, Burlington, Massachusetts: Academic Press.
- 2. Plopper, C.G. and J.R. Harkema, *The Respiratory System and its Use in Research. In S. Wolfe-Coote (Ed.) The Laboratory Primate*. 2005, London, United Kingdom: Academic Press.
- 3. WS, T. and J. MD, Gross and subgross anatomy of the lungs, pleura, connective tissue septae, distal airways, and structural units., in Comparative Biology of the Normal Lung, P. RA, Editor. 1992, CRC Press: Boca Raton. p. 37-47.
- 4. Weibel, E.R., *Dimensions of the tracheobronchial tree and alveoli*. Biological Handbooks: Respiration and Circulation., ed. P.L. Altman and D.S. Dittmer. 1971, Bethesda, MD: Federation of American Societies for Experimental Biology.
- 5. Pinkerton, K.E., P. Gehr, and J.D. Crapo, *Architecture and cellular composition of the air-blood barrier*. Comparative Biology of the Normal Lung, 1992. 1: p. 121-128.
- 6. Mercer, R.R., M.L. Russell, and J.D. Crapo, *Alveolar septal structure in different species*. J Appl Physiol (1985), 1994. **77**(3): p. 1060-6.
- 7. Lum, H. and W. Mitzner, A species comparison of alveolar size and surface forces. J Appl Physiol (1985), 1987. **62**(5): p. 1865-71.
- 8. Mansell, A.L., et al., *Postnatal growth of lung parenchyma in the piglet: morphometry correlated with mechanics.* Anat Rec, 1995. **241**(1): p. 99-104.
- 9. Section 3- Selected Biological Properties of Tissues: Potential Determinants of Susceptibility to Ultrasound-Induced Bioeffects. . Journal of ultrasound in medicine: official journal of the American Institute of Ultrasound in Medicine. , 2000. **19**(2): p. 85-168.
- 10. JW., W., *Elastin, resistive, and intertial properties of the lung.* Cmparative Biology of the Normal Lung, ed. P. RA. Vol. 1. 1992, Boca Raton, FL: CRC Press.