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1 Movie Legends

Movie S1

Weak correlation of microtubule motion and bending during slow cytoplasmic

streaming. Live stage 9 Drosophila oocytes containing GFP-α-tubulin expressed in the germline

were dissected, mounted in halocarbon oil, and fluorescence was recorded at 5sec intervals using

an inverted Ultraview spinning disk confocal microscope. The image series is played back here at

30 frames/sec. The optical section is 5−10µm inward from the oocyte membrane (see Fig. 1A,B).

Movie S2

Strong correlation of microtubule motion and bending behavior during fast cyto-

plasmic streaming. GFP-tubulin fluorescence images were recorded in Stage 10B oocytes at 5sec

intervals and are played back at 30 frames/second (see Fig. 1C,D). The optical section, 5− 10µm

inward from the oocyte membrane, cuts through subcortical cytoplasm in some areas, producing
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views of bright, ordered parallel arrays of undulating microtubules and of fast moving yolk endo-

somes (dark spheres). In other areas, where the section is shallower and cuts through the cortex,

yolk endosomes associated with the cortex move slowly in the directions of overlying fast flows.

Movie S3

Endosome and lipid droplet fast streaming motion. Time-lapse confocal fluorescence

images of a stage 10B oocyte showing endosomes containing trypan blue dye (red fluorescence) and

lipid droplets tagged with GFP-LD (green fluorescence) expressed just in the germline. Images were

collected in both channels at 2 sec intervals, and are played back at 30 Frames/sec. The oocyte

nucleus is seen as a dark sphere in the top left. Note the varying fast streaming flow patterns.

Movie S4

A simulation of single filament bending behavior induced by kinesin forces. The

filament has microtubule-like stiffness and forces tangent to its axis at all points like those generated

by kinesin-cargo complexes moving through cytoplasm toward the free plus-end (see Fig. 5 and

Supporting Material 4.6). Those plus-end directed walking forces, if unopposed, would propel the

filament with its minus end leading, but its minus-end (white sphere) is tethered in space. It

can rotate, but not translate. A second force, representing a cytoplasmic streaming flow field is

imposed on the system, moving constantly from the bottom to the top of the field of view. Repeated

simulations consistently developed stable rotating helical wave forms, with handedness depending

on the details of random initial filament configurations. Analytical solutions with reasonable values

for microtubule stiffness, and kinesin force predict a radius of curvature of 24 − 54µm, which is

roughly one third the width of a stage 10B oocyte. To facilitate recognition of the bending behavior,

the width of the filament here is scaled up to 2,000-fold that of a real microtubule.
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Movie S5

A simulation of single filament bending behavior when adjacent to an impenetrable

wall. These parameters are the same as in Movie S4 but the system differs by the addition of a

barrier that is parallel to the microtubule. This changes the travelling helical wave to a shape

similar to a sinusoidal wave that is very well described by the mathematical analysis of Sec. 4.4.

When the cytoplasmic streaming flow field is slower, the shape becomes similar to prolate cycloids

that are also well described by the same analysis.

Movie S6

A simulation of the bending behaviors of 100 filaments with minus-ends tethered

near a barrier to filament and fluid motions. The axis of each filament is initially in a random

configuration (see Fig. 6A and Supporting Material Sec. 5.11)) that changes due to interactions

of microtubule-like stiffness, kinesin-like fluid-filament shear forces tangent to each filament at all

points, and hydrodynamics as described in the Supporting Material, Sec. 5 (parameters as in Fig.

S16(d)). Filament length is 16 (dimensionless units), at an elevation of H = 1 above a membrane-

like wall. The velocity field at the wall vanishes, which suppresses hydrodynamic interactions

between microtubules. In this case, the elevation of minus-ends is too low to allow for long-range

filament correlation and organized fast streaming.

Movie S7

A simulation of the bending behaviors of 100 filaments with elevated minus end

tether points. The parameters are as described for Movie S6, except that minus-ends are tethered

above the membrane barrier at H = 2 (see Fig. 6B; parameters as in Fig. S16c). In this case

fluid motion between the minus-ends and the wall allow strong hydrodynamic interactions between

microtubules that create long-range correlated behaviors and robust fast streaming. At higher

minus-end tethering elevations, correlation becomes stronger and microtubule bending behavior is

diminished, generating relatively straight stable arrays.
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Movie S8

FRAP evidence for cortical tethering of microtubules. High magnification GFP-tubulin

images recorded with an Olympus 2-photon microscope in a stage 10B oocyte at 0.93 sec intervals

are played back here at 30 frames/sec. High intensity excitation was used to photobleach a

shallow 10 × 30µm area in subcortical arrays of microtubules. Note that the photobleached area

remains stationary as fluorescence recovers, while organelles that exclude GFP-tubulin stream past.

Adjacent non-streaming organelles are associated with the cortex. Quantification and other details

of this experiment are presented in Fig. 7.

2 Enhancement of Streaming Due to Hydrodynamics
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Figure S1: Fluid movement by viscous drag on a train of impellers at low Reynolds

number. A train of spherically shaped impellers of diameter a and separation d, all moving in a

fluid with a velocity v0. The velocity v(r) is measured at a point a distance r from the axis.

Consider objects that can move surrounding fluid by viscous drag, referred to as “impellers”

here. Each impeller has a maximum linear dimension a, and has a mean spacing of d, arranged

in a straight line as shown in Fig S1, reproduced from Fig 2 of our accompanying paper. These

impellers are pictured as spheres, but hydrodynamics is not sensitive to the exact shape of an
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impeller, as it depends mainly on its maximum linear dimension [18]. We will now analyze the

amount of streaming due to motion of these impellers moving on a single microtubule. We initially

consider the impellers to be much larger than the kinesin molecules so that they dominate the

hydrodynamical response of the fluid.

If spherical impellers were close-packed along the microtubule, that is a ≈ d, then this problem

would be equivalent to a single rod of length L moving at constant velocity v0 in the fluid in a

direction parallel to its long axis. In that case, the velocity field for distances r � L has only a

weak logarithmic dependence of r, meaning that up to a correction of order ln(L/a), the velocity

field is only weakly dependent on distance and for most practical cases will differ by less than an

order of magnitude from v0. Here we take the velocity of the fluid, v(r), to go to zero far from

the rod. This is related to the well known result that the drag on a rod of length L will only

differ by a logarithmic factor from that of a sphere of diameter L despite the latter’s much greater

volume [18]. Such a system of densely packed impellers would be very efficient at driving the motion

of surrounding fluid.

Now consider the more realistic case in which the impeller size is less than the spacing between

them, which is much less than the length of a microtubule, that is a < d� L. At a distance r � d,

the velocity field will behave just as in the closed-packed case except appear to have a diminished

impeller velocity. That is for d� r � L, the magnitude of the velocity v(r) = v0f(a/d)g(r), where

g(r) contains all the distance dependence of the velocity field, and f(a/d) is how the velocity scales

with the ratio of a/d. In the limit where a/d is very small, the velocity between impellers will

decay to zero. We recover the motion of isolated impellers in this case, where it is well known (e.g.

Stokes’ drag) that the velocity field is proportional to a. Therefore for small argument x(= a/d),

f(x) is linear (in other words, the fluid velocity is proportional to a.) Using this general argument

we conclude that, independent of the exact shape of the impellers, the flow velocity is reduced

from the closed-packed case by a factor ∼ a/d. The effect of the impellers only starts decreasing

substantially at a distance of order the length of the microtubule, L, below which it should only

have a weak logarithmic dependence. In other words, for a spherical region just enveloping a
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microtubule, the fluid velocity is slowly varying and reduced from the kinesin motor velocity by a

factor of order a/d. The above arguments suggest that only a low density of microtubules would

be needed for cytoplasmic streaming. We will analyze the case of many microtubules below.

The above analysis only pertains to a single isolated microtubule. Because of the long range

nature of the hydrodynamic interaction, the behavior of many microtubules will be quite different.

Below we find that the consideration of many further enhances the streaming capablities of this

system. To understand how this affects the above analysis, consider all space filled with an infinite

forest of microtubules, all oriented in the same direction. First if we ignore the microtubules and

just consider the spherical impellers, then if we move to a reference frame moving with the impeller

velocity, the system is static and the velocity everywhere is zero. Therefore in the original reference

frame, the fluid is also moving uniformly at the impeller velocity. This is not correct because we

have ignored the hydrodynamic drag of the microtubules represented by the line going through the

spheres in Fig. S1. To estimate their effect on the fluid velocity, we denote the drag coefficient on an

impeller by bI and that of a section of microtubule length d by bM . Then we go to a reference frame

velocity v such that the total force acting on the combined system of impellers and microtubules

is zero, so that bI(v0 − v)− bMv = 0, or v = bIv0/(bI + bM ). Because the net force acting on this

system is zero in this frame, v is the velocity of the fluid far from the microtubules. Of course

close to each microtubule, the velocity will differ from the value far away, but this will only affect

points that are within a distance a+ d from the microtubule. If we assume conservatively, that the

impellers are very thin cylindrical sheaths, fitting right over the microtubules, then this speed is

v0a/d. If the hydrodynamic radius of the impellers is larger than such a model, then the velocity

will be larger. The exact formula depends on the shape of the impellers. This argument assumes

an infinite volume of microtubules but the corrections to this due to the finite nature of the system

are not important for the estimates we are making.
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3 Necessity of microtubule contact

The question of whether or not free floating microtubules with kinesin-driven impellers contribute

to force generation for streaming is important. Our photobleaching tests demonstrate that there

is a subcortical layer of microtubules that is stationary relative to the cortex, while subcortical

cytoplasm streams past (Fig. 7 and Movie S7). In this case, the principle of Newton’s third

law dictates that the force on cytoplasmic fluid from plus-end directed kinesin-impeller movement

is matched by an opposite force on microtubules that is transferred through the cortex to the

surrounding tissues of the egg chamber and whatever it is attached too. Thus the impellers and

fluid move while the microtubules do not, other than sinusoidal bending around their tethered

minus ends. Could free microtubules deeper within the oocyte also drive flow? In this case, the

force from kinesin-driven impellers on a microtubule will cause the microtubule to move with its

minus-end leading, opposite the direction of the impellers. Because the force is equal in both

directions, the motion imparted to cytoplasmic fluid must be equal in both directions. The result

is that the microtubule will move one way, the impellers will move the other and, beyond very local

displacements, the cytoplasm will not move.

From a more physical perspective, a free floating microtubule with kinesin moving on it will

apply zero net force to the fluid. This is a simple consequence of Newton’s third law, or equivalently,

conservation of momentum. Consider a dumbell shaped machine with two spheres of different radii

connected by a spring. Starting with the dumbell in a compressed state and then letting it go

will impart equal and opposite forces on the two spheres, independent of their radii. Immersed in

a viscous fluid, it is the total force that acts on a sphere that determines the velocity field of its

surrounding fluid at large distances (see Eq. S-28). The fact that the small sphere travels a greater

distance than the large one is irrelevant; they both impart equal and opposite forces to the fluid,

so the net fluid movement at large distances is zero. This is analogous to the zero total charge on

a dipolar object in electrostatics. Equal and opposite forces in a fluid imply dipolar fluid motion

at large distances, which decays rapidly.
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This does not contradict the fact that bacteria are able to swim: the force propelling the bac-

terium forward is countered by an equal and opposite force on the environment, leading to velocity

fields that are dipolar at large distances, but still allowing motion of the bacterium due to local fluid

displacement [19]. In the case analyzed above where kinesin is attached to microtubules, we have

taken the microtubules to be static, and therefore momentum can be transfered between kinesin

and microtubules, which will transfer the momentum through the oocyte cortex and membrane to

the outside environment. When we consider the motion of microtubules, it is therefore important

to have one end connected to the cortex to allow momentum transfer from the outside surroundings

of the oocyte to the cytoplasm. Without such a microtubule connection to an external system, the

motion of kinesin cannot lead to long range hydrodynamic motion of the fluid and will not lead

to efficient cytoplasmic streaming by relatively few motor proteins. Contact with the cortex is

therefore crucial, as it allows for transfer of force from the outside of the oocyte to the cytoplasm,

enabling fast streaming of a large volume of cytoplasmic fluid to be powered by a much smaller

volume of kinesin driven impellers.

4 Mathematical analysis of microtubule bending due to kinesin

forces

During fast streaming, microtubules are largely aligned with each other and the local fluid motion,

but they do exhibit chaotic wavelike bending motions. We begin with the equation for a single

microtubule with an applied force tangent to the direction of the chain due to kinesin driving

impellers toward the plus end. The position of the microtubule at arclength s and at time t is

denoted r(s, t). As is usual at small scales, all inertial effects are negligible and the system is

dominated by the drag coefficient per unit length ν,

ν
∂r

∂t
= −C∂

4r

∂s4
+

∂

∂s
(T (s)

∂r

∂s
)− fk

∂r

∂s
+ νvk̂. (S-1)
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C denotes the elastic bending constant of the microtubule. The tension T (s) enforces the inexten-

sibility of microtubules which can be written as |∂r/∂s| = 1. This is the three dimensional version

of a two dimensional equation used to model rotating spiral patterns seen in motility assays [28]

where we have added the extra term νvk̂ discussed below.

Kinesin motors walking along the microtubule are assumed to be carrying cargoes that push

on the cytoplasmic fluid that surrounds them. By Newton’s third law, this force is matched by

an equal and opposite force on the microtubule. Assuming a high density of kinesin, the effective

force on the microtubule will be in the direction of the local tangent to r(s) which is ∂r/∂s. The

coefficient fk gives the strength of the force. Lastly we add a uniform flow field representing the

velocity of the cytoplasm v in the vicinity of the microtubule which we take to be in the k̂ direction.

We rescale to dimensionless variables

σ = s/ρ0, U = r/ρ0, τ = tω0, T
′ = Tρ2

0/C, and h = νv/fk (S-2)

so that
∂U

∂τ
= −∂

4U

∂σ4
+

∂

∂σ
(T ′(σ)

∂U

∂σ
)− ∂U

∂σ
+ hk̂. (S-3)

This requires that

ω0 = fk/(νρ0), and ρ3
0 = C/fk. (S-4)

ρ0 and ω0 are constants that make our new variables dimensionless.

We will consider solutions where the minus end is tethered to a point, say the origin, so that

r(s = 0, t) = 0 and is freely hinged at that point. The plus end is free. The total arclength of the

microtubule is denoted by L. The general characteristic of all numerical solutions to Eq. S-1 is

that for large s the solutions appear to be traveling waves. In fact, the form of solution becomes

independent of L so in fact we could consider this problem in the limit L → ∞. For example we

find solutions that asymptotically become helical with a fixed path and radius for large s. Other

solutions are planar and are periodic in s. In all these cases the solution has the form of a travelling

wave that we analyze in detail below.
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4.1 Steady State Travelling Wave Solutions

Now we look for steady state travelling wave solutions. First we clarify what this means; the whole

microtubule should not be translating because the minus end, (far away from where the travelling

wave solution is valid) is tethered. The position averaged over one period of a filament subunit,

〈U〉, should be time independent. If the microtubule is stretched out in one particular direction,

there should be a displacement Ud of the microtubule about a straight line solution, so we can look

for solutions of the form

U(σ, τ) = Ud(σ − vdτ) + ασk̂. (S-5)

The term Ud describes a transverse displacement waveform that travels along the backbone of the

chain at velocity vd, maintaining its shape. Here α is the extent to which the chain is extended in

the direction of the fluild motion. Therefore we require

∂〈Ud〉
∂σ

= 0 (S-6)

where the average is taken over the argument σ − vdτ .

Since Ud is transverse, α sets the relation between σ and the z-axis (k̂), such that vz = αvd.

If we choose vd = 1 and in addition α = h, we should obtain solutions that propagate along the

fluid direction with the same unitless velocity as the fluid motion. Looking back to our original

units, vd = 1 corresponds to a wave propagating along the backbone of the chain at velocity fk/ν

(roughly the kinesin walking speed). Recall that h is the rescaled unitless velocity of the external

flow field, so α = h is the condition that the traveling wave form should propagate along the axis

aligned with the globally imposed fluid velocity at the same speed as the fluid. This will allow us

to look for configurations that are stationary along that axis in the frame of the fluid.

Substituting Eq. S-5 into Eq. S-3 gives a left hand side of −vd∂Ud/∂σ and a term of the form

−∂Ud/∂σ on the right hand side, simplifying the equation to

∂4U

∂σ4
+

∂

∂σ
(T ′(σ)

∂U

∂σ
) = 0. (S-7)
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We define w = ∂U/∂σ and note that the inextensibility requirement |∂r/∂s| = 1 implies that

|w| = 1. We can write

w =
∂Ud

∂σ
+ αk̂ (S-8)

Note that w(σ, τ) depends only on σ − τ . Because w is a function of only one variable ξ ≡ σ − τ ,

we can integrate Eq. S-7 with respect to ξ obtaining

d2w

dξ2
− T ′(σ)w = −gk̂. (S-9)

The integration constant on the right hand side −gk̂ must lie in the k̂ direction by symmetry. This

is the same equation as that of the classical mechanics of a particle of unit mass, with position w

travelling on the surface of a unit sphere under the influence of gravity, with the variable ξ being

analogous to time. The term −T ′ is a normal force that constrains the particle to stay on the

sphere’s surface.

From Eq. S-6 and Eq. S-8 we see that the motion is subject to the constraint

〈w〉 = αk̂ (S-10)

The constant g and the initial conditions of the particle must be chosen so as to satisfy this

constraint. There are an infinite number of solutions satisfying these conditions leading to different

steady state solutions for the microtubule.

The spherical pendulum Eq. S-9 has been analyzed [S3] in detail. In general the orbits will not

be closed, but we will relegate our discussion below to two cases where this is the case, circular

motion in Eq. S-9, corresponding to helical conformations of a microtubule, and motion in the

x− z plane. The latter case is important when we introduce a hard wall, with the z axis being the

direction of the global fluid field, and the solutions give shapes similar to cycloids.

4.2 Scale Invariant Family of Solutions

One important point to notice about the general structure of Eq. S-9 is its invariance under change

of ξ, that is ξ → λξ. A change in scale of λ does not modify the solution, because T ′(ξ) and g are
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both constraints, and can therefore be chosen arbitrarily. So that if w(ξ) is a solution to Eq. S-9,

so is w(λξ). Furthermore all solutions of this form will have the same 〈w〉 and hence the same α.

Note that a length scale shift of w = w0(λξ) corresponds to a displacement of U = (1/λ)U0(λξ),

which changes scale because of the 1/λ prefactor in this expression. This means that for every

steady state conformation of the microtubule, there exists a family of steady state solutions with

identical shape but arbitrary size.

4.3 Circular Orbits

Circular orbits are solutions to Eq. S-9. Eq. S-10 requires that the vertical height of the orbit be

at wz = α. Therefore the radius perpendicular to the global fluid velocity k̂ (the wx, wy plane) is

w⊥ ≡
√

1− α2. (S-11)

It is first easiest to analyze this by direct analogy to the classical mechanical problem of a unit

mass particle moving on a unit sphere (the spherical pendulum). If the height above the sphere is

α, then application of Newton’s laws gives that the tension must balance the force of gravity g and

the centripetal acceleration v2/w⊥ giving

g

v2
≡ α

1− α2
(S-12)

Where v is not the real velocity of the microtubule but |dw⊥/dξ|. This is the rate at which the

tangent vector rotates in the x − y plane (the plane perpendicular to the fluid motion). Because

|dUd/dξ| = |wd| = rc is a constant, wd is a circle. Therefore according to Eq. S-5, this will give a

helical conformation of the microtubule.

In the spherical pendulum analogy, the angular velocity of the particle is Ωp = v/w⊥. The total

arclength of the chain (in dimensionless units) of a single period of the chain is

S =
2πR√
1− α2

(S-13)
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and SΩp = 2π so that S = 2π/Ωp = w⊥/v. Comparing this with Eq. S-13 we obtain

R =
w⊥
v

√
1− α2. (S-14)

Using Eq. S-11 this gives

R =
1− α2

|dw⊥
dξ |

=
1− α2

v
(S-15)

Because g is a free parameter, v can be any positive number and therefore Eq. S-15 implies that

the radius of the helix can be arbitrary.

Because the velocity of this travelling wave is unity, the spatial and temporal periodicities are

equal. Therefore the period of rotation of the helix P ′ is equal to S in Eq. S-13, in the dimensionless

units that we are using. Therefore the relationship between the period and the pitch is

P ′ =
2πR√
1− α2

(S-16)

In terms of our original units the period is

P =
2πRν

fk
√

1− α2
(S-17)

4.4 Two Dimensional Solutions

As we will see in Sec. 4.5, the presence of a wall often causes conformations to become flat, that

is two dimensional. Therefore it is of interest to analyze this case. We consider orbits in the

x − z plane. This corresponds to a pendulum swinging around vertically through the bottom of

the sphere. This is a standard introductory mechanics problem. Letting θ denote the angle with

respect to the −k̂ direction,

θ̈ = −g sin θ (S-18)

where the dots that normally represent a time derivative are really derivatives with respect to ξ.

Low energy solutions where the total energy E is less than g give θ oscillating between two bounds.

In this case the curve for the microtubule will look sinusoidal. Beyond the separatrix where E > g,
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θ will increase without bound. This gives rise to microtubule conformations that look close to

prolate cycloids. In other words, the microtubule forms a travelling wave that periodically loops

backwards (Fig. S2).
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Figure S2: A two dimensional travelling wave solution for a microtubule that looks close to a

prolate cycloid but differs from it in functional form.

Small values of |α| correspond to low values of g/E. In this case, the particle spends almost

equal times at all points on the circle giving a small value of 〈w〉 = α. As g/E increases to 1, α

increases and the loops become tighter; a situation that is very costly energetically. However this

is not the only solution to these equations for a fixed value of α. If instead we consider solutions

with E < g, then large g/E corresponds to small oscillations of w about −k̂. In this case, |α| is

close to 1 and the curve has no tight loops. The shape of the microtubule is close to a sine wave.

To obtain the relationship between G ≡ g/E and α we use conservation of energy to obtain the

period,

θ̇ =
√

2E(1 +G cos θ) (S-19)

The time average of w in the k̂ direction is

〈cos θ〉 =

∫ π
0

cos θ√
1+G cos θ)

dθ∫ π
0

1√
1+G cos θ)

dθ
(S-20)
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This can be expressed in terms of elliptic integrals as

〈cos θ〉 =
1

G
(1− (1 +G)

E(2G/(1 +G))

K(2G/(1 +G))
) (S-21)

Where E and K are the complete Elliptic integrals of the first and second kind respectively. For

bounded orbits, below the separatrix, the corresponding expression can be calculated giving

〈cos θ〉 = −2
E( e+1

2 )

K( e+1
2 )

) + 1 (S-22)

A plot of the α = 〈cos θ〉 versus 1/G = E/g is shown in Fig. S3 using these two expressions. α→ 0

in the limit as G → 0. Note that there are two possible values of E/g corresponding to one value

of positive α.

The case of α = 0 corresponds to the case of circular orbits discussed in Sec. 4.3. The

cytoplasmic streaming velocity is ∝ h (see Eq. S-3). When h = 0, we have shown that the

solutions are circular. If h is now made very small, we expect that the solution will only be slightly

perturbed from circular solutions. This corresponds to a small value of g/E. Therefore the value of

G that is chosen for small enough h should correspond to the larger value of 1/G shown in Fig. S3.

This corresponds to almost circular loops shifting slightly forward after every turn. As h increases,

the loops become tighter giving rise to a high elastic bending energy. At some point therefore, we

expect a transition to another state. In fact, simulations discussed in Sec. 4.6 show that near a flat

surface, the microtubule transitions out of the plane to a helical shape at h ≈ .385 for 128 links in

a chain. For still larger h, the microtubule becomes flat again looking close to sinusoidal.

4.5 Numerical Implementation of the Full Solutions

By comparing the steady state solutions found above for large arclength s and time t, we will see

that these solutions are physically realistic ones to consider. As we will see, the full equations of

motions go to solutions of this type. However this is not a complete description of the problem,

because of these solutions a particular one is selected from a whole family of solutions. The same

behavior occurs in other problems in pattern selection such as dendritic growth [S4, S5].
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Figure S3: A plot of the value of α, the wave propagation velocity, as a function of 1/G, which is

the energy of the analogous spherical pendulum.
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Figure S4: The rescaled radius of curvature for the helical configuration, Rc/ρ0, versus the rescaled

fluid velocity field h = α. The green triangles are for 64 link chains, the red + symbols are for

chains of 128 links.

4.6 Comparison With Simulation

Eq. S-1 was analyzed numerically using a method similar to that used in the context of gel elec-

trophoresis [S6, S7]. Link length drift was handled using a similar procedure to that implemented

for chains with inertia [S8] One end was constrained to have coordinates at the origin, while the
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other was free.

A Runge Kutta time step was 0.001, with the elastic bending coefficient C = 20, the kinesin

force magnitude fk = 2 and simulations were performed with N = 64 or N = 128 links, as will be

noted below. The units are such that the distance between links is set to unity, and the friction

coefficient ν, which determines the units of time, is also set to 1.

We first consider the case of a microtubule with no wall or other external forces aside from the

external velocity field. As a function of the rescaled external velocity field h, the radius of curvature

and period were calculated once the system had reached steady state. Using rescaled variables as

defined by Eqs. S-2 and S-4 we can write the dimensionless radius of curvature as R′c = Rc/ρ0, and

the dimensionless period as P ′ = ωP . The radius of curvature was calculated at the middle of the

chain to reduce finite size effects. The results are shown in Figs. S4 and S5. The data for Rc, Fig.

S4 using 64 links, is very close to those of 128 links except for the highest h values. The data for

the period, Fig. S5(a) show good agreement for both chain sizes at all values of h studied.

We now test the analytic predictions that we made relating the period to the radius of the helix

and α given by Eq. S-16, and our conclusion that α = h. The relationship between the radius of

curvature Rc and the radius R of the helix is readily calculated to be R = Rc(1 − α2). Therefore

Eq. S-16 gives

P ′ = 2πR′c
√

1− α2 (S-23)

With this prediction, and using the data for Rc in Fig. S4, we can independently calculate P ′ for

64 link chains. We can only do this where finite size effects are not important and therefore omit

the highest two h values from this analysis. The data, Fig. S5(b), show excellent agreement to

within the differences expected by finite size effects. This corroborates our analytical analysis of

steady state solutions.

The case of h = α = 0 displayed in Fig. S4 can be written in terms of the original dimensional

variables of Eq. S-1 using Eq. S-4

νRω/fk = 1. (S-24)
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Figure S5: (a)The rescaled period P ′ = Pω versus the rescaled velocity field h = α. The blue

circles are for 64 link chains, the red + symbols are for chains of 128 links. Here the period is

measured directly by timing repeated motion. The line is a guide for the eye. (b) The rescaled

period P ′ = Pω versus the rescaled velocity field h = α calculated by using Eq. S-23 and data on

the radius of the helix versus h shown in Fig. S4. The result is shown by the green triangles. The

blue circles are the same data shown in Fig. S5(a) by directly measuring the period, which shows

good agreement with the numbers produced by using Eq. S-23. Again the line is a guide for the

eye.

And using our numeric solutions we can obtain.

Rc = (C/(βfk))
1/3. (S-25)

From the numerical solution, this gives β = 0.05± 0.0005. This is useful in analyzing experimental

data, as Rc is nearly constant for h < 0.7.

Next we consider the presence of a wall. We introduced a force representing a wall in the y− z

plane of the form

fw =
x2

(x+ 1)2
î (S-26)
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which is only present for x < 0. The force is singular at x = −1 preventing the chain from crossing

that plane. The period as a function of h is shown in Fig. S6 for C = 20 and chains with 128 links.
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Figure S6: The rescaled period P ′ = Pω versus the rescaled velocity field h = α for chains of 128

links.

For small values of h, the period does not vary much. The shapes obtained are flat and appear

to be the same as those found in Sec. 4.4. However there is non-analytic behavior at h ≈ 0.385
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corresponding to a transition to flattened helical waves. Then at h ≈ 0.425 the solution becomes

almost completely flat and showing waves that look closer to sine waves, corresponding to the flat

sinusoidal-like solutions studied in Sec. 4.4.

We now consider the dependence of period and curvature on the length of chains L. Our

analytical solutions have been in the limit that the chain length L→∞. For finite length chains,

we expect corrections to this behavior. In this case we consider h = 0 and study how the rotating

spiral wave solutions vary with increasing length. Fig. S7(a) shows the dependence of the radius

of curvature measured halfway along the arclength, as a function of chain length. As usual, the

rescaled dimensionless variables, see Eqs. S-2 and S-4 have been used. The curve shows a non-

monotonic dependence on L that levels off at L ≈ 20. Fig. S7(b) shows that the rescaled period is

slightly non-monotonic as well but decreases to a constant value at L ≈ 15.
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Figure S7: (a) The rescaled radius of curvature measured at the middle link of a chain versus the

rescaled chain length in steady state for h = 0. (b) The rescaled period versus the rescaled chain

length in steady state for h = 0.

Note that in Fig. S7(b) the period diverges for finite L ≈ 3. Below this point, the solution

is a static straight line. This is similar to the usual buckling transition for a finite length elastic

rod [S9]. Thus the microtubule needs to be sufficiently long to undergo the dynamical instability
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analyzed here.

4.6.1 Selection of Scale

As noted in Sec. 4.2, there exists a continuous family of steady state solutions because if w(ξ) is a

solution, then so is w(λξ) for arbitrary λ. The general way that a particular value of λ is selected

is likely to be due to the same mechanism as in other pattern formation problems [S4, S5]. The

travelling wave solutions ignore the boundary conditions at the ends s = 0 and s = L. Far from

those ends, we have found a continuous family of solutions. However these solutions become invalid

close to the ends. The travelling wave solutions are only valid in the limit of 0 << s << L. The

full solution must match to one of these travelling solutions in that region but will differ greatly

near the ends.

As an example, consider the circular solutions of Sec. 4.3 with h = α = v = 0. There the

steady state solution is a rotating circle wrapped around on itself of arbitrary radius R. However

near the end s = 0, the solution goes into the circle’s center. Similarly it deviates from a circle at

s = L. In analogy with other pattern growth problems such as the “Geometric Model” [S4], where

the mathematics have been analyzed in detail, we expect that the boundary conditions imposed on

the ends, will only be satisfied for certain values of R. If there is more than one allowed value of

R, the value picked out will be the most stable of these. In the Geometric Model the form of the

equations is much simpler, making it possible to understand the overall structure of the problem

more easily. In the present case, a precise understanding of the numerical results will be the subject

of future research.

5 Fluid Mediated Polymer Interactions

After the foregoing analysis of the dynamics of individual polymers in an externally imposed flow

field, we now investigate how such a flow field could actually be generated internally by kinesin

forces acting on a large group of microtubules. To produce a global flow field in the fluid, we need a
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large number of microtubules all aligned and contributing to the driving of the field in a correlated

manner. In addition to investigating steady state values, the behavior with small kinesin forces

could determine criteria under which spontaneous global velocity field formation could occur. To

do these types of calculations, a more detailed view of the interaction between elements in the

system needs to be taken.

5.1 Introduction to the Oseen Tensor

Since streaming occurs in a low Reynolds number regime, the motion of the fluid is described by

the simplified Stokes equations:

∇p = µ∇2u + f

∇ · u = 0
(S-27)

The linearity of the Stokes equations allows for solutions to be obtained via a Green’s Function,

such that for a continuous force density f(r),

u(r) =
∫

f(r′) · J(r− r′)dr′

p(r) =
∫ f(r′)·(r−r′)

4π|r−r′|3 dr
′

(S-28)

Where

J(r) =
1

8πµ

(
I

|r|
+

rrT

|r3|

)
(S-29)

is a second rank tensor field known as the Oseen Tensor. The Oseen tensor has had great success

in describing how small or thin objects interact in fluid, as well as the self interaction of polymers.

When used to describe the effect of applying force to a very small sphere of radius a, the Oseen

tensor has higher order corrections in a/r, where r is the distance from the sphere, but these begin

at (a/r)3 and should not play a significant role in cross polymer interactions. Of particular interest

is its use in modeling polymers as a long chain of beads, which will lend itself well to numerical

simulation.
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5.2 Model for Hydrodynamic Interactions

For this multi-filament model, we are going to use the same structure for the microtubule as for the

solitary case. This models the microtubule as a chain of beads with some tension T and stiffness

parameter C. The equation of motion for each microtubule in the array is modified now by the

inclusion of the Oseen interaction tensor. Each microtubule and its kinesin-driven impellers are in

direct contact with the fluid and at the interface the velocity of the fluid must match the velocity

of the objects suspended in it. This means that any force exerted on the objects will also be

transmitted to the fluid locally. These forces form the force density used in the Oseen tensor to

determine the fluid velocity in all of space, which will also determine the motion of the microtubule

and impeller system.

This is a bit more complex than simply adding the tensor to the previous equation of motion,

as the interaction tensor needs to include the forces of all objects moving in the fluid. Previously,

we simply included the kinesin as a force tangent to the backbone of the microtubule, and while

that is still going to be our model, we now need to include consideration for the reaction force

produced against the impeller, as this will be transmitted back to the microtubule by the long

range hydrodynamic forces.

In order to determine the effect that this extra force density will have on the dynamics, we

need to be more explicit with the configuration of the impellers. Consider the impellers of largest

dimension q to be attached to the microtubule by kinesin motors with no side being preferred at a

characteristic distance a with, as in the single microtubule consideration, a < q � L, with L again

being the microtubule length. We can consider this to form a uniform density of impellers around

the microtubule, and the kinesin motors cause the impeller and the microtubule to move relative

to each other with a fixed velocity in the direction of the tangent of the microtubule backbone.

The fluid velocity field can now be computed by applying the Oseen tensor and integrating over

the force densities present in the system. The forces acting on the microtubule can be integrated

by integrating over the backbone of the chain. The forces acting on the impellers can be computed
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by integrating over a cylindrical sheath around the microtubule, giving us

u(r) =

∫ [
J(r− r′(s))[−C∂

4r′

∂s4
+

∂

∂s
(T (s)

∂r′

∂s
)− fk] +

∫
J(r− r′(s) + a(s))

fk
2π|a|

∂r′

∂s
dâ

]
ds

(S-30)

where u is the fluid velocity and a is a vector pointing radially outward from the microtubule

axis to the impeller location. Recall that C, T (s), and fk are the microtubule stiffness parameter,

microtubule tension, and kinesin walk force respectively. Because the microtubule system is in

contact with the fluid, the motion of the microtubule will follow that of the fluid along the backbone

locations. However, due to the long range of the hydrodynamic interaction, the system can now

be far more sensitive to the overall configuration, which could potentially lead to more complex

steady state solutions than we found for the non interacting single microtubule solutions of Sec. 4.

There are three primary generators of force; backbone stiffness, a gradient in backbone tension,

and the kinesin motors. The first two force densities can be computed entirely from the microtubule

configuration, and these values can then be used as inputs to the Oseen tensor. The force due to

the kinesin coupling and walking is difficult to analyze, however, we will show that it has negligible

effect on the long range fluid motion. We will see that this somewhat paradoxical situation still

leads to long range fluid flow, as we will discuss below.

5.3 Kinesin Quadrupole

In order for the kinesin to drag the impeller along, it must push against the microtubule, so the

force moving the impeller through the fluid has a corresponding opposite force on the microtubule

by Newton’s third law. Both of these forces are then transmitted to the fluid, so it is reasonable

to try to express these forces as some multipole expansion in a small parameter. The microtubules

have a significant stiffness which leads to a characteristic buckling length as described in Eq. S-25,

which sets a size scale for features of the microtubule motion. Compared to this size scale, the

impellers are very small, and bound very tightly to the microtubule backbone. In addition to this,
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(a) (b)

(c)

Figure S8: (a) A gradient in tension creates a force density along the axis of the microtubule

backbone. This is determined by the microtubule configuration. (b) The microtubule curvature

creates a force density (black low and red high) that acts on the fluid. This is also determined by

the microtubule configuration. (c) The kinesin motors act on both the microtubule (red arrows)

and the impellers (green arrows), applying forces that bind them together and drive the impellers

along the microtubule. Both of these force densities are transmitted to the fluid. These force

densities arise due to a local coupling, and therefore are related by Newton’s third law.
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we assume that the impellers are attached to the microtubule in a cylindrically symmetric fashion.

This leads to a small scale force distribution that looks like a classic quadrupole configuration, as

shown in Fig. S9.

Figure S9: At a given location along the microtubule (maroon line), the forces generated by the

kinesin motors push on the microtubule and the impellers in opposite directions. This force density

has a cylindrically symmetric shape, which contributes to a rapid falloff in the effect it has on the

fluid.

We next investigate the contribution to the fluid velocity field from a small segment of the

microtubule impeller system. For convenience, place the segment at the origin, and calculate the

fluid motion at position r. The kinesin motors apply force between the microtubule and impellers

in two ways. They walk along the axis of the microtubule producing significant force along the
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axis, and they also hold the impellers onto the microtubule, creating a rigid link force radially. A

key feature of the nature of these forces is symmetry of inversion through the center axis.

We can now write down the fluid response due to this force density.

δu(r) =
1

8πµ

∫
f

|r + a|
+

(r + a)((r + a) · f)

|r + a|3
dâ− F

|r|
− r(r · F)

|r|3
(S-31)

Where δu(r) is the contribution to the fluid velocity at position r from a differential segment of

the microtubule impeller system, a is the vector pointing from the center of the microtubule to a

point in the impeller sheath, F is the linear force density on the microtubule backbone produced by

the kinesin walkers, and f is an area force density of the force needed to drag the impeller sheath

through the fluid. Because the kinesin binds the microtubule and the impeller together, Newton’s

Third Law dictates that the linear force density along the backbone needs to be equal and opposite

for the impeller microtubule pair. This gives us that integrating f around the full circle must give

the same value as F . Due to the small size of the kinesin molecule, for long range interaction on

the order of the length of the microtubule, or even characteristic curvatures of the microtubule, we

should have a << r, where a and r are the magnitudes of a and r respectively. We can pull out a

factor of r to obtain these expressions in terms of a unit-less small parameter ε = a/r.∫
f

|r + a|
+

r(r · f)

|r + a|3
da (S-32)

Becomes ∫
f

r|r̂ + εâ|
+

(r̂ + εâ)((r̂ + εâ) · f)

r|(r̂ + εâ)|3
dâ (S-33)

Apart from a global factor of 1/r, only the directions of r and a remain, with all of the distance

scaling being absorbed into the small parameter ε. We can now expand the expression to find what

the leading order contribution to the fluid velocity field will be. The zeroth order term reduces

simply to

δu0(r) =

∫
f

r|r̂|
+

(r̂)(r̂ · f)

r|(r̂)|3
dâ− F

|r|
− r(r · F)

|r|3
(S-34)

Which will vanish due to the requirement of Newton’s Third Law. The first order term in ε requires

a bit more work, but is still a straightforward derivative. We first need to expand the magnitudes
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in terms of a square root as follows,

δu(r) =
1

r

∫
f [(r̂ + εâ)2]−1/2dâ + (r̂ + εâ)(r̂ + εâ) · f [(r̂ + εâ)2]−3/2da− F

|r|
− r(r · F)

|r|3
(S-35)

d
dεδu(r) = 1

r

∫
−f [(r̂ + εâ)2]−3/2(r̂ + εâ) · â

+ â(r̂ + εâ) · f [(r̂ + εâ)2]−3/2

+ (r̂ + εâ)(â · f)[(r̂ + εâ)2]−3/2

− 3((r̂ + εâ)(r̂ + εâ) · f [(r̂ + εâ)2]−5/2(r̂ + εâ) · â

(S-36)

limε→0
d
dεδu(r) = 1

r

∫
−f [(r̂)2]−3/2(r̂) · â

+ â(r̂) · f [(r̂)2]−3/2

+ (r̂)(â · f)[(r̂)2]−3/2

− 3((r̂)(r̂) · f [(r̂)2]−5/2(r̂) · â

(S-37)

As we can see, each term in the integrand is an odd function of â, and the integral is around the

whole circle, so this vanishes. This means that the leading order term from the kinesin coupling

force density is going to be suppressed by two factors of the small parameter ε. In comparison,

the tension can be decomposed into equal and opposite pairs between adjacent segments of the

microtubule. However, we will find that they are not able to form a quadrupole like the kinesin

forces do. The separation between the two opposing forces is axial, and lacks the mirror symmetry

needed to form the quadrupole. This means that it would give rise to a dipolar term. And even

in the case of the dipolar term, the corresponding small parameter needed to form the multipole

cancellation is directly tied to the characteristic length scale of the microtubule curvature; indeed,

the curvature is defined by these forces. So not only would it be a chain of dipoles, the density of

those dipoles would need to diverge in the limit of small separation between the opposing forces.

If we instead sum the forces on each individual segment, we are left with the simple linear force

density of the gradient of the tension. This gradient is expected to be nonzero due to the tethering

of the microtubule minus-end. A nonzero linear force density along the axis of the microtubule

would apply directly through the Oseen tensor with no cancellation, and thus fall off as r−1, where
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Figure S10: While the forces connecting the microtubule backbone must balance, these forces are

a) axial and lack the symmetric cancellation of the quadrupole and b) the separation between them

is the basis for the characteristic length scale of the microtubule itself, and is thus fixed in relation

to the size scale of the interaction.
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as we saw the kinesin forces fall off as r−3. This is not to say that the kinesin does not effect the

system at all.

While the long range fluid motion will not be strongly influenced by the kinesin motor forces,

these short range effects will allow the impellers and microtubule to move relative to each other.

While the details of the local fluid motion are complex, the bulk effect is known; the kinesin

walks along the microtubule at a steady rate, creating a fixed relationship between the impeller

velocity and the microtubule velocity. Because the relative motion between the microtubule and

the impeller layer is known, only the motion of the fluid at the impeller interface is needed to

determine the motion of the system. As we have shown, the forces due to the kinesin motors

directly do not contribute to the long range fluid motion, and the only remaining forces are those

from microtubule backbone. Note that this does not contradict the analysis of Sec. 2 where we

analyzed the hydrodynamics of a line of impellers. In both cases, the force on the fluid due to the

power expenditure of the motors is the same. In the current analysis, we have separated out the

internal force-pairs that were lumped together in the previous analysis. Instead of considering fluid

flow to be directly caused by forces from the impeller as we did previously, we have considered all

the separate elements, kinesin, impellers, tension, and microtubule curvature, that are all coupled

to the fluid as expressed by Eq. S-30. What we showed above is that there is a cancellation of the

long range fluid flow from the terms involving kinesin forces. The long range flow that remains is

due to the tension and curvature terms. Because of Newton’s third law, the long range flow in Sec.

2 is the same for these two descriptions.

This leads us to a method for determining the dynamics of the system. The Oseen tensor

should be integrated over the force densities fint along the backbone of the microtubule, ignoring

the contribution from the impeller directly.

u(r) =

∫
backbone

fint(r
′) · J(r− r′)dr′ (S-38)

This will give us the large scale fluid motion that will determine the large scale motion of the entire

system. The coupling from the fluid back to the impeller/microtubule system will depend on the
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short range fluid interactions brought about by the kinesin motors; however, we still expect the

long range motion of the microtubule/impeller system to match that of the fluid. By symmetry, the

difference in velocities will be axial, and the kinesin will still maintain a fixed relationship between

the microtubule and impeller. From that we expect the fluid velocity to appear to be a weighted

average of the microtubule and impeller velocity.

u(r) = vI(1− δ) + vMδ (S-39)

Where vI and vM are the impeller and microtubule velocities, respectively. If we use the fact that

vI − vM = vk
∂r
∂s , we find an expression for our microtubule velocity

dr

dt
= vM = u(r)− (1− δ)vk

∂r

∂s
(S-40)

where vk is the kinesin velocity. As we can see, the effect of the coupling on the microtubule

motion is to act as though the kinesin velocity is suppressed by some fraction, relative to if the

entire microtubule were covered with kinesin. This is the same result as was obtained in the

single microtubule discussion (Sec. 2). While the exact value of this suppression depends on the

detailed hydrodynamic interactions of the microtubule and impellers, the large scale behavior can

be obtained by a simple rescaling of the walk speed, giving us the relation:

dr

dt
= u(r)− vk

∂r

∂s
(S-41)

5.4 Hydrodynamics near a hard wall

Up until now, we have only considered microtubules pinned at one end and unhindered by any other

structures nearby. However our photobleaching tests (Fig. 7) and prior observations agree that

microtubules are attached by their minus ends to the oocyte cortex. The presence of this stationary

wall may have a significant effect on the microtubule motion, as it imposes a new boundary condition

on the fluid motion; namely that the velocity must vanish at the wall.

This new boundary condition changes the Green’s function used to construct the fluid velocity

from the forces applied to the system. The determination of this Green’s function is dependent on
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the specific boundary geometry, and potentially intractable. Because of this, we will first investigate

the case of an infinite plane hard wall at z = 0, to provide some insight into the behavior of the

microtubule impeller system near the cortex.

Fortunately, the Green’s function for the infinite wall case has already been solved[S10]. The

technique is similar to that of the method of image charges in classical electromagnetism, with the

added complication of the sources being vector quantities instead of scalers. This vector nature of

the sources gives rise to a number of corrections to the simple reflection. It is somewhat complex,

though not of higher order scaling than the unmodified Oseen tensor. The interaction Jw(x,y)

between a point force f at location x and a fluid location y is now:

Jw(x,y) · f =
1

8πµr∗
[−(I +

(r∗ · f)r∗

r∗2
) +

2H

r∗2
((

3x3(r∗ · f̃)

r∗2
r∗ − f̃3)r∗ − x3f̃ + (r∗ · f̃)ẑ)] (S-42)

Where r∗ is equal to (x1 − y1, x2 − y2, x3 + y3), the reflected displacement vector, H = y3, the

distance of the fluid from the wall, and f̃ = (f1, f2,−f3), the reflected force. One can recognize

the first term as the reflected Oseen tensor, similar to a negative charge in the method of images.

However, as previously mentioned, the fact that the force must also have its direction flipped adds

several additional terms. These terms together ensure that the velocity of the fluid will vanish at

the boundary.

Other than the modification of the interaction tensor, the model remains almost unchanged.

Due to the assumptions used to generate this solution, it is of course only valid for z > 0, and can

result in strange behaviors if applied for regions below the plane z < 0. These usually result in

extremely singular velocities, and so care must be taken to ensure that no part of the finite time

step used in a simulation will cross this boundary. To ensure this, a hard wall potential similar to

that used for the hard core repulsion of the microtubule segments is placed at z = 0, as will be

described in more detail below in Sec. 5.6.
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5.5 Numeric Implementation of the Model

The complexity of the interaction makes analytic solutions difficult, however, the dependence of

the fluid flow only on the current state of the microtubule makes it suitable for direct simulation.

A straightforward integration of the velocity field will yield the complete system dynamics.

5.6 The discrete model

As with the single microtubule case, the microtubules are modeled as a chain of discrete points.

The use of the long range fluid interactions prevents us from using pure rigid links, so this model

uses a backbone comprised of stiff spring links, such that the force on each element is:

T(ri) = kT (|di−| − l)d̂i− + (|di+| − l)d̂i+ (S-43)

With

di− = ri−1 − ri

di+ = ri+1 − ri

Where ri are the positions of the individual microtubule segments, with kT being the backbone

spring constant and l being the rest length of the segment. The spring constant is chosen to

be as strong as possible for the given time step, in order to match as closely as possible to an

incompressible chain. In addition to the spring force tension term, the backbone stiffness is modeled

as a discrete fourth derivative along the spine, with an adjustable scaling parameter.

C(ri) = −kC [(ri+2 − ri)− (ri − ri−2)] (S-44)

In order for the microtubules to not cross through each other, they are also given a hardcore

repulsion force that is divergent at zero distance along with rapidly and smoothly falling off to zero

at some characteristic radius d. This was implemented as a inverse fourth power law with a cutoff.

In addition we also allowed for an attractive interaction between microtubules over a shell spanning
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d < r < da, which we added as an explanation of the bundling of microtubules that is apparent in

movies of fast streaming:

fh(∆r) =


(1− d4

∆r4
)∆r, for ∆r < d

− 32∗fa
(da−d)2

(∆r − d)(∆r − da)(2∆r − d− da)∆r
∆r , for d < ∆r < da

0, for ∆r ≥ da

(S-45)

fH(ri) =
∑
j

fh(ri − rj) (S-46)

The attractive force is normalized so that the minimum depth of the corresponding potential is

−fa.

In addition to the bulk forces, there are also boundary cases, as well as tethering the minus-ends

of the microtubule. The tethering is accomplished simply by including a spring force, similar to

the tension spring force, that is centered to a specific fixed point in space. All of these forces are

directly transmitted to the fluid, and thus must be included in the Oseen tensor calculation. There

is a difficulty when transitioning to the discrete case due to the singularity of the Oseen tensor at

the origin. For this reason, the effect of the forces generated on a specific segment on the fluid at

the same location is more difficult to determine. The standard practice in this case is to use the

Oseen tensor as an interaction between elements, and to use a simple free draining drag model for

the local motion. Since our microtubule is modeled as a long chain of beads we simply use the drag

due to a small sphere

Jii =
1

4πµ
. (S-47)

By combining equations S-43, S-45, S-44, and S-38, we see that for any point in space, the fluid

velocity is given by:

u(ri) = Jii[T (ri) + C(ri) +H(ri)] +
∑
j 6=i

J(ri − rj)[T(rj) + C(rj) + fH(rj)] (S-48)

35



However, due to the relative velocity between the fluid and the microtubule backbone, the velocity

used to update the position of the microtubule locations ri is found by subtracting the kinesin walk

speed.
dri
dt

= u(ri)−
1

2
vk(ri−1 − ri+1) (S-49)

This derivative is then used for a standard fourth order Runge Kutte integration in order to advance

the system in time.

5.7 Single Microtubule verification

The new algorithm was then used to simulate a single microtubule in order to see what effect the

fluid interaction would have on the single microtubule solution. Because this simulation does not

apply any external flow fields, we expect the solution to closely resemble the zero field case from

the theory without fluid coupling (see Sec. 4).

We ran this simulation using the same parameters for a single microtubule with and without

the fluid interaction, again using a random starting configuration and tethering the minus-end of

the microtubule to a fixed point in space. The result was essentially as expected, with a solution

that asymptotically approached a circle rotating at a constant rate (Fig. S11).

It is interesting to note that the hydrodynamic interaction has little to no effect on this type of

solution.

5.8 Properties of the Many Polymer Model

More microtubules are added to the simulation, so that there are on the order of tens to hundreds

of them. The microtubules have their minus ends tethered in a planar configuration, to mimic

tethering to the cortex. Spacing between the individual anchors can be varied, but will never be

close enough for their hardcore radii to overlap.
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Figure S11: Simulation results for a single polymer without fluid interaction(blue) and with fluid

interaction(orange), with all other parameters held the same. Both polymers are tethered at the

center of the image, near the center of the circular configuration. The images are super imposed,

but the polymers were simulated separately. They are qualitatively the same, though the radius is

slightly larger with fluid interactions activated.
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5.9 Important Length Scales

The introduction of more than one microtubule, along with the addition of the hard wall, introduces

new length scales to the system. The microtubules are placed with their tether points in a plane

parallel to the hard wall, each initialized with a random configuration subject to the constraint that

they not pass through the wall. Within this plane, the tethered minus ends have a characteristic

separation, Rs, and this separation defines one of the new length scales in the system.

In the oocyte, the hard wall is the plasma membrane and a closely associated dense meshwork

of proteins, including filamentaous actin. Inward from that, the f-actin meshwork becomes less

dense. The inward side of this cortical meshwork is loose enough to allow fluid flow, but able to

tether microtubules such that their initial point of bending (tether point) is at some distance away

from the impenetrable oocyte wall. For this reason we study microtubule patches that are at some

small fixed distance H away from the hard wall boundary. Although the real situation involves a

more complicated flow, due to the meshwork described above, we expect that this should be similar

to our system with H chosen appropriately. In addition, the means by which they are attached

may hinder rotation about the attachment, so if they are pointing perpendicular to the oocyte wall,

then they will be effectively raised from it. For these reasons, we take the separation between the

plane of the hard wall and the plane of anchors, H, to be nonzero. This represents a second new

length scale.

These two new lengths are set to be less than the characteristic buckling length of the micro-

tubule, Rb, in order to more closely match what is seen in the biological data. We will see that these

two length scales play an important role in determining the correlation behavior of the system.

5.10 Correlation Between Multiple Microtubules

A key feature found during fast streaming is the formation of correlated groups to enable larger scale

coordinated forces on the fluid. These correlations arise as the motion of fluid near a microtubule

causes that microtubule to align with the preexisting flow. The microtubules contribute to that
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flow because a type of field amplification occurs. Essentially, the long range interaction through

the cytoplasmic fluid could bring about a transition to a phase of long range order.

When the simulation is run with a small number of microtubules placed with their tethered

minus-ends near each other (less than the microtubule buckling length), short range correlation

almost always emerges. Using a random walk starting condition, the microtubules initially fall into

seemingly independent circular solutions similar to those of the single microtubule case. However,

after a few periods of revolution the microtubules eventually collapse into one circular solution (see

Fig. S12).

While this correlation is a promising feature, it is not enough to produce a long range directed

flow field, particularly because of the circular nature of the motion. To sustain linear streaming,

the forces transmitted to any one microtubule from the rest of the system need to be stronger than

the local kickback force from the kinesin motors. A small number of microtubules will not be able

to achieve this.

5.11 Microtubule Patches

To attain linear streaming in our simulation, we include more microtubules. These microtubules are

placed with their minus-end anchor points in a square grid, and then some small random jitter is

applied within the plane to their positions. The random noise is added to suppress periodic lattice

effects, which should not be present in the cell. Once the anchor points are chosen, the microtubules

are initialized with a random walk biased slightly in the positive z direction to avoid problems

caused by starting in the hard wall. Any configuration that penetrates the wall is rejected. Due

to the random nature of the initial conditions, the microtubules often start with high curvatures.

This causes the first few steps of the simulation to be dominated by the microtubules rapidly

relaxing to their more typical curvature. This artifact of the somewhat artificial initial conditions

should not be relevant to the actual biological system, so these initial steps are not shown. The

forces that cause this relaxation are quite high, and occasionally they can cause the microtubules
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(a) (b)

(c)

Figure S12: (a) A typical starting configuration of four microtubules, with Rs = 2 and H = 2. The

apparent thickness is an artifact of the display method. (b) After a short time, the microtubules

fall into individual circular solutions, with some correlation. (c) After a few revolutions, all of the

microtubules collapse into correlated circles.
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to break through the hard wall. This most often results in a divergence due to the hard wall

Oseen tensor having odd behavior for negative z values. Initial conditions that lead to this effect

are also rejected. A typical initialized patch is shown in Fig. S13 To check that these extreme

initial conditions were not influencing our final steady state behavior, and to improve the realism

of the model, we employed a Monte Carlo algorithm to initially anneal the chains to give more

realistic curvatures. This greatly improved the robustness of our initial configurations preventing

the breakthroughs mentioned above. However, it had no discernable effect on the steady state

behavior despite testing the simulation with a wide variety of different conformations.

5.12 Linear Streaming with Microtubule Patches

There is a fairly wide range of parameters for which, regardless of the random initialization, the

microtubule patch will self organize into a stable directed flow (Fig. S14).

The length of time needed for the patch to reach this linear streaming phase can vary based

on the parameters of the simulation, but in general it will be within a few periods of the single

microtubule rotation. During this correlation time, smaller sub regions of extended microtubules

appear. These sub regions can slowly rotate as a unit, and tend to cause more microtubules to

correlate along with them as they pass nearby. Once established, the linear streaming regions are

stable and settle into a single direction.

It is important to re-emphasize that there is no externally imposed fluid motion in this simu-

lation, and that the linear configuration is brought about by fluid mediated interactions between

microtubules. The final direction of the array and of streaming is dependent on the exact nature of

the random initial conditions, which are not guaranteed to be perfectly isotropic. The spontaneous

generation of this ordered phase will cause some aspects of the resulting system, such as the direc-

tion of the resulting global flow field, to depend sensitively on the initial conditions of the system.

However, many properties of the system in this phase, such as the flow speed and characteristic

oscillation frequencies, should be independent of the initial conditions. As long as the microtubules
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Figure S13: A typical starting configuration for a microtubule patch, viewed from directly above

the plane of the hard wall. The microtubules are tethered at their minus ends in a square grid

pattern above the wall by the same distance as the separation between the anchor points. The grid

of anchor points occupies the majority of the view, though it is slightly shifted to give a better

view of the microtubules.
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Figure S14: A typical configuration after correlation, viewed from an angle to better show the

planar nature of the solution. The grid of anchor points is significantly farther from the hard wall

boundary in this simulation than was used in the previous image, in order to increase long-range

correlation. The microtubules minus-ends are tethered at their rightmost endpoint in this image,

and the fluid flow is left and upward, away from the viewer. The microtubules on the edges of the

patch can be seen to execute a helical pattern reminiscent of the single microtubule dynamics.
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are essentially at rest in a steady state, the fluid velocity should be determined by the analysis in

Sec. 2.

5.13 Disordered Solutions

For some ranges of input parameters, the system does not align well enough to create the fast

linear streaming phase. When the fluid interaction forces are not sufficient to overcome the kinesin

reaction force, individual microtubules buckle and begin rotating around their tether points. Even

though the hydrodynamic interaction is not strong enough to force a straight line solution, it can

still cause the rotational solutions to correlate with each other, much like in the case of just a few

microtubules (see Sec. 5.10 above). Regions of correlated microtubules can develop (Fig. S15).

The dynamic correlations found in this phase might include large numbers of microtubules, but

rarely include the anchor points. These masses of loose microtubule ends tend to flow back along

their length, and as such generate very little long range fluid motion.

5.14 Conditions for Linear Streaming

Not all microtubule patches will reach the linear streaming phase from a random initial condition.

There are ranges of parameters for which the system will only exhibit short range correlation, often

in the same manner as the systems with only a few microtubules. In these cases the forces from

the fluid interaction are not strong enough to overcome the local kinesin reaction force, and the

microtubules buckle and rotate around their anchor points.

Whether a system will reach the correlated directed fast streaming phase is determined by a

number of parameters that effect the relative strength of the forces in the system. These parameters

can be the internal properties of the microtubule/impeller system, or properties of the arrangement

of the microtubules in the patch.

In the next section we will investigate the effects of a wall on the system’s propensity for linear

streaming and show that it plays an important role.

44



Figure S15: A system that does not achieve directed fast streaming. It does show temporary local

correlations, but these are not stable in any one direction.
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5.15 Effects of the wall

The hard wall serves to damp out fluid motion near its surface due to its strong interaction with

the fluid viscosity. This is seen in the interaction tensor as a negative force mirrored across the

wall, opposing the motion of the true force above it. One can imagine that, much like the case in

electromagnetism, these mirror forces could form some sort of dipolar arrangement. This arrange-

ment would have faster falloff with distance and could easily interfere with the ability of the entire

system of microtubules to correlate over large distances. We can see this effect in the simulation

by simply placing the microtubule patch at several distances from the wall while holding the other

parameters fixed (Fig. S16).

At large elevations above the wall, the patches reach the linear streaming phase from the random

initial state quite rapidly(within only a few rotation periods). As the elevation is decreased, the

time the system takes to reach the linear streaming state increases.

Eventually, the wall decreases the interaction strength significantly enough that the nucleation

of the linear streaming regions cannot occur. At these distances, the microtubules will often still

correlate, but do not manage to achieve the straight line configuration.

5.16 Relative Viscosity

One can also vary the viscosity of the fluid in this system. As can be seen from Eq. S-48 and S-29,

there is a global factor of µ−1 on all of the driving force terms. Changing the viscosity on any

given system will then inversely effect the fluid velocity field from any given set of forces. At first,

it might seem that this would only cause a change in the overall timescale of the dynamics, but

that turns out to be incorrect. The motion of the microtubule itself is given by Eq. S-49, which

includes a term only proportional to the kinesin walk speed. If this speed remains unchanged, the

effect of the kinesin forces will be scaled proportionately to the viscosity.
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(a) (b)

(c) (d)

Figure S16: (a-d) Configuration of microtubule patches after 200 simulation frames. (a)Patch at

H = 5, shows strong directed streaming (b)Patch at H = 3, shows directed streaming, but with

more loose edges (c)Patch at H = 2, shows directed streaming, but propagates large correlated

“waves” and is not as straight (d)Patch at H = 1, shows no directed streaming, only short range

correlated circular motion.
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5.17 Hysteresis of Streaming

Because it is a self reinforcing effect, the fast streaming behavior could very easily depend on the

initial configuration of the microtubules. For instance, it is believable that a system could be just

barely able to support streaming with the microtubules aligned, but that such a system would be

unable to spontaneously generate that alignment. This divides our phase space up into additional

regions. One region is where the system always transitions to correlated streaming. One would

imagine that this region would be one where interactions between microtubules are strong and

long range compared to the other length scales in the system. Another region is one where the

system can support fast, correlated streaming, but may only reach it from certain classes of initial

configurations. This region is obviously less robust if the intent is to achieve fast streaming. A

third region is one in which the system can never support fast correlated streaming. This would

most likely be a region in which the interaction between microtubules is cut off at a range less than

the typical spacing between microtubules.

We focus here primarily on the transition from disordered microtubules into correlated fast

streaming. This focus comes from the behavior of the cell during the stages before and after the

start of fast streaming. In the oocyte, microtubules are observed to be largely non-correlated or

correlated in circular motions during the slow streaming phase (Movie S1), while they are observed

in strongly correlated arrays during fast streaming (Movies S2 and S3). The oocyte likely undergoes

changes in key streaming parameters to cross the phase boundary from weakly correlated slow

steaming to strongly correlated fast streaming. It is well known that reductions in cytoplasmic

f-actin and an inward shift of microtubule minus ends coincide with the shift from slow to fast

streaming [8,15,16,36].
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