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Divide-and-conquer for two objectives

Algorithm 1 provides pseudocode for the algorithm.

Algorithm 1 PEPFR divide-and-conquer algorithm for two objectives with fixed α

Divide-And-Conquer(B = (l1, u1)× (l2, u2)):
F ← ∅ // Pareto frontier
// Conquer
λ← g(α, B)
if λ exists then
F ← F ∪ {λ}
// Divide
p← f(λ)
B01 ← (l1, p1)× (p2, u2)
B10 ← (p1, u1)× (l2, p2)
for all B′ in {B01, B10} do
F ′ ← Divide-And-Conquer(B′)
F ← F ∪ F ′

end for
end if
return F

The conquer step depends on the fact that the result of g is undominated within B. We now prove that.

Claim 1. The λ in B minimizing hyperplane function α · f(λ), for any α ∈ (R+)2, is undominated within
B.

Proof. Let us assume for contradiction that λ′ inB dominates λ. According to the definition of “dominates”,
∀i ∈ {1, 2}, fi(λ′) ≤ fi(λ) and ∃j ∈ {1, 2}, fj(λ′) < fj(λ). Therefore

∑2
i=1 αifi(λ

′) <
∑2

i=1 αifi(λ),
so α · f(λ′) < α · f(λ), contradicting the optimality of λ.

Divide-and-conquer for multiple design objectives

We extend the hierarchical divide-and-conquer approach for two objectives (in R2) to handle multiple ob-
jectives (in Rn). The same basic structure holds.

Initialize. This works exactly as in the 2-objective case: independently minimize and maximize each
objective, and relax the determined minimum and maximum values by ε, to yield an open box B =
(min(f1)− ε,max(f1) + ε)× (min(f2)− ε,max(f2) + ε)× . . .× (min(fn)− ε,max(fn) + ε).

Conquer. Claim 1 can be straightforwardly generalized to three or more objectives. Our instantiations
of box-constrained optimization via integer programming and dynamic programming are also immediately
extensible to optimize linear combinations of multiple objectives. The one tricky part is guaranteeing the
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overall Pareto optimality of a discovered design that is undominated within a box; we cover that below,
based on a lattice structure of the divided boxes.

Divide. Let λ be the undominated design uncovered by the conquer step in the box B = (l1, u1) ×
(l2, u2)× . . .× (ln, un). Let p = (p1, p2, . . . , pn) = f(λ). We use p to divide B into 2n portions, denoted
Bc1c2...cn , ci ∈ {0, 1}, where ci = 0 denotes the range (li, pi) and ci = 1 denotes the range (pi, ui). Since
p is undominated in B, no design is in B00...0 and p dominates everything in B11...1, the same as in two
dimensions. However, points in some of the remaining 2n−2 portions may dominate some of those in some
others. For example, in a three-dimensional objective space, a Pareto optimal point p = (p1, p2, p3) divides a
boxB = (l1, u1)×(l2, u2)×(l3, u3) into 23 boxes,B000, B001, . . . , B111. Let λ′ be a design inB001 at point
f(λ′) = a = (a1, a2, a3). Now consider a sub-box ofB011, defined as B̄ = (a1, p1)×(p2, u2)×(a3, u3). We
can see that λ′ dominates every design in B̄, being better in all three dimensions (in the second dimension,
note that a2 < p2 by the definition of B001).

More generally, suppose Bc1c2...cn and Bc′1c
′
2...c

′
n

are two distinct boxes yielded by dividing box B =
(l1, u1) × (l2, u2) × . . . × (ln, un) according to Pareto optimal point p = (p1, p2, . . . , pn). We have the
following claims.

Claim 2. If ∀i : ci ≤ c′i, then point a = (a1, a2, . . . , an) in Bc1c2,...,cn dominates sub-box B̄ = (l̄1, ū1) ×
(l̄2, ū2)× . . .× (l̄n, ūn) in Bc′1c

′
2,...,c

′
n

, where

∀i, (l̄i, ūi) =


(ai, pi), if ci = c′i = 0

(pi, ui), if ci = 0 < c′i = 1

(ai, ui), if ci = c′i = 1

Proof. Let a′ = (a′1, a
′
2, . . . , a

′
n) ∈ B̄. Since we assume ∀i : ci ≤ c′i, there are three cases:

1. ci = 0 < c′i = 1. Then pi < a′i < ui, li < ai < pi, so ai < a′i.

2. ci = c′i = 0. Then ai < a′i < pi.

3. ci = c′i = 1. Then ai < a′i < ui.

Since ∀i : ai < a′i, point a dominates point a′. Since a′ is an arbitrary point in B̄, a dominates all of B̄.

Claim 3. If ∃i : ci > c′i, then no point in Bc1c2...cn dominates any point in Bc′1c
′
2...c

′
n

.

Proof. Consider any point a = (a1, a2, . . . , an) in Bc1c2...cn and any point a′ = (a′1, a
′
2, . . . , a

′
n) in

Bc′1c
′
2...c

′
n

. In dimension i, Bc1c2...cn has range (pi, ui) while Bc′1c
′
2...c

′
n

has range (li, pi). Then since
li < a′i < pi < ai < ui, we see that a cannot dominate a′. Consequentially no point in Bc1c2...cn dominates
any point in Bc′1c

′
2...c

′
n

.

We say that Bc1c2...cn and Bc′1c
′
2...c

′
n

are disjoint if no point in Bc1c2...cn dominates any point of Bc′1c
′
2...c

′
n

and vice-versa.
Based on these relationships, we define an order in which to search the divided boxes, in order to

eliminate dominated sub-boxes, and ensure that the designs identified in the conquer step are guaranteed to
be Pareto optimal. We form a lattice structure (Fig. 1), such that points in ancestor boxes dominate sub-
boxes in descendant boxes, but points in descendant boxes do not dominate any points in ancestor boxes,
and other pairs of boxes are disjoint. We then recurse into the boxes in breadth-first order according to the
lattice structure, applying Claim 2 to eliminate sub-boxes of descendants as we go along. When sub-boxes
are eliminated from a box, the remaining sub-boxes are likewise explored in breadth-first order of their
lattice structure. Thus by the time we reach a box (or sub-box), all its ancestors have been handled, and all
its dominated points already eliminated, so any discovered undominated design is indeed Pareto optimal.
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B000!

B001! B010! B100!

B011! B101! B110!

B111!

Figure 1: Lattice structure for boxes divided from a single box by a Pareto optimal point p in R3. No design
exists in B000 and designs in B111 are all dominated by p. Designs in ancestor boxes can dominate sub-
boxes of descendant boxes (e.g., a point in B001 dominates a part of B011), while designs in descendants
do not dominate any part of ancestors (e.g., no point in B011 dominate any point of B001). Boxes with no
ancestor/descendant relationship are disjoint (e.g., B001 and B110).
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