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ABSTRACT The transport of cytoplasmic components can be profoundly affected by hydrodynamics. Cytoplasmic streaming
in Drosophila oocytes offers a striking example. Forces on fluid from kinesin-1 are initially directed by a disordered meshwork of
microtubules, generating minor slow cytoplasmic flows. Subsequently, to mix incoming nurse cell cytoplasm with ooplasm, a
subcortical layer of microtubules forms parallel arrays that support long-range, fast flows. To analyze the streaming mechanism,
we combined observations of microtubule and organelle motions with detailed mathematical modeling. In the fast state, micro-
tubules tethered to the cortex form a thin subcortical layer and undergo correlated sinusoidal bending. Organelles moving in
flows along the arrays show velocities that are slow near the cortex and fast on the inward side of the subcortical microtubule
layer. Starting with fundamental physical principles suggested by qualitative hypotheses, and with published values for micro-
tubule stiffness, kinesin velocity, and cytoplasmic viscosity, we developed a quantitative coupled hydrodynamic model for
streaming. The fully detailed mathematical model and its simulations identify key variables that can shift the system between
disordered (slow) and ordered (fast) states. Measurements of array curvature, wave period, and the effects of diminished kinesin
velocity on flow rates, as well as prior observations on f-actin perturbation, support the model. This establishes a concrete
mechanistic framework for the ooplasmic streaming process. The self-organizing fast phase is a result of viscous drag on kine-
sin-driven cargoes that mediates equal and opposite forces on cytoplasmic fluid and on microtubules whose minus ends are
tethered to the cortex. Fluid moves toward plus ends and microtubules are forced backward toward their minus ends, resulting
in buckling. Under certain conditions, the buckling microtubules self-organize into parallel bending arrays, guiding varying direc-
tions for fast plus-end directed fluid flows that facilitate mixing in a low Reynolds number regime.

INTRODUCTION
Transport processes that purposefully move organelles,
chromosomes, and other objects from one place to another
through cytoplasm are fundamental to the reproduction,
growth, and development of eukaryotic cells. To drive trans-
port, dimeric molecular motors couple alternating cycles of
ATP-driven conformation change to cycles of filament bind-
ing and release to generate stepping forces that move motor-
attached cargoes along cytoskeletal filaments (1). In many
cases, the primary purpose of motor activity is to deliver in-
dividual cargoes to specific destinations. However, in other
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processes, the objective is to transfer force from motors to
their filament tracks and/or to the cytoplasmic fluid that sur-
rounds them. We report here a mathematical model for the
mechanism of a microtubule-motor-driven process whose
purpose is to drive fluid motion in a manner that accom-
plishes the mixing of two different masses of viscous cyto-
plasm. The process, cytoplasmic streaming in Drosophila
oocytes, offers unique insights into how the responses of
fluid and filament tracks to forces that are generated by mo-
tors can have long-range influences on cytoplasmic motion
and organization. Our results provide a concrete quantitative
framework for understanding the hydrodynamic underpin-
nings of transport processes, elucidate a general and hitherto
unknown form of filament self-organization, and point out
an intriguing mechanism for mixing fluids at low Reynolds
number.

In theDrosophila ovary, a germline stem cell generates an
egg chamber with 15 nurse cells that are connected by
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cytoplasmic channels to one another and to the anterior end
of a developing oocyte. During the early and middle stages
of oogenesis, mRNAs, protein complexes, and organelles
synthesized in nurse cells are selectively transported into
the oocyte (2). Disordered cytoplasmic flows (‘‘slow
streaming’’) help disperse the new components after they
enter the oocyte anterior. During this period, develop-
mental determinants such as bicoid and oskar mRNA par-
ticles are transported toward particular regions of the
oocyte margin and anchored to the cortex, thereby estab-
lishing the major body axes of the future organism (3–6).
Meanwhile, substantial amounts of material synthesized
in somatic tissues, such as yolk, are transferred into the
developing oocyte through follicle cells along its lateral
membranes by endocytosis. In late oogenesis, at the begin-
ning of stage 10B, nurse cells squeeze all their remaining
cytoplasm into the oocyte anterior en masse. To mix this
new material with the existing yolky ooplasm, cytoplasmic
flows accelerate >10-fold and become coherent, following
long, varying trajectories throughout the oocyte (‘‘fast
streaming’’) (7). Mutations that allow premature fast
streaming and its associated mixing prevent the localiza-
tion of developmental determinants to their cortical target
areas and thus disrupt the proper formation of body-axis
polarity (8). Mutations that allow no fast streaming prevent
the mixing of the oocyte with nurse-cell cytoplasm and can
also cause embryonic lethality (9–11). Therefore, the bio-
physical mechanism that underlies fast streaming is
important.

The force for streaming is generated by a plus-end-
directed microtubule motor, kinesin-1 (10). In mid-oogen-
esis, before stage 10B, microtubules, many of which are
nucleated at the oocyte cortex where g-tubulin-based
nucleation complexes are concentrated, extend their plus
ends inward, forming a dynamic 3-D meshwork (11–13).
Kinesin-1 is abundant and diffusely distributed (10,14).
The trajectories of slow cytoplasmic flows, as seen by
observing the movements of yolk endosomes or other organ-
elles, are short and randomly directed. At stage 10B, flows
become fast, long-range, and ordered as a layer of subcor-
tical microtubules organizes into parallel bending arrays
(11,13). This transition from slow to fast streaming coin-
cides with a dispersal of cortical g-tubulin and the loss of
a diffuse f-actin meshwork that permeates the ooplasm
(15,16). It is particularly interesting that depolymerization
of that f-actin meshwork, which should decrease cyto-
plasmic viscosity, allows premature fast streaming as early
as stage 9 (8,15).

From these and other observations, qualitative models
have proposed that the normal slow-streaming process dur-
ing mid-oogenesis reflects plus-end-directed kinesin-1
transport of cargoes that act as impellers to transfer force
to cytoplasm that generates disordered fluid flows. Although
the oocyte is capable of organizing subcortical microtubules
into parallel arrays and driving fast, ordered flows, the pro-
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cess is restrained until stage 10B by certain factors, espe-
cially the cytoplasmic f-actin network (8,10,11,15,16).
Weakening of that network at stage 10B allows a self-ampli-
fying loop of kinesin-1-driven fast plus-end-directed fluid
motion along with increasing microtubule alignment that
helps generate long-range flows. In combination, these ob-
servations suggest that fast streaming is a self-organizing
process with a relatively simple mechanism comprised of
four principal components: a stationary cortical barrier, a
population of microtubules whose minus ends are tethered
to that barrier, kinesin-1 motor complexes, and cytoplasmic
fluid.

To elucidate the streaming mechanism, we combined
experimental observations with detailed mathematical
modeling based on fundamental physical principles. Fluo-
rescence microscopy of live oocytes examined relationships
between the oocyte cortex, subcortical green-fluorescent-
protein (GFP)-microtubule behavior, and streaming-driven
motions of organelles. Based on those observations and
the previous qualitative streaming hypotheses, a concrete
quantitative model was developed using established esti-
mates for microtubule stiffness, kinesin-1 velocity on micro-
tubules, and cytoplasmic viscosity. The model defines size/
spacing relationships for various kinesin cargoes that could
generate enough viscous drag to drive the fast-streaming ve-
locities that were observed. We then focused on a simple
analysis of the effects of equal-opposite kinesin forces on
the behavior of a single microtubule whose minus end is
tethered in an imposed cytoplasmic flow field. Starting
from any random configuration, kinesin forces along the
length of the microtubule generate bending patterns that
evolve into a stable helical wave that can become sinusoidal
when adjacent to a nonmoving cortex-like barrier plane. To
examine a more complex situation similar to that in an
oocyte, we coupled the models for kinesin-driven cyto-
plasmic flow generation and filament bending to determine
the behavior of a field of many microtubules with minus
ends held stationary near a barrier plane in a self-generated
flow field. Simulations show that microtubule behaviors
evolve into the two states that are seen in oocytes; either
noncorrelated helical bending, akin to slow streaming, or
remarkably correlated parallel arrays that bend in a
sinusoidal manner parallel to the cortical plane, akin to
fast streaming. Key factors that determine evolution of the
noncorrelated or correlated state are spacing between the
cortex-like barrier and the level at which microtubules can
become parallel to it, microtubule stiffness, and parameters
that determine kinesin-derived force density along the mi-
crotubules: motor-cargo size/spacing, motor velocity, and
cytoplasmic viscosity. The facts that the two simulation out-
comes are analogous to the two states seen in oocytes and
that they emerge over a full range of parameter variations
suggest that the model is valid and that it provides a robust
quantitative mechanism for kinesin-mediated cytoplasmic
streaming.
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MATERIALS AND METHODS

Theoretical modeling and simulations

Thecentralworkheredevelops theoretical analyses and computer simulations

of the mechanism of cytoplasmic streaming in Drosophila oocytes. Fully

detailed mathematical analyses are presented in the Supporting Material.

Three major parts to the modeling approach will be presented in Results.

� Analysis of hydrodynamic flow induced by kinesin motion along micro-

tubules. We employ theoretical calculations and numerical work to pre-

dict the magnitude of flow fields.

� Waves created on a microtubule by kinesin motion. We develop and

analyze a continuous model for this problem, leading to a detailed under-

standing of the steady-state nonlinear waves that are generated. Com-

puter simulations are also employed to obtain quantitative estimates of

frequency and wavelength based on parameters such as microtubule stiff-

ness and ooplasmic viscosity.

� Full hydrodynamic treatment of many microtubules and kinesin. We

develop and implement a numerical model to describe this more complex

situation, in which kinesin motors on different microtubules interact hy-

drodynamically, generating complex collective behavior. This leads to

the investigation of a nonequilibrium disorder-order transition that takes

place as model parameters are varied.
Genetics

To observe fluorescent microtubules in oocytes, a single copy of transgenic

UASp-GFPS65c-a-tub84B was expressed in the female germline using

P{wþ GAL4::VP16nos.UTR}MVD1 (nanos-Gal4) as a driver. To obtain

egg chambers that were additionally homozygous for slow-Khc mutations,

germline clones were induced in the GFP-tubulin background using an

FLP/FRT mitotic recombination approach in females heterozygous for

either Khc23 or Khc17, as described previously (11). Egg chambers with a

half dose of wild-type kinesin were obtained from females that were hetero-

zygous for a small deletion that removes the Khc gene (Df(2R)BSC309/þ).

To observe lipid droplet motions, GFP-LD (P{UASp-GFP-LD}), which

fuses the lipid-droplet-binding domain of Klar-b to GFP, was expressed

in the female germline using the nanos-GAL4 driver (17).
Microscopy

Egg chambers were dissected from adult females and were mounted live in

halocarbon oil on coverslips as described previously (11). They were

imaged in time lapse with either a spinning-disk confocal fluorescence

microscope (Fig. 1; Movies S1, S2, and S3) or an Olympus FV1000 two-

photon fluorescence microscope (see Fig. 7; Movie S8). Fluorescence redis-

tribution after photobleaching (FRAP) tests were performed using the

Olympus FV1000 ‘‘bleach laser’’ function set to a wavelength of 880 nm

at maximum intensity for a duration of 0.24 s.
Organelle and microtubule motions

Curve radii for microtubule arrays were measured from time-lapse images

of GFP-tubulin in fast-streaming oocytes. For clearly visible array waves,

the radius was determined by fitting the most acute wave apex with a

circle. Wave periods for arrays that remained visible in the optical section

for sufficient duration were estimated from time-lapse videos by deter-

mining the time required for a complete wave cycle (peak to peak or

front to front) to pass a fixed position. FRAP patterns were determined

by plotting the average pixel intensity of a 15-mm-long line translated side-

ways along a 24 mm path following the long axis of the bleached rectangles.

To analyze streaming motions of organelles, three approaches were used.

First, in spinning-disk images of oocytes that expressed GFP tubulin, organ-
elles appeared dark by virtue of excluding the GFP. For each oocyte, the po-

sitions of the centers of 10 randomly selected dark organelles that were

beneath the immobile oocyte cortical zone and that remained in the plane

of focus for at least 50 s were marked in each frame using an MTrackJ

version 1.5.0 plug-in for ImageJ version 1.42 (18). Velocity was determined

by measuring the net distance traveled between the start and end points and

dividing by time. This simple low-frequency sampling approach filtered

out the influence of short-range multidirectional saltatory motions, thus

focusing velocity values on bulk cytoplasmic flow (11). The second

approach focused on yolk endosomes in egg chambers lacking GFP-tubulin.

The abdomens of females were injected with 1 mg/mL trypan blue dye,

which is coendocytosed with yolk from hemolymph by oocytes (11). After

2–4 h, ovaries were dissected and imaged using red fluorescent protein fil-

ters. Fluorescent endosomes were tracked and velocities were determined

as for the GFP-tubulin-excluding organelles. In the third approach, females

that expressed GFP-LD, which is targeted to lipid droplets, were injected

with trypan blue and ovaries were imaged in two colors using GFP filters

for GFP-LD and red fluorescent protein filters for trypan blue. To measure

streaming velocities, three different areas within each of five oocytes were

selected, in which endosomes and lipid droplets were free of the cortex and

moved in the focal plane. In the center of each area, a line was drawn that

followed the path of motion using ImageJ. A kymograph was then con-

structed (ImageJ, Velocity Measurement Tool Macro) that revealed pixel in-

tensity changes along that line as a function of time. In each GFP-LD

kymograph, slopes were measured for five randomly selected, well-defined

GFP streaks and then averaged to reflect lipid-droplet velocity in that area.

The three kymographs were then averaged to produce a velocity value for

each oocyte.
RESULTS

Streaming flows and microtubule bending

To gain insight into the behaviors of microtubules and cyto-
plasm during streaming, we used time-lapse fluorescence
microscopy to image live oocytes dissected from female
Drosophila that expressed GFP-tubulin in their germlines
(Fig. 1; Movies S1 and S2). Comparison of stage 9 (slow-
streaming) and stage 10B (fast-streaming) oocytes revealed
striking differences. Fibrous fluorescence from microtu-
bules in stage 9 was disordered. Motions of GFP-excluding
organelles were also disordered and accomplished little net
displacement over time (Fig. 1, A and B; Movie S1). The
microtubule and organelle patterns did not vary substan-
tially at different depths beneath the oocyte surface. In stage
10B, near the oocyte margin, microtubule fluorescence was
dispersed among a layer of large organelles (~5 mm in diam-
eter) that moved little, presumably constrained by associa-
tion with the cortex (Fig. 1, C and D, lower left). At
~5 mm beneath that cortical layer and parallel to the plasma
membrane, there was a dense zone of aligned microtubules
that exhibited correlated wave-like bending behaviors. Or-
ganelles just inward from that microtubule layer moved
fast over long distances, generally following the paths of
the adjacent microtubule arrays. The average velocity deter-
mined by tracking of randomly selected GFP-excluding or-
ganelles, including slow ones associated with the cortex,
was 217 5 38 nm/s (n ¼ 12 oocytes). To examine the
streaming behaviors of specific organelles, females express-
ing GFP-LD, which tags lipid droplets that enter the oocyte
Biophysical Journal 110, 2053–2065, May 10, 2016 2055



FIGURE 1 Microtubule organization and organelle motion in Drosophila oocytes. (A–D) Single optical sections from beneath the plasma membranes of

live oocytes that contained GFP-a-tubulin (see other examples in Movies S1 and S2). (A) A stage 9 oocyte in which the centers of three yolk granules are

marked with yellow dots. (B) The same oocyte 5 min later, with the positions of the three yolk granules marked at intervening 10 s intervals. The optical

section is near the surface of the oocyte at the right side and is ~10 mm deeper at the left side. Note at all depths the similarly disordered microtubules

and slow granule movements. (C and D) A stage 10B oocyte with granules marked and tracked as in (A) and (B). In this case, the optical section is just

beneath the oocyte surface at the lower left and is ~10 mm deeper on the right. Note the parallel microtubule arrays at ~5 mm depth. Organelle motion

was negligible between the microtubule layer and the oocyte surface (left side), and was fast beneath the microtubule layer (right side). Only yolk

endosomes that remained in the focal plane were used to mark streaming motions in this figure. (E) A single optical section from a time-lapse image series

(Movie S3) showing a stage 10B oocytewith lipid droplets marked by GFP-LD (green) and endosomes carrying trypan blue (red). The yellow lines were used

for generating the kymographs in (F). (F) Kymographs show the intensities of lipid-droplet and endosome signals along the lines marked in (E) (x axes) over

time (y axis ¼ 800 s). Scale bars, 10 mm.
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anterior from nurse cells, were injected with trypan blue,
which is taken up by the oocyte during endocytosis of
yolk through lateral surfaces. Two-color time-lapse images
(Fig. 1, E and F; Movie S3) showed that endosomes were
relatively immobile in and near the cortex, but moved fast
beneath it. Lipid droplets were excluded from the cortex
and moved fast beneath it. The patterns of motion and the
velocities of lipid droplets and endosomes that were free
of the cortex were the same, reflecting bulk cytoplasmic
flows. The average velocity of GFP-tagged lipid droplets
determined from kymographs of oocyte regions that had
relatively linear flow patterns (Fig. 1 F) was 313 5
27 nm/s (mean 5 SE of n ¼ 5 oocytes).
A mechanism for kinesin-driven fluid flow and
microtubule bending

Our findings, joined with past work described in the Intro-
duction, support a self-organizing motility mechanism that
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is unique in its simplicity, relying primarily on a single fila-
ment type, microtubules, and a single motor protein species,
kinesin-1. At the beginning of stage 10B, changes occur that
allow robust movement of kinesin-1 along microtubules
whose minus ends are thought to be tethered to the cortex.
The kinesin-1 motors and their associated cargoes transfer
force to adjacent cytoplasmic fluid by viscous drag, and
hence, cytoplasm moves toward the plus ends. The force
of each kinesin-1 on fluid is matched by an equal and oppo-
site force on the microtubule that would displace it with the
minus end leading, if it were free to move. However,
because its minus end is tethered to the cortex, the microtu-
bule responds to the kinesin force by buckling. In the fast-
streaming state, hydrodynamic force transfer between
neighboring microtubules, combined with drag on them
from bulk cytoplasmic flow toward their plus ends, encour-
ages parallel alignment and a correlation of bending behav-
iors. The correlated bending patterns vary over time,
creating varying trajectories for fluid flows that facilitate
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nonlaminar motions and thus promote efficient mixing of
cytoplasm, despite its high viscosity and the small scale.
Fluid flow caused by kinesin-driven motion

To elucidate the intuitive mechanism in quantitative terms,
we considered three lines of inquiry. 1) How can bulk cyto-
plasmic fluid flows be driven by the movement of kinesin
motors toward microtubule plus-ends? 2) How does micro-
tubule bending occur in this situation? 3) How can the com-
bination of these two effects lead to a self-organizing system
of fast flows, aligned microtubules, and correlated bending
behavior? To address these questions, a mathematical model
was developed based on the physical principles of hydrody-
namics. Simulations of the model with various parameters
unexpectedly led to either disordered or aligned phases
that resemble the slow- and fast-streaming states observed
in oocytes.

To begin, we developed a physical model for fluid flows
based on known properties of microtubules, kinesin-1, and
cytoplasm. A small moving object will interact with its sur-
rounding cytoplasm by viscous drag (19,20), moving the
fluid such that flow velocity decreases with distance away
from the object, r, as 1/r. Thus, a single kinesin-cargo com-
plex traveling along a microtubule can move neighboring
fluid, but the velocity of that movement becomes negligible
at large distances. However, consider an in-vivo-like situa-
tion with many kinesin-cargoes traveling along a microtu-
bule. As illustrated in Fig. 2, a linear array of spherical
objects of diameter a, moving at velocity v0, that are sepa-
rated by distances d, will create drag similar to that of a
long rod. As analyzed in detail in Section S2 in the Support-
ing Material, for distance scales >>d, this train of objects is
equivalent to a solid rod of diameter a, moving at a velocity
of ~(a/d)v0. Because of its long length, a moving rod can
generate a flow field with velocities that are substantial at
large distances. In fact, the effect of a moving rod of length
FIGURE 2 Fluid movement by viscous drag on a train of motor-cargo

complexes. A train of spherically shaped impellers of diameter a and sep-

aration d, all moving in a fluid with low Reynolds number at velocity v0.

The fluid velocity, v(r), is measured at a point distance r from the axis.

Separated by small distances, the moving spheres should behave as a rod

of length L.
L is similar to the effect of a moving sphere of diameter L,
up to slowly varying logarithmic corrections (19). Thus,
fluid velocity will be comparable to that of the rod out to dis-
tances of order L. With kinesin-cargo complexes closely
spaced all along a microtubule, L will be equivalent to the
length of the microtubule, which in an oocyte could average
tens of microns.

This analysis neglects the effect of the oocyte cortex,
which will inhibit fluid flow next to its surface, since it is sta-
tionary. To analyze this cortical effect on a flow field gener-
ated by many aligned microtubules, similar to the situation
during fast streaming, we considered an infinite array of par-
allel rods lying above a wall (Fig. 3). To simplify, instead of
kinesin complexes moving along the rod surfaces, each rod
(red) is modeled as moving along its length, which causes
equivalent viscous drag and thus hydrodynamic flow. The
cortex-like barrier below it imposes a fluid velocity of
zero (dark blue) at its surface. The hydrodynamics of this
situation can be understood by electrostatic analogy,
because it maps onto the problem of an array of rods at con-
stant potential above a grounded plane and can be solved by
the method of images. In this case, fluid far from the wall
and the array of rods moves at a constant intermediate veloc-
ity (Fig. 3, green). Therefore, a largely two-dimensional
layer of microtubules near the cortex with closely spaced ki-
nesin cargoes moving along them could cause mass fluid
flow in an oocyte.

Now we are in a position to determine the relationship be-
tween the velocity of kinesin and that of ooplasm during fast
streaming. The velocity of ooplasm should be less than that
of kinesin moving along cortical microtubules by a factor of
~a/d. Kinesin-1-driven motions in metazoan cells vary from
~100 to 1000 nm/s depending on which cargo type is being
tracked, probably on regulatory influences, and perhaps also
on how many kinesins are engaged in moving each cargo
(21–24). We elected to use the velocity of kinesin-1 itself
measured directly in cells at v0¼ 780 nm/s (25). In our tests,
the average velocity of fast-streaming lipid droplets beneath
the microtubule layer is 3135 27 nm/s, suggesting that a/d
is 0.4. With an average cargo diameter of a ¼ 250 nm (e.g.,
lipid droplets), a spacing of d ¼ 625 nm along microtubules
should be sufficient to support the observed mass fluid ve-
locity. Electron microscopy showing close association be-
tween lipid droplets and subcortical microtubules in stage
10B oocytes led originally to the suggestion that they are
key streaming impellers (13). However, any kinesin-cargo
complex should suffice if it is appropriately spaced along
microtubules; e.g., filamentous kinesin cargoes such as mi-
crotubules with an average length of 5 mm would need to be
spaced at only 3.13 mm and 40-nm-diameter small vesicles
would need to be spaced closely at 100 nm. This logic leads
to consideration of the possibility that kinesin-1 motors,
each with its own rod-like geometry 30–80 nm long (26),
could drive fast streaming if they were active without cargo
bound and if they were closely spaced along microtubules.
Biophysical Journal 110, 2053–2065, May 10, 2016 2057



FIGURE 3 Model of a fluid flow velocity field

generated by kinesin-like motion. Shown is a

cross-sectional view of an array of infinitely long

microtubule-like rods (red dots) suspended in fluid

at a depth of 1 (arbitrary units) above a nonmoving

cortex-like barrier (y ¼ 0). Coated evenly with ki-

nesin-cargo complexes moving at a constant veloc-

ity into or out of the page, each rod generates fluid

flow in that same direction. Relative fluid veloc-

ities are represented by colors as shown above in

the color bar, with red being equivalent to the kine-

sin velocity, yellow and green to intermediate ve-

locity, and blue to slow velocity. Velocity is

fastest around each microtubule, goes linearly to

zero at the cortical barrier plane, and asymptotes

to a constant intermediate value (green) above.
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In summary, this fluid-flow analysis indicates that kinesin
forces that are transferred to cytoplasmic fluid by viscous
drag on any sort of cargo can indeed explain the magnitude
and velocity of fluid motion in fast-streaming oocytes, even
at substantial distances from the subcortical microtubule
layer.
Fe

v

v

Fk

T

T

FIGURE 4 Force diagram for a microtubule-kinesin system. A small sec-

tion of a microtubule (gray) is shown being acted on by kinesin forces all

along its length that cause bending. A single kinesin (red) is shown to focus

attention on multiple forces (arrows) that act at its point of attachment to the

microtubule. A force tangent to the long axis of the microtubule is exerted

by kinesins causing a total force along this section of Fk. The microtubule

has an elastic bending constant that will produce a force (Fe) in this section

that will oppose the microtubule bending. Tension (T) acts on neighboring

elements of the microtubule in opposing directions tangent to the long axis.

Force is transferred from the microtubule to the surrounding fluid, which

will move at velocity v.
Dynamics of kinesin-driven microtubule bending

Can kinesin forces explain the correlated wave-like bending
motions of microtubules seen during fast streaming? The
general logic we used to analyze this considers the multiple
forces that act on cortical microtubules. One is the force ki-
nesins exert directly on a microtubule, a buckling force
tangent to its long axis that is resisted by the elastic stiffness
of the microtubule. Another force is exerted on the microtu-
bule by the moving cytoplasmic fluid that surrounds it.
Thus, the analysis must incorporate the determinants of fluid
motion, which include drag from the moving kinesin com-
plexes and from the buckling motions of the microtubules.
It is consideration of these coupled effects that allows one
to evolve the entire hydrodynamic system in time.

First, consider the magnitude of the force exerted by an
individual kinesin motor on its point of attachment to a
microtubule. This is equal and opposite to the viscous
drag on the motor-cargo complex as it moves toward the
plus end. With a motor complex of linear dimension a, the
force due to Stokes drag is 3phav: Assuming a cytoplasmic
viscosity, h, of 8 times that of water (27), and an in vivo ki-
nesin velocity, v, of 780 nm/s, the drag force even from a
large cargo (a ¼ 2mm) would be only 0.12 pN; from a small
cargo (a ¼ 60 nm), it would be 0.007 pN. The force per unit
of microtubule length, fk, generated by a train of kinesin
complexes walking along the microtubule can be estimated,
because it is proportional to h, v, and, as discussed above,
a/d, so that fk¼ hva=d. This force density is independent
of microtubule length up to logarithmic corrections, and
2058 Biophysical Journal 110, 2053–2065, May 10, 2016
the load on a kinesin-cargo complex due to drag is far less
than the stall force of kinesin-1 (>5 pN) (28).

We now use these observations to construct a model for
the motion of a single minus-end-tethered microtubule in-
teracting with many kinesins in fluid. Consider the multiple
forces that act at any point on the microtubule (Fig. 4). As a
kinesin steps toward the microtubule plus end, it applies
force to the surrounding fluid, and it transfers an equal-
opposite force (Fk) to the microtubule that is tangent to
the microtubule’s long axis. Assuming that the microtubule
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is inextensible, the force on the microtubule creates a ten-
sion, T, acting on nearby subunits in opposing directions,
giving a net force that we denote DT. The microtubule has
an elastic bending constant, C, that will produce a force,
Fe, perpendicular to the microtubule long axis. The total
local force acting on an element of fluid next to a microtu-
bule is the sum of the above forces,

f ¼ Fe þ Fk þ DT: (1)

This equation, supplemented with more detailed expressions

for the terms on the righthand side (described below), gives
the force acting on a point in the fluid, but this is not enough
to determine the motion of the system. Hydrodynamic the-
ory can be used to obtain that motion: The total force acting
on an element of liquid has a long-range influence on veloc-
ities far from that point. The velocity of the fluid due to a
force acting on a point is given by the Oseen tensor (Section
S5 in the Supporting Material), which dictates that far from
any surfaces, fluid velocity will diminish as the inverse
of distance from the point of force, with an additional pre-
factor of order unity, depending on the force’s direction.
Conversely, the velocity u(r) of fluid at an arbitrary point
r, is the weighted sum over all forces. In more precise terms,
this weight is the Oseen tensor, Jðr; r0Þ, which connects the
force density fðr0Þ at point r0 in the fluid to the velocity at
another location, r, so that

uðrÞ ¼
Z

Jðr; r0Þfðr0Þd3r0: (2)

The Oseen tensor can also take into account the presence of

a wall (e.g., the oocyte cortex) where the velocity vanishes
(Supporting Material; Eq. S42). These equations of motion
for a microtubule are supplemented with the boundary con-
ditions that the minus end is fixed in space, whereas the plus
end is free to move. The implementation of this model is
described in detail in Section S5.

Before advancing to a more detailed mathematical anal-
ysis, we approximated microtubule motion under simplified
physical conditions. Because the Fk kinesin forces are
acting, on average, tangent to the microtubule all along its
length, they will cause buckling if the microtubule is long
enough. To understand this, we can make use of buckling
theory for a rod with elastic constant C supporting a load.
Consider a section of microtubule of length L. The critical
buckling force the load must apply is fB ¼ p2 C/L2 if the di-
rections of the end segments are not constrained. This will
differ by a factor of order unity if there are such end con-
straints, or if the load is distributed evenly over the rod
rather than being confined to its ends. The longitudinal
force, fL, due to kinesin, as discussed above, is fL ¼ fk L.
As L increases, fL will increase and fB will decrease. The
point at which they are equal gives the value of L at
which buckling will first occur. The radius of curvature, R,
for buckling will be proportional to L and will occur at
R ¼ ðC=bfkÞ1=3; where b is a constant that will be deter-
mined by a more rigorous analysis outlined below that
will allow comparison of theoretical predictions to mea-
sured microtubule curvatures in oocytes. We emphasize
that this simplified buckling analysis is not precise, because
it assumes a static load. With each kinesin force tangent
to its local microtubule axis, as a microtubule bends over
time, it redirects those forces, implying that the load on
the filament is time dependent. We now present a more com-
plete analysis of this dynamic situation.

To understand the motion of a single microtubule, one
must consider that the surrounding fluid creates drag on it.
We first consider a single microtubule with a local drag co-
efficient n, but with no long-range hydrodynamics. A full
hydrodynamic treatment must include the motions of kine-
sins on many adjacent microtubules and the more complex
flow field they generate. However, for a simple single-
microtubule simulation, we will assume that the only effect
of the other microtubules is to produce a constant fluid ve-
locity field, vs, which we will regard as a fixed external
parameter. We show in Section S5.7 in the Supporting
Material that this approximation of local drag is in good
agreement with the full hydrodynamic treatment for a single
microtubule system.

The single-microtubule dynamics model is developed in
detail in Section S4 in the Supporting Material. It is similar
to one developed previously for filament bending in gliding
assays on glass surfaces coated with motors (29). However,
our model is three-dimensional in an external fluid velocity
field, rather than two-dimensional with no external velocity
field. The configuration of the microtubule, r(s), is parame-
terized as a function of arclength, s. Assuming that drag is
only local, and writing out the forces on the righthand
side of Eq. 1 explicitly,

n
vr

vt
¼ �C

v4r

vs4
þ v

vs

�
TðsÞ vr

vs

�
� fk

vr

vs
þ nvsk̂; (3)

where the position-dependent tension, T(s), enforces the in-

extensibility of the chain jvr=vs j ¼ 1.

We can now use Eq. 3 to determine the three-dimen-
sional motion of a microtubule subjected to kinesin forces
while its minus end is tethered in free space. Mathematical
analysis yields a set of traveling wave solutions for long
chains (Sections S4.1–S4.4 in the Supporting Material).
The equation for their shape can be mapped onto the equa-
tion for a spherical pendulum, and their form can be
analyzed in several situations. For the case vs ¼ 0, there
are circularly rotating solutions with angular velocity
fk=ðnRÞ, where R is the radius of curvature (Supporting Ma-
terial; Eq. S24). We have studied numerically how R de-
pends on the fluid velocity field and found that it is quite
insensitive over a wide range of vs velocities. The precise
value of R is determined by the boundary conditions, so
we applied boundary conditions numerically that held the
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minus end at a fixed location but allowed it to pivot,
whereas the plus end was completely free. Starting from
random initial conditions, the equation rapidly goes to a
steady state that typically is described by a curve that
asymptotically becomes a helix that rotates uniformly at
constant angular velocity u (Fig. 5; Movie S4). The crum-
pled initial conditions are clearly not attainable with a real
microtubule, but they are shown to demonstrate that even
from such extreme starting configurations, the dynamics
approach the same helical solution. The handedness that
develops for the helix is random, but is stable once steady
state is attained. A combination of this numerical work and
our analytical results agrees with our much simpler buck-
ling analysis, discussed above, that gives R ¼ ðC=bfkÞ1=3;
it also agrees with the power law found previously (29).
However, now we can determine that b ¼ 0.05 5
0.0005. The asymptotic radius varies only slightly over a
wide vs flow field velocity range (Section S4.6 in the Sup-
porting Material).

To move closer to the situation for a single microtu-
bule in an oocyte, we studied variants of this model in
which the boundary condition of the tethered minus end
is altered such that it is no longer freely hinged about a
fixed point, but is rigidly oriented in one direction, as if
rooted in and projecting away from the cortex. Because
of the stiffness of the microtubule, this shifts bending for
the first circular turn away from the minus end. We also
studied the influence of a barrier to motion that is similar
to the oocyte cortex by adding a short-ranged repulsive
wall potential that is positioned near the minus end and
is parallel with the flow field (Section S4.6 in the Support-
ing Material). This still allows traveling waves, but for
most values of the imposed fluid flow velocity, vs, the
waves evolve into flattened cycloidal or sinusoidal config-
urations parallel to the barrier (Movie S5). This behavior
can also be understood in detail analytically, in excellent
FIGURE 5 Single-filament bending behavior generated by kinesin forces

and an externally imposed fluid flow. Six time points from a 200 frame

simulation of a microtubule-like filament with its minus-end (white ball)

fixed in space but free to pivot (see Movie S4 and Section S4.6). Starting

from initial random compressed configurations of the filament (left side),

tangent forces from kinesins walking toward the free plus end, combined

with an externally imposed fluid flow field (arrow) generates a stable

rotating helical wave. Reasonable values for microtubule stiffness, kinesin

force, and fluid viscosity produce a final radius of curvature between 25 and

54 mm. For viewing purposes, the diameter of the filament here is 2000-fold

that of a real microtubule.

2060 Biophysical Journal 110, 2053–2065, May 10, 2016
agreement with the simulations (Section S4.4 in the Sup-
porting Material).
Self-organization of many microtubules using
simulation

For a more complete model of microtubule behavior in oo-
cytes, the same physical ingredients were considered, but
with an array of 100 filaments tethered by their minus
ends near a cortex-like barrier plane at which both fluid
and filament velocities must be zero. Also, fluid flows
were generated internally by kinesin motion toward plus
ends, rather than being externally imposed. Thus, kinesin
force and microtubule motion coupled to the surrounding
cytoplasmic fluid should generate a complete hydrodynamic
model as described by Eqs. 1 and 2. Constant kinesin veloc-
ity toward plus ends was combined with Eq. 2 to evolve the
system in time. The added complexity of this system pushed
solutions beyond the scope of current analytic treatments,
but it could be modeled numerically (Section S5 in the Sup-
porting Material). This model was unexpectedly predictive,
giving rise to an order-disorder transition between two states
similar to those observed in slow- and fast-streaming oo-
cytes. To determine whether it is robust, repeated simula-
tions with various parameter changes were used to focus
on three general questions: 1) How can a collection of
many noncorrelated microtubules that is being acted on by
kinesin forces spontaneously self-organize into aligned ar-
rays and undergo correlated bending as observed in fast
streaming?, 2) Can parameter changes within the model
explain the disorder-to-order transition?, and 3) If so, what
parameters most directly influence that transition?

In simulations, microtubule-like filaments were modeled
with free-rotating minus ends tethered at height H above the
cortex-like barrier, representing a height at which microtu-
bules that are constrained by minus-end segments rooted
in the cortex could bend enough to lie parallel with it. The
semiflexible nature of the filaments and their interactions
with each other were ensured by modeling them as chains
of balls with spring potentials between them and with
next-nearest-neighbor repulsive potentials. The equilibrium
distance between adjacent balls in a chain was 1 in the units
used for the simulation. In Fig. 6, A and B, adjacent minus-
end tether points are separated by 2 units, and chain lengths
are 16 units. Two distinct behaviors of the system emerged
in simulations. First, at intermediate kinesin force density on
the filaments, and with filament tether points close to the
cortical barrier (e.g., H ¼ 1.0), bending dynamics did not
become well ordered (Fig. 6 A; Movie S6). Small groups
of filaments did correlate over short distances for brief
times, creating patterns similar to those observed for micro-
tubules in slow-streaming oocytes (Fig. 6 C; Movie S1), but
long-range correlations did not develop. In the second
behavior, increasing the distance between the filament tether
points and the cortical barrier (H ¼ 2.0) while holding all



FIGURE 6 Correlated microtubule-array bending generated by kinesin

shear force between fluid and filaments near a barrier plane. (A and B)

Views from above of arrays of 100 microtubule-like filaments with

minus-end pivot points at two distances from the cortical barrier, (A)

H ¼ 1.0 (see Movie S6) and (B) H ¼ 2.0 (see Movie S7). These are out-

comes after 200 iterations of simulations under conditions of 1) spacing be-

tween minus-end pivot points of 2 units; 2) initial randomized filament

configurations; 3) kinesin-like fluid-filament shear forces tangent to each

filament axis at all points; and 4) cytoplasmic fluid movements generated

by the kinesin-filament shear forces. Note the largely noncorrelated bending

behavior in (A) versus the correlated bending behavior in (B). (C and D)

Shown are confocal images of GFP-a-tubulin at 0–10 mm depth beneath

the oocyte membrane. Scale bar, 10 mm. (C) Stage 10A slow streaming

(see Movie S1). (D) Stage 10B fast streaming (see Movie S2).

A Mechanism for Kinesin-Driven Streaming
other parameters unchanged resulted in a striking self-orga-
nization into uniformly oriented bending arrays that lay par-
allel to the barrier (Fig. 6 B; Movie S7). Some filaments at
the array edges, where there were few neighbors, exhibited
independent helical behaviors akin to those of single fila-
ments (Fig. 5; Movie S4), but those with a full set of neigh-
bors exhibited strongly correlated bending dynamics similar
to those of microtubules in fast-streaming oocytes (Fig. 6 D;
Movie S2). When H was held at 2.0 while shifting other
parameters to create much higher force density on microtu-
bules, the first noncorrelated slow-streaming-like state
was reproduced. Those parameter changes included in-
creased kinesin velocity (v0), larger kinesin-cargo diameter
(a; increased drag), reduced spacing between kinesin-cargo
complexes (d), or increased viscosity (h). This outcome
could also result from decreased microtubule stiffness (C).
Alternatively, parameter changes that resulted in much
lower force density allowed evolution of correlated microtu-
bule behavior, but substantially delayed its attainment and
reduced the associated fluid velocity (v(r)). Those parameter
changes included reduced kinesin velocity, smaller cargo
diameter, increased cargo spacing, decreased viscosity, or
increased microtubule stiffness. Repeated trials identified
parameter values that favored correlated behavior and
high fluid velocity: intermediate filament stiffness akin to
that measured for microtubules (30,31), intermediate kine-
sin force density along the filaments, and minus-end pivot
points above the wall at a distance equivalent to the spacing
between microtubule minus ends. At a spacing of 2 units be-
tween microtubule tether points combined with the interme-
diate values for stiffness and force density, the transition
between weak and strong correlation occurred near a height
of H ¼ 1.5 units for chain lengths of 16 and 32, and for fila-
ment populations of 50 and 100. Thus, along with stiffness
of microtubules and force density on them, the distance
away from the cortex at which microtubules can form a par-
allel layer is a parameter that could control the transition
from slow disordered to fast ordered streaming.
The subcortical microtubule layer is anchored

One key assumption for our model that is debatable is that
the minus ends of microtubules that form the bending
subcortical arrays are tethered to the cortex. Consistent
with this, early studies showed that microtubule regrowth
after depolymerization begins at the oocyte cortex (13).
However, it was seen later that although g-tubulin, which
is a minus-end binding and nucleation factor, is concen-
trated in the cortex during slow streaming, it is not concen-
trated there during fast streaming, raising the possibility that
microtubule minus ends are released from cortical anchors
at the transition to fast streaming (15,16,32).

If the minus ends of oocyte microtubules are released
from the cortex at the transition to fast streaming, they
should be carried along by the fast cytoplasmic flows. To
test this, we analyzed GFP-tubulin dynamics by FRAP in
stage 10B oocytes using a two-photon microscope. Well-
aligned bands of subcortical microtubules were marked by
photobleaching within a shallow optical section; then, the
positions of the bleached zone and streaming yolk granules
were observed by time-lapse imaging. If minus ends are not
tethered, such a bleached mark should move along with or-
ganelles in the cytoplasmic flow. The shallow bleached
zones recovered fluorescence in a symmetrical fashion and
they made no discernible shifts in position, despite fast
flow of yolk granules through them (Fig. 7; Movie S8).
This shows that subcortical microtubule arrays are not car-
ried along by fast cytoplasmic streaming flows, indicating
that they are indeed tethered to the cortex, consistent with
the assumption used for our model.
Comparison to microtubule bending in oocytes

The fact that simulations with a full range of parameter var-
iations led to two states of microtubule organization similar
to those seen in oocytes suggests that the model represents
Biophysical Journal 110, 2053–2065, May 10, 2016 2061



FIGURE 7 Subcortical arrays of microtubules are stationary during

streaming. (Top) Subcortical GFP-tubulin in a stage 10B oocyte imaged

by time-lapse two-photon fluorescence microscopy. Intense two-photon

excitation was used to photobleach a 10 � 30 mm area (orange box) in a

shallow optical section of well-aligned subcortical microtubules. White ar-

rows mark the positions of a yolk granule carried by fast streaming at

~300 nm/s. (Bottom) Fluorescence intensity was scanned from bottom

(0 mm) to top (24 mm) of images at various time points (noted in seconds).

The bleached zone did not move laterally, and fluorescence recovery

was symmetrical, despite streaming of cytoplasm through the area (see

Movie S8).

A B

FIGURE 8 Tests of reduced kinesin force density on microtubules in fast

streaming. (A) The velocities of dye-loaded subcortical endosomes

measured in stage 10B–11 oocytes from females with two copies (þ/þ)

or one copy (Khc�/þ) of the Khc gene. (B) Velocities of subcortical organ-

elles in oocytes that were expressing GFP-tubulin. Organelles that exclude

GFP-tubulin were tracked in stage 10B–11 oocytes that were wild-type

(þ/þ) or that had been rendered homozygous for a Khc mutant allele

(Khc17 or Khc23), which are known to slow the movement of kinesin-1

on microtubules (33). Velocity analysis was done only in mutant oocytes

that displayed correlated fast-streaming patterns of motion. Sample sizes

(number of oocytes) are shown in each bar and variance is the standard

error. p-Values reflect the comparison to þ/þ using a two-tailed t-test

with unequal variance.
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the streaming mechanism well. To test the model further,
the wave-like bending behaviors in model simulations
were compared to real microtubule bending behavior in
oocytes. We examined analytical solutions of single-micro-
tubule bending using elastic constants for microtubules of
C ¼ 0.5 to 2 � 10�23 Nm2, as reported previously (30,31)
(Section S4.6 in the Supporting Material). With a kinesin
velocity of 780 nm/s, a cargo diameter/spacing (a/d) be-
tween 0.4 and 1, and assuming a cytoplasmic viscosity in
fast-streaming oocytes of 8 times that of water (27), the
radius of curvature, R, is predicted to be 25–54 mm, and
the wave period, t, is predicted to be 203–1094 s. For com-
parison, we measured bending behaviors of GFP-tubulin
microtubule arrays during fast streaming in stage 10B–11
oocytes. Array trajectories had varying degrees of curvature,
and the curves oscillated in a sinusoidal fashion (Figs. 1 D
and 6 D; Movie S2). Focusing on the most acute peaks,
curve radii were estimated by fitting with circles of known
diameter. The average minimum curvature radius was
R ¼ 16.3 5 2.2 mm, mean 5 SE of n ¼ 6 oocytes (30 ar-
rays), which is reasonably close to the 25 mmminimum pre-
dicted by the model. To estimate wave periods, t, in oocytes,
the amount of time for a complete wave form to pass a fixed
point was determined for arrays that remained suitably in
the optical section. The average was 370 5 42s, mean 5
SE of n ¼ 6 oocytes (19 arrays). This is within the period
range predicted, indicating that our model’s physical expla-
nation for oocyte microtubule bending is valid.
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Reducing kinesin-generated forces slows
streaming flows and hinders microtubule
alignment

The many-filament model, which is based on fundamental
physical principles, shows self-organizing fast streaming
behavior similar to that seen in oocytes. For an additional
test, we studied the effects of reducing kinesin-generated
force density on cortical microtubules. As noted above,
the prediction is that reduced force density will delay attain-
ment of the correlated fast-streaming state and will result in
reduced fluid velocity in that state. Considering the possibil-
ity that kinesin-1 concentration is a limiting factor, we
attempted to reduce force density by eliminating one
copy of the Khc gene, which is known to reduce the con-
centration of Khc protein (33). Stage 10B–11 oocytes het-
erozygous for a 60 kb deletion that removes the Khc gene
(Df(2R)BSC309/þ) did not show signs of delayed entry
into fast streaming, and although the average velocity of
fast-streaming endosomes was somewhat reduced, that
change was not significant (Fig. 8 A). This suggests that
even with half of the normal gene dosage in the
female germline, Khc concentration in oocytes is not
limiting for the fast-streaming pattern or velocity. This is
consistent with prior observations that heterozygous Khc
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null mutations do not alter kinesin-1-driven transport pro-
cesses, even in the long narrow confines of neuronal
axons (21).

Using another approach, we took advantage of two well-
characterized recessive lethal alleles of Khc that cause 3.8-
fold (Khc23) and 1.6-fold (Khc17) slowing of motor velocity
on microtubules in vitro (33) by changing single amino
acids in the force-generating head domain of kinesin. To
study their influences, females expressing GFP-tubulin and
heterozygous for a mutant allele were induced to undergo
mitotic recombination in their germline stem cells such
that egg chambers descended from them were homozygous
for the mutant allele (9,11). In stage 10B–11 mutant oo-
cytes, three different streaming behaviors were observed:
1) noncorrelated behavior and slow flow velocities for
GFP-excluding organelles (Khc23, 26 5 5 nm/s, mean 5
SE of n ¼ 12 oocytes; Khc17, 38 5 6 nm/s, mean 5 SE
of n ¼ 12 oocytes); 2) faint patches of correlated microtu-
bules with ordered streaming flows; and 3) more extensive,
but still faint, subcortical microtubule arrays with uniform
correlated streaming flows at velocities that were signifi-
cantly less than those seen in controls (Fig. 8 B). These ob-
servations are consistent with the delayed self-organization
and slowed fluid velocity predicted by the model for reduced
force density on microtubules.
DISCUSSION

In general, processes involving the transport of cargoes with
a strong directional bias should be profoundly affected by
hydrodynamic principles, because at low Reynolds number
the motions of distant objects are coupled through viscous
drag. Elegant studies by Hamaguchi and Hiramoto in sand
dollar zygotes established that length-dependent pulling
forces on astral microtubules emanating from the centro-
some of the male pronucleus move it toward the cell center
(34). They suggested that such forces are generated by drag
on trains of organelles as they are carried by microtubule
motors toward minus ends that are attached to the centro-
some. It has since been shown that drag on dynein-cargo
complexes indeed generates important length-dependent
pulling forces on microtubules whose minus ends are
attached to pronuclei (35–37). Our work has focused on
what is in essence the reverse process: predominantly
plus-end-directed transport driven by kinesin-1 along micro-
tubules that are attached by their minus ends to the oocyte
cortex. In contrast to the microtubule straightening-pulling
effects of dynein cargoes walking toward anchored minus
ends, drag on kinesin cargoes moving away from anchored
minus ends causes microtubules to buckle and, under some
conditions, to self-organize into parallel arrays that bend in a
correlated fashion. The equal-opposite kinesin force trans-
ferred to cytoplasm drives long-range fluid flows in varying
directions dictated by the bending arrays, which mixes the
cytoplasm.
In developing oocytes, the timing of the switch from mid-
stage slow streaming to late-stage fast streaming is crucial.
If fast streaming occurs too early, the proper concentration
and anchorage of key body-axis determinants at their
cortical sites fails and subsequent embryo development pro-
ceeds without normal patterning (8,38). On the other hand,
if streaming-mediated mixing does not occur, embryos do
not develop normally (11). Our hydrodynamic modeling
shows that oocytes could control the slow- to fast-streaming
transition by changing H, the distance between the cortical
barrier plane and the level at which cortically tethered mi-
crotubules can align parallel to it. This is because fluid mo-
tion between the barrier plane and the microtubule layer
makes an important contribution to hydrodynamic coupling
of microtubules and thus to their correlated bending
behavior. Since for fast streaming, the predicted optimum
distance of microtubule arrays from the barrier is approxi-
mately twice the spacing between microtubule minus
ends, if a shift away from the cortex is a trigger for correla-
tion, it need not be large. High-resolution fluorescence im-
ages of stage 9 oocytes (12) suggest a spacing between
cortical microtubules of ~1 mm. Thus, a spacing increase be-
tween the cortex and the subcortical microtubule layer of
just 1 mm could be sufficient to allow the switch to corre-
lated fast streaming. Evidence consistent with a multimi-
cron inward shift of microtubules during the transition
from slow to fast streaming has been reported (16). How
such a shift could be accomplished while keeping minus
ends tethered is an interesting question. One possibility is
that if the initial segments of microtubules are rigidly ori-
ented at an average angle perpendicular to the cortex,
changes in stiffness could increase the radius over which
they could bend to form a subcortical layer. Alternatively,
an increase in cortical microtubule density that reduces
spacing between them could accomplish the transition
without a subcortical shift. Future ultrastructural analysis
of the organization of microtubules in and near the cortex
before and after the transition should provide important in-
sights into whether or not changes in H or cortical microtu-
bule density contribute to the control mechanism.

Other model parameters could also influence the slow- to
fast-streaming transition, including average kinesin-cargo
size, spacing between cargoes along microtubules, kinesin
velocity, cytoplasmic viscosity, or microtubule stiffness.
We have shown that slow kinesin mutations hinder self-
organization and reduce fast-streaming velocity, as pre-
dicted. Consistent with viscosity changes being important,
destabilizing the cytoplasmic f-actin meshwork, which
should decrease viscosity, stimulates premature fast stream-
ing in stage 8–9 oocytes (8,13,15,38) and hyperstabilizing
the f-actin meshwork has been shown to prevent fast stream-
ing in stage 11 oocytes (15).

Interestingly, model simulations show that increasing the
separation distance between the subcortical microtubule
layer and the cortical wall (beyond 2 units) facilitates rapid
Biophysical Journal 110, 2053–2065, May 10, 2016 2063
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alignment into parallel arrays, but the amplitude of bending
becomes less. Considering the purpose of fast streaming in
oocytes, mixing of cytoplasm, this suggests that the transi-
tion from slow to fast states resets the system to the edge
of a symmetry-breaking phase where there is sufficient
order to align microtubules and generate robust cytoplasmic
flow velocity, yet enough bending of the arrays to facilitate
semichaotic variations in flow direction. In regard to a need
for flow-pattern variation, rigorous analysis in two dimen-
sions using the Thurston-Nielsen classification theorem
has shown that topological chaos is crucial for efficient fluid
mixing (39). This is particularly the case for the low-Rey-
nolds-number regime (small scale and high viscosity) that
exists in an oocyte. Thus, control of stage 10B parameters
to encourage both fast flows and bending is likely an impor-
tant element for successful mixing of nurse cell and oocyte
cytoplasms. Another important consideration for mixing is
that the hemispherical geometry of the oocyte cortex must
introduce additional instabilities in microtubule array corre-
lation and flow patterns. Simulations of streaming inside
hemispheres will be computationally demanding but should
produce additional insights into the biophysical mechanism
of cytoplasmic-streaming-driven mixing.
SUPPORTING MATERIAL

Supporting Materials and Methods, sixteen figures, and eight movies

are available at http://www.biophysj.org/biophysj/supplemental/S0006-

3495(16)30121-7.
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1 Movie Legends

Movie S1

Weak correlation of microtubule motion and bending during slow cytoplasmic

streaming. Live stage 9 Drosophila oocytes containing GFP-α-tubulin expressed in the germline

were dissected, mounted in halocarbon oil, and fluorescence was recorded at 5sec intervals using

an inverted Ultraview spinning disk confocal microscope. The image series is played back here at

30 frames/sec. The optical section is 5−10µm inward from the oocyte membrane (see Fig. 1A,B).

Movie S2

Strong correlation of microtubule motion and bending behavior during fast cyto-

plasmic streaming. GFP-tubulin fluorescence images were recorded in Stage 10B oocytes at 5sec

intervals and are played back at 30 frames/second (see Fig. 1C,D). The optical section, 5− 10µm

inward from the oocyte membrane, cuts through subcortical cytoplasm in some areas, producing
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views of bright, ordered parallel arrays of undulating microtubules and of fast moving yolk endo-

somes (dark spheres). In other areas, where the section is shallower and cuts through the cortex,

yolk endosomes associated with the cortex move slowly in the directions of overlying fast flows.

Movie S3

Endosome and lipid droplet fast streaming motion. Time-lapse confocal fluorescence

images of a stage 10B oocyte showing endosomes containing trypan blue dye (red fluorescence) and

lipid droplets tagged with GFP-LD (green fluorescence) expressed just in the germline. Images were

collected in both channels at 2 sec intervals, and are played back at 30 Frames/sec. The oocyte

nucleus is seen as a dark sphere in the top left. Note the varying fast streaming flow patterns.

Movie S4

A simulation of single filament bending behavior induced by kinesin forces. The

filament has microtubule-like stiffness and forces tangent to its axis at all points like those generated

by kinesin-cargo complexes moving through cytoplasm toward the free plus-end (see Fig. 5 and

Supporting Material 4.6). Those plus-end directed walking forces, if unopposed, would propel the

filament with its minus end leading, but its minus-end (white sphere) is tethered in space. It

can rotate, but not translate. A second force, representing a cytoplasmic streaming flow field is

imposed on the system, moving constantly from the bottom to the top of the field of view. Repeated

simulations consistently developed stable rotating helical wave forms, with handedness depending

on the details of random initial filament configurations. Analytical solutions with reasonable values

for microtubule stiffness, and kinesin force predict a radius of curvature of 24 − 54µm, which is

roughly one third the width of a stage 10B oocyte. To facilitate recognition of the bending behavior,

the width of the filament here is scaled up to 2,000-fold that of a real microtubule.
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Movie S5

A simulation of single filament bending behavior when adjacent to an impenetrable

wall. These parameters are the same as in Movie S4 but the system differs by the addition of a

barrier that is parallel to the microtubule. This changes the travelling helical wave to a shape

similar to a sinusoidal wave that is very well described by the mathematical analysis of Sec. 4.4.

When the cytoplasmic streaming flow field is slower, the shape becomes similar to prolate cycloids

that are also well described by the same analysis.

Movie S6

A simulation of the bending behaviors of 100 filaments with minus-ends tethered

near a barrier to filament and fluid motions. The axis of each filament is initially in a random

configuration (see Fig. 6A and Supporting Material Sec. 5.11)) that changes due to interactions

of microtubule-like stiffness, kinesin-like fluid-filament shear forces tangent to each filament at all

points, and hydrodynamics as described in the Supporting Material, Sec. 5 (parameters as in Fig.

S16(d)). Filament length is 16 (dimensionless units), at an elevation of H = 1 above a membrane-

like wall. The velocity field at the wall vanishes, which suppresses hydrodynamic interactions

between microtubules. In this case, the elevation of minus-ends is too low to allow for long-range

filament correlation and organized fast streaming.

Movie S7

A simulation of the bending behaviors of 100 filaments with elevated minus end

tether points. The parameters are as described for Movie S6, except that minus-ends are tethered

above the membrane barrier at H = 2 (see Fig. 6B; parameters as in Fig. S16c). In this case

fluid motion between the minus-ends and the wall allow strong hydrodynamic interactions between

microtubules that create long-range correlated behaviors and robust fast streaming. At higher

minus-end tethering elevations, correlation becomes stronger and microtubule bending behavior is

diminished, generating relatively straight stable arrays.
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Movie S8

FRAP evidence for cortical tethering of microtubules. High magnification GFP-tubulin

images recorded with an Olympus 2-photon microscope in a stage 10B oocyte at 0.93 sec intervals

are played back here at 30 frames/sec. High intensity excitation was used to photobleach a

shallow 10 × 30µm area in subcortical arrays of microtubules. Note that the photobleached area

remains stationary as fluorescence recovers, while organelles that exclude GFP-tubulin stream past.

Adjacent non-streaming organelles are associated with the cortex. Quantification and other details

of this experiment are presented in Fig. 7.

2 Enhancement of Streaming Due to Hydrodynamics
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Figure S1: Fluid movement by viscous drag on a train of impellers at low Reynolds

number. A train of spherically shaped impellers of diameter a and separation d, all moving in a

fluid with a velocity v0. The velocity v(r) is measured at a point a distance r from the axis.

Consider objects that can move surrounding fluid by viscous drag, referred to as “impellers”

here. Each impeller has a maximum linear dimension a, and has a mean spacing of d, arranged

in a straight line as shown in Fig S1, reproduced from Fig 2 of our accompanying paper. These

impellers are pictured as spheres, but hydrodynamics is not sensitive to the exact shape of an
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impeller, as it depends mainly on its maximum linear dimension [18]. We will now analyze the

amount of streaming due to motion of these impellers moving on a single microtubule. We initially

consider the impellers to be much larger than the kinesin molecules so that they dominate the

hydrodynamical response of the fluid.

If spherical impellers were close-packed along the microtubule, that is a ≈ d, then this problem

would be equivalent to a single rod of length L moving at constant velocity v0 in the fluid in a

direction parallel to its long axis. In that case, the velocity field for distances r � L has only a

weak logarithmic dependence of r, meaning that up to a correction of order ln(L/a), the velocity

field is only weakly dependent on distance and for most practical cases will differ by less than an

order of magnitude from v0. Here we take the velocity of the fluid, v(r), to go to zero far from

the rod. This is related to the well known result that the drag on a rod of length L will only

differ by a logarithmic factor from that of a sphere of diameter L despite the latter’s much greater

volume [18]. Such a system of densely packed impellers would be very efficient at driving the motion

of surrounding fluid.

Now consider the more realistic case in which the impeller size is less than the spacing between

them, which is much less than the length of a microtubule, that is a < d� L. At a distance r � d,

the velocity field will behave just as in the closed-packed case except appear to have a diminished

impeller velocity. That is for d� r � L, the magnitude of the velocity v(r) = v0f(a/d)g(r), where

g(r) contains all the distance dependence of the velocity field, and f(a/d) is how the velocity scales

with the ratio of a/d. In the limit where a/d is very small, the velocity between impellers will

decay to zero. We recover the motion of isolated impellers in this case, where it is well known (e.g.

Stokes’ drag) that the velocity field is proportional to a. Therefore for small argument x(= a/d),

f(x) is linear (in other words, the fluid velocity is proportional to a.) Using this general argument

we conclude that, independent of the exact shape of the impellers, the flow velocity is reduced

from the closed-packed case by a factor ∼ a/d. The effect of the impellers only starts decreasing

substantially at a distance of order the length of the microtubule, L, below which it should only

have a weak logarithmic dependence. In other words, for a spherical region just enveloping a
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microtubule, the fluid velocity is slowly varying and reduced from the kinesin motor velocity by a

factor of order a/d. The above arguments suggest that only a low density of microtubules would

be needed for cytoplasmic streaming. We will analyze the case of many microtubules below.

The above analysis only pertains to a single isolated microtubule. Because of the long range

nature of the hydrodynamic interaction, the behavior of many microtubules will be quite different.

Below we find that the consideration of many further enhances the streaming capablities of this

system. To understand how this affects the above analysis, consider all space filled with an infinite

forest of microtubules, all oriented in the same direction. First if we ignore the microtubules and

just consider the spherical impellers, then if we move to a reference frame moving with the impeller

velocity, the system is static and the velocity everywhere is zero. Therefore in the original reference

frame, the fluid is also moving uniformly at the impeller velocity. This is not correct because we

have ignored the hydrodynamic drag of the microtubules represented by the line going through the

spheres in Fig. S1. To estimate their effect on the fluid velocity, we denote the drag coefficient on an

impeller by bI and that of a section of microtubule length d by bM . Then we go to a reference frame

velocity v such that the total force acting on the combined system of impellers and microtubules

is zero, so that bI(v0 − v)− bMv = 0, or v = bIv0/(bI + bM ). Because the net force acting on this

system is zero in this frame, v is the velocity of the fluid far from the microtubules. Of course

close to each microtubule, the velocity will differ from the value far away, but this will only affect

points that are within a distance a+ d from the microtubule. If we assume conservatively, that the

impellers are very thin cylindrical sheaths, fitting right over the microtubules, then this speed is

v0a/d. If the hydrodynamic radius of the impellers is larger than such a model, then the velocity

will be larger. The exact formula depends on the shape of the impellers. This argument assumes

an infinite volume of microtubules but the corrections to this due to the finite nature of the system

are not important for the estimates we are making.
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3 Necessity of microtubule contact

The question of whether or not free floating microtubules with kinesin-driven impellers contribute

to force generation for streaming is important. Our photobleaching tests demonstrate that there

is a subcortical layer of microtubules that is stationary relative to the cortex, while subcortical

cytoplasm streams past (Fig. 7 and Movie S7). In this case, the principle of Newton’s third

law dictates that the force on cytoplasmic fluid from plus-end directed kinesin-impeller movement

is matched by an opposite force on microtubules that is transferred through the cortex to the

surrounding tissues of the egg chamber and whatever it is attached too. Thus the impellers and

fluid move while the microtubules do not, other than sinusoidal bending around their tethered

minus ends. Could free microtubules deeper within the oocyte also drive flow? In this case, the

force from kinesin-driven impellers on a microtubule will cause the microtubule to move with its

minus-end leading, opposite the direction of the impellers. Because the force is equal in both

directions, the motion imparted to cytoplasmic fluid must be equal in both directions. The result

is that the microtubule will move one way, the impellers will move the other and, beyond very local

displacements, the cytoplasm will not move.

From a more physical perspective, a free floating microtubule with kinesin moving on it will

apply zero net force to the fluid. This is a simple consequence of Newton’s third law, or equivalently,

conservation of momentum. Consider a dumbell shaped machine with two spheres of different radii

connected by a spring. Starting with the dumbell in a compressed state and then letting it go

will impart equal and opposite forces on the two spheres, independent of their radii. Immersed in

a viscous fluid, it is the total force that acts on a sphere that determines the velocity field of its

surrounding fluid at large distances (see Eq. S-28). The fact that the small sphere travels a greater

distance than the large one is irrelevant; they both impart equal and opposite forces to the fluid,

so the net fluid movement at large distances is zero. This is analogous to the zero total charge on

a dipolar object in electrostatics. Equal and opposite forces in a fluid imply dipolar fluid motion

at large distances, which decays rapidly.
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This does not contradict the fact that bacteria are able to swim: the force propelling the bac-

terium forward is countered by an equal and opposite force on the environment, leading to velocity

fields that are dipolar at large distances, but still allowing motion of the bacterium due to local fluid

displacement [19]. In the case analyzed above where kinesin is attached to microtubules, we have

taken the microtubules to be static, and therefore momentum can be transfered between kinesin

and microtubules, which will transfer the momentum through the oocyte cortex and membrane to

the outside environment. When we consider the motion of microtubules, it is therefore important

to have one end connected to the cortex to allow momentum transfer from the outside surroundings

of the oocyte to the cytoplasm. Without such a microtubule connection to an external system, the

motion of kinesin cannot lead to long range hydrodynamic motion of the fluid and will not lead

to efficient cytoplasmic streaming by relatively few motor proteins. Contact with the cortex is

therefore crucial, as it allows for transfer of force from the outside of the oocyte to the cytoplasm,

enabling fast streaming of a large volume of cytoplasmic fluid to be powered by a much smaller

volume of kinesin driven impellers.

4 Mathematical analysis of microtubule bending due to kinesin

forces

During fast streaming, microtubules are largely aligned with each other and the local fluid motion,

but they do exhibit chaotic wavelike bending motions. We begin with the equation for a single

microtubule with an applied force tangent to the direction of the chain due to kinesin driving

impellers toward the plus end. The position of the microtubule at arclength s and at time t is

denoted r(s, t). As is usual at small scales, all inertial effects are negligible and the system is

dominated by the drag coefficient per unit length ν,

ν
∂r

∂t
= −C∂

4r

∂s4
+

∂

∂s
(T (s)

∂r

∂s
)− fk

∂r

∂s
+ νvk̂. (S-1)
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C denotes the elastic bending constant of the microtubule. The tension T (s) enforces the inexten-

sibility of microtubules which can be written as |∂r/∂s| = 1. This is the three dimensional version

of a two dimensional equation used to model rotating spiral patterns seen in motility assays [28]

where we have added the extra term νvk̂ discussed below.

Kinesin motors walking along the microtubule are assumed to be carrying cargoes that push

on the cytoplasmic fluid that surrounds them. By Newton’s third law, this force is matched by

an equal and opposite force on the microtubule. Assuming a high density of kinesin, the effective

force on the microtubule will be in the direction of the local tangent to r(s) which is ∂r/∂s. The

coefficient fk gives the strength of the force. Lastly we add a uniform flow field representing the

velocity of the cytoplasm v in the vicinity of the microtubule which we take to be in the k̂ direction.

We rescale to dimensionless variables

σ = s/ρ0, U = r/ρ0, τ = tω0, T
′ = Tρ2

0/C, and h = νv/fk (S-2)

so that
∂U

∂τ
= −∂

4U

∂σ4
+

∂

∂σ
(T ′(σ)

∂U

∂σ
)− ∂U

∂σ
+ hk̂. (S-3)

This requires that

ω0 = fk/(νρ0), and ρ3
0 = C/fk. (S-4)

ρ0 and ω0 are constants that make our new variables dimensionless.

We will consider solutions where the minus end is tethered to a point, say the origin, so that

r(s = 0, t) = 0 and is freely hinged at that point. The plus end is free. The total arclength of the

microtubule is denoted by L. The general characteristic of all numerical solutions to Eq. S-1 is

that for large s the solutions appear to be traveling waves. In fact, the form of solution becomes

independent of L so in fact we could consider this problem in the limit L → ∞. For example we

find solutions that asymptotically become helical with a fixed path and radius for large s. Other

solutions are planar and are periodic in s. In all these cases the solution has the form of a travelling

wave that we analyze in detail below.
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4.1 Steady State Travelling Wave Solutions

Now we look for steady state travelling wave solutions. First we clarify what this means; the whole

microtubule should not be translating because the minus end, (far away from where the travelling

wave solution is valid) is tethered. The position averaged over one period of a filament subunit,

〈U〉, should be time independent. If the microtubule is stretched out in one particular direction,

there should be a displacement Ud of the microtubule about a straight line solution, so we can look

for solutions of the form

U(σ, τ) = Ud(σ − vdτ) + ασk̂. (S-5)

The term Ud describes a transverse displacement waveform that travels along the backbone of the

chain at velocity vd, maintaining its shape. Here α is the extent to which the chain is extended in

the direction of the fluild motion. Therefore we require

∂〈Ud〉
∂σ

= 0 (S-6)

where the average is taken over the argument σ − vdτ .

Since Ud is transverse, α sets the relation between σ and the z-axis (k̂), such that vz = αvd.

If we choose vd = 1 and in addition α = h, we should obtain solutions that propagate along the

fluid direction with the same unitless velocity as the fluid motion. Looking back to our original

units, vd = 1 corresponds to a wave propagating along the backbone of the chain at velocity fk/ν

(roughly the kinesin walking speed). Recall that h is the rescaled unitless velocity of the external

flow field, so α = h is the condition that the traveling wave form should propagate along the axis

aligned with the globally imposed fluid velocity at the same speed as the fluid. This will allow us

to look for configurations that are stationary along that axis in the frame of the fluid.

Substituting Eq. S-5 into Eq. S-3 gives a left hand side of −vd∂Ud/∂σ and a term of the form

−∂Ud/∂σ on the right hand side, simplifying the equation to

∂4U

∂σ4
+

∂

∂σ
(T ′(σ)

∂U

∂σ
) = 0. (S-7)
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We define w = ∂U/∂σ and note that the inextensibility requirement |∂r/∂s| = 1 implies that

|w| = 1. We can write

w =
∂Ud

∂σ
+ αk̂ (S-8)

Note that w(σ, τ) depends only on σ − τ . Because w is a function of only one variable ξ ≡ σ − τ ,

we can integrate Eq. S-7 with respect to ξ obtaining

d2w

dξ2
− T ′(σ)w = −gk̂. (S-9)

The integration constant on the right hand side −gk̂ must lie in the k̂ direction by symmetry. This

is the same equation as that of the classical mechanics of a particle of unit mass, with position w

travelling on the surface of a unit sphere under the influence of gravity, with the variable ξ being

analogous to time. The term −T ′ is a normal force that constrains the particle to stay on the

sphere’s surface.

From Eq. S-6 and Eq. S-8 we see that the motion is subject to the constraint

〈w〉 = αk̂ (S-10)

The constant g and the initial conditions of the particle must be chosen so as to satisfy this

constraint. There are an infinite number of solutions satisfying these conditions leading to different

steady state solutions for the microtubule.

The spherical pendulum Eq. S-9 has been analyzed [S3] in detail. In general the orbits will not

be closed, but we will relegate our discussion below to two cases where this is the case, circular

motion in Eq. S-9, corresponding to helical conformations of a microtubule, and motion in the

x− z plane. The latter case is important when we introduce a hard wall, with the z axis being the

direction of the global fluid field, and the solutions give shapes similar to cycloids.

4.2 Scale Invariant Family of Solutions

One important point to notice about the general structure of Eq. S-9 is its invariance under change

of ξ, that is ξ → λξ. A change in scale of λ does not modify the solution, because T ′(ξ) and g are
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both constraints, and can therefore be chosen arbitrarily. So that if w(ξ) is a solution to Eq. S-9,

so is w(λξ). Furthermore all solutions of this form will have the same 〈w〉 and hence the same α.

Note that a length scale shift of w = w0(λξ) corresponds to a displacement of U = (1/λ)U0(λξ),

which changes scale because of the 1/λ prefactor in this expression. This means that for every

steady state conformation of the microtubule, there exists a family of steady state solutions with

identical shape but arbitrary size.

4.3 Circular Orbits

Circular orbits are solutions to Eq. S-9. Eq. S-10 requires that the vertical height of the orbit be

at wz = α. Therefore the radius perpendicular to the global fluid velocity k̂ (the wx, wy plane) is

w⊥ ≡
√

1− α2. (S-11)

It is first easiest to analyze this by direct analogy to the classical mechanical problem of a unit

mass particle moving on a unit sphere (the spherical pendulum). If the height above the sphere is

α, then application of Newton’s laws gives that the tension must balance the force of gravity g and

the centripetal acceleration v2/w⊥ giving

g

v2
≡ α

1− α2
(S-12)

Where v is not the real velocity of the microtubule but |dw⊥/dξ|. This is the rate at which the

tangent vector rotates in the x − y plane (the plane perpendicular to the fluid motion). Because

|dUd/dξ| = |wd| = rc is a constant, wd is a circle. Therefore according to Eq. S-5, this will give a

helical conformation of the microtubule.

In the spherical pendulum analogy, the angular velocity of the particle is Ωp = v/w⊥. The total

arclength of the chain (in dimensionless units) of a single period of the chain is

S =
2πR√
1− α2

(S-13)
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and SΩp = 2π so that S = 2π/Ωp = w⊥/v. Comparing this with Eq. S-13 we obtain

R =
w⊥
v

√
1− α2. (S-14)

Using Eq. S-11 this gives

R =
1− α2

|dw⊥
dξ |

=
1− α2

v
(S-15)

Because g is a free parameter, v can be any positive number and therefore Eq. S-15 implies that

the radius of the helix can be arbitrary.

Because the velocity of this travelling wave is unity, the spatial and temporal periodicities are

equal. Therefore the period of rotation of the helix P ′ is equal to S in Eq. S-13, in the dimensionless

units that we are using. Therefore the relationship between the period and the pitch is

P ′ =
2πR√
1− α2

(S-16)

In terms of our original units the period is

P =
2πRν

fk
√

1− α2
(S-17)

4.4 Two Dimensional Solutions

As we will see in Sec. 4.5, the presence of a wall often causes conformations to become flat, that

is two dimensional. Therefore it is of interest to analyze this case. We consider orbits in the

x − z plane. This corresponds to a pendulum swinging around vertically through the bottom of

the sphere. This is a standard introductory mechanics problem. Letting θ denote the angle with

respect to the −k̂ direction,

θ̈ = −g sin θ (S-18)

where the dots that normally represent a time derivative are really derivatives with respect to ξ.

Low energy solutions where the total energy E is less than g give θ oscillating between two bounds.

In this case the curve for the microtubule will look sinusoidal. Beyond the separatrix where E > g,
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θ will increase without bound. This gives rise to microtubule conformations that look close to

prolate cycloids. In other words, the microtubule forms a travelling wave that periodically loops

backwards (Fig. S2).
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Figure S2: A two dimensional travelling wave solution for a microtubule that looks close to a

prolate cycloid but differs from it in functional form.

Small values of |α| correspond to low values of g/E. In this case, the particle spends almost

equal times at all points on the circle giving a small value of 〈w〉 = α. As g/E increases to 1, α

increases and the loops become tighter; a situation that is very costly energetically. However this

is not the only solution to these equations for a fixed value of α. If instead we consider solutions

with E < g, then large g/E corresponds to small oscillations of w about −k̂. In this case, |α| is

close to 1 and the curve has no tight loops. The shape of the microtubule is close to a sine wave.

To obtain the relationship between G ≡ g/E and α we use conservation of energy to obtain the

period,

θ̇ =
√

2E(1 +G cos θ) (S-19)

The time average of w in the k̂ direction is

〈cos θ〉 =

∫ π
0

cos θ√
1+G cos θ)

dθ∫ π
0

1√
1+G cos θ)

dθ
(S-20)
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This can be expressed in terms of elliptic integrals as

〈cos θ〉 =
1

G
(1− (1 +G)

E(2G/(1 +G))

K(2G/(1 +G))
) (S-21)

Where E and K are the complete Elliptic integrals of the first and second kind respectively. For

bounded orbits, below the separatrix, the corresponding expression can be calculated giving

〈cos θ〉 = −2
E( e+1

2 )

K( e+1
2 )

) + 1 (S-22)

A plot of the α = 〈cos θ〉 versus 1/G = E/g is shown in Fig. S3 using these two expressions. α→ 0

in the limit as G → 0. Note that there are two possible values of E/g corresponding to one value

of positive α.

The case of α = 0 corresponds to the case of circular orbits discussed in Sec. 4.3. The

cytoplasmic streaming velocity is ∝ h (see Eq. S-3). When h = 0, we have shown that the

solutions are circular. If h is now made very small, we expect that the solution will only be slightly

perturbed from circular solutions. This corresponds to a small value of g/E. Therefore the value of

G that is chosen for small enough h should correspond to the larger value of 1/G shown in Fig. S3.

This corresponds to almost circular loops shifting slightly forward after every turn. As h increases,

the loops become tighter giving rise to a high elastic bending energy. At some point therefore, we

expect a transition to another state. In fact, simulations discussed in Sec. 4.6 show that near a flat

surface, the microtubule transitions out of the plane to a helical shape at h ≈ .385 for 128 links in

a chain. For still larger h, the microtubule becomes flat again looking close to sinusoidal.

4.5 Numerical Implementation of the Full Solutions

By comparing the steady state solutions found above for large arclength s and time t, we will see

that these solutions are physically realistic ones to consider. As we will see, the full equations of

motions go to solutions of this type. However this is not a complete description of the problem,

because of these solutions a particular one is selected from a whole family of solutions. The same

behavior occurs in other problems in pattern selection such as dendritic growth [S4, S5].
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Figure S3: A plot of the value of α, the wave propagation velocity, as a function of 1/G, which is

the energy of the analogous spherical pendulum.
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Figure S4: The rescaled radius of curvature for the helical configuration, Rc/ρ0, versus the rescaled

fluid velocity field h = α. The green triangles are for 64 link chains, the red + symbols are for

chains of 128 links.

4.6 Comparison With Simulation

Eq. S-1 was analyzed numerically using a method similar to that used in the context of gel elec-

trophoresis [S6, S7]. Link length drift was handled using a similar procedure to that implemented

for chains with inertia [S8] One end was constrained to have coordinates at the origin, while the
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other was free.

A Runge Kutta time step was 0.001, with the elastic bending coefficient C = 20, the kinesin

force magnitude fk = 2 and simulations were performed with N = 64 or N = 128 links, as will be

noted below. The units are such that the distance between links is set to unity, and the friction

coefficient ν, which determines the units of time, is also set to 1.

We first consider the case of a microtubule with no wall or other external forces aside from the

external velocity field. As a function of the rescaled external velocity field h, the radius of curvature

and period were calculated once the system had reached steady state. Using rescaled variables as

defined by Eqs. S-2 and S-4 we can write the dimensionless radius of curvature as R′c = Rc/ρ0, and

the dimensionless period as P ′ = ωP . The radius of curvature was calculated at the middle of the

chain to reduce finite size effects. The results are shown in Figs. S4 and S5. The data for Rc, Fig.

S4 using 64 links, is very close to those of 128 links except for the highest h values. The data for

the period, Fig. S5(a) show good agreement for both chain sizes at all values of h studied.

We now test the analytic predictions that we made relating the period to the radius of the helix

and α given by Eq. S-16, and our conclusion that α = h. The relationship between the radius of

curvature Rc and the radius R of the helix is readily calculated to be R = Rc(1 − α2). Therefore

Eq. S-16 gives

P ′ = 2πR′c
√

1− α2 (S-23)

With this prediction, and using the data for Rc in Fig. S4, we can independently calculate P ′ for

64 link chains. We can only do this where finite size effects are not important and therefore omit

the highest two h values from this analysis. The data, Fig. S5(b), show excellent agreement to

within the differences expected by finite size effects. This corroborates our analytical analysis of

steady state solutions.

The case of h = α = 0 displayed in Fig. S4 can be written in terms of the original dimensional

variables of Eq. S-1 using Eq. S-4

νRω/fk = 1. (S-24)
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Figure S5: (a)The rescaled period P ′ = Pω versus the rescaled velocity field h = α. The blue

circles are for 64 link chains, the red + symbols are for chains of 128 links. Here the period is

measured directly by timing repeated motion. The line is a guide for the eye. (b) The rescaled

period P ′ = Pω versus the rescaled velocity field h = α calculated by using Eq. S-23 and data on

the radius of the helix versus h shown in Fig. S4. The result is shown by the green triangles. The

blue circles are the same data shown in Fig. S5(a) by directly measuring the period, which shows

good agreement with the numbers produced by using Eq. S-23. Again the line is a guide for the

eye.

And using our numeric solutions we can obtain.

Rc = (C/(βfk))
1/3. (S-25)

From the numerical solution, this gives β = 0.05± 0.0005. This is useful in analyzing experimental

data, as Rc is nearly constant for h < 0.7.

Next we consider the presence of a wall. We introduced a force representing a wall in the y− z

plane of the form

fw =
x2

(x+ 1)2
î (S-26)
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which is only present for x < 0. The force is singular at x = −1 preventing the chain from crossing

that plane. The period as a function of h is shown in Fig. S6 for C = 20 and chains with 128 links.
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Figure S6: The rescaled period P ′ = Pω versus the rescaled velocity field h = α for chains of 128

links.

For small values of h, the period does not vary much. The shapes obtained are flat and appear

to be the same as those found in Sec. 4.4. However there is non-analytic behavior at h ≈ 0.385
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corresponding to a transition to flattened helical waves. Then at h ≈ 0.425 the solution becomes

almost completely flat and showing waves that look closer to sine waves, corresponding to the flat

sinusoidal-like solutions studied in Sec. 4.4.

We now consider the dependence of period and curvature on the length of chains L. Our

analytical solutions have been in the limit that the chain length L→∞. For finite length chains,

we expect corrections to this behavior. In this case we consider h = 0 and study how the rotating

spiral wave solutions vary with increasing length. Fig. S7(a) shows the dependence of the radius

of curvature measured halfway along the arclength, as a function of chain length. As usual, the

rescaled dimensionless variables, see Eqs. S-2 and S-4 have been used. The curve shows a non-

monotonic dependence on L that levels off at L ≈ 20. Fig. S7(b) shows that the rescaled period is

slightly non-monotonic as well but decreases to a constant value at L ≈ 15.

(a)
0 5 10 15 20 25 30 35 40

L
1.0

1.5

2.0

2.5

3.0

3.5

4.0

R

(b)
0 5 10 15 20 25 30 35 40

L
15

20

25

30

35

40

45

50

P

Figure S7: (a) The rescaled radius of curvature measured at the middle link of a chain versus the

rescaled chain length in steady state for h = 0. (b) The rescaled period versus the rescaled chain

length in steady state for h = 0.

Note that in Fig. S7(b) the period diverges for finite L ≈ 3. Below this point, the solution

is a static straight line. This is similar to the usual buckling transition for a finite length elastic

rod [S9]. Thus the microtubule needs to be sufficiently long to undergo the dynamical instability
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analyzed here.

4.6.1 Selection of Scale

As noted in Sec. 4.2, there exists a continuous family of steady state solutions because if w(ξ) is a

solution, then so is w(λξ) for arbitrary λ. The general way that a particular value of λ is selected

is likely to be due to the same mechanism as in other pattern formation problems [S4, S5]. The

travelling wave solutions ignore the boundary conditions at the ends s = 0 and s = L. Far from

those ends, we have found a continuous family of solutions. However these solutions become invalid

close to the ends. The travelling wave solutions are only valid in the limit of 0 << s << L. The

full solution must match to one of these travelling solutions in that region but will differ greatly

near the ends.

As an example, consider the circular solutions of Sec. 4.3 with h = α = v = 0. There the

steady state solution is a rotating circle wrapped around on itself of arbitrary radius R. However

near the end s = 0, the solution goes into the circle’s center. Similarly it deviates from a circle at

s = L. In analogy with other pattern growth problems such as the “Geometric Model” [S4], where

the mathematics have been analyzed in detail, we expect that the boundary conditions imposed on

the ends, will only be satisfied for certain values of R. If there is more than one allowed value of

R, the value picked out will be the most stable of these. In the Geometric Model the form of the

equations is much simpler, making it possible to understand the overall structure of the problem

more easily. In the present case, a precise understanding of the numerical results will be the subject

of future research.

5 Fluid Mediated Polymer Interactions

After the foregoing analysis of the dynamics of individual polymers in an externally imposed flow

field, we now investigate how such a flow field could actually be generated internally by kinesin

forces acting on a large group of microtubules. To produce a global flow field in the fluid, we need a
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large number of microtubules all aligned and contributing to the driving of the field in a correlated

manner. In addition to investigating steady state values, the behavior with small kinesin forces

could determine criteria under which spontaneous global velocity field formation could occur. To

do these types of calculations, a more detailed view of the interaction between elements in the

system needs to be taken.

5.1 Introduction to the Oseen Tensor

Since streaming occurs in a low Reynolds number regime, the motion of the fluid is described by

the simplified Stokes equations:

∇p = µ∇2u + f

∇ · u = 0
(S-27)

The linearity of the Stokes equations allows for solutions to be obtained via a Green’s Function,

such that for a continuous force density f(r),

u(r) =
∫

f(r′) · J(r− r′)dr′

p(r) =
∫ f(r′)·(r−r′)

4π|r−r′|3 dr
′

(S-28)

Where

J(r) =
1

8πµ

(
I

|r|
+

rrT

|r3|

)
(S-29)

is a second rank tensor field known as the Oseen Tensor. The Oseen tensor has had great success

in describing how small or thin objects interact in fluid, as well as the self interaction of polymers.

When used to describe the effect of applying force to a very small sphere of radius a, the Oseen

tensor has higher order corrections in a/r, where r is the distance from the sphere, but these begin

at (a/r)3 and should not play a significant role in cross polymer interactions. Of particular interest

is its use in modeling polymers as a long chain of beads, which will lend itself well to numerical

simulation.
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5.2 Model for Hydrodynamic Interactions

For this multi-filament model, we are going to use the same structure for the microtubule as for the

solitary case. This models the microtubule as a chain of beads with some tension T and stiffness

parameter C. The equation of motion for each microtubule in the array is modified now by the

inclusion of the Oseen interaction tensor. Each microtubule and its kinesin-driven impellers are in

direct contact with the fluid and at the interface the velocity of the fluid must match the velocity

of the objects suspended in it. This means that any force exerted on the objects will also be

transmitted to the fluid locally. These forces form the force density used in the Oseen tensor to

determine the fluid velocity in all of space, which will also determine the motion of the microtubule

and impeller system.

This is a bit more complex than simply adding the tensor to the previous equation of motion,

as the interaction tensor needs to include the forces of all objects moving in the fluid. Previously,

we simply included the kinesin as a force tangent to the backbone of the microtubule, and while

that is still going to be our model, we now need to include consideration for the reaction force

produced against the impeller, as this will be transmitted back to the microtubule by the long

range hydrodynamic forces.

In order to determine the effect that this extra force density will have on the dynamics, we

need to be more explicit with the configuration of the impellers. Consider the impellers of largest

dimension q to be attached to the microtubule by kinesin motors with no side being preferred at a

characteristic distance a with, as in the single microtubule consideration, a < q � L, with L again

being the microtubule length. We can consider this to form a uniform density of impellers around

the microtubule, and the kinesin motors cause the impeller and the microtubule to move relative

to each other with a fixed velocity in the direction of the tangent of the microtubule backbone.

The fluid velocity field can now be computed by applying the Oseen tensor and integrating over

the force densities present in the system. The forces acting on the microtubule can be integrated

by integrating over the backbone of the chain. The forces acting on the impellers can be computed

24



by integrating over a cylindrical sheath around the microtubule, giving us

u(r) =

∫ [
J(r− r′(s))[−C∂

4r′

∂s4
+

∂

∂s
(T (s)

∂r′

∂s
)− fk] +

∫
J(r− r′(s) + a(s))

fk
2π|a|

∂r′

∂s
dâ

]
ds

(S-30)

where u is the fluid velocity and a is a vector pointing radially outward from the microtubule

axis to the impeller location. Recall that C, T (s), and fk are the microtubule stiffness parameter,

microtubule tension, and kinesin walk force respectively. Because the microtubule system is in

contact with the fluid, the motion of the microtubule will follow that of the fluid along the backbone

locations. However, due to the long range of the hydrodynamic interaction, the system can now

be far more sensitive to the overall configuration, which could potentially lead to more complex

steady state solutions than we found for the non interacting single microtubule solutions of Sec. 4.

There are three primary generators of force; backbone stiffness, a gradient in backbone tension,

and the kinesin motors. The first two force densities can be computed entirely from the microtubule

configuration, and these values can then be used as inputs to the Oseen tensor. The force due to

the kinesin coupling and walking is difficult to analyze, however, we will show that it has negligible

effect on the long range fluid motion. We will see that this somewhat paradoxical situation still

leads to long range fluid flow, as we will discuss below.

5.3 Kinesin Quadrupole

In order for the kinesin to drag the impeller along, it must push against the microtubule, so the

force moving the impeller through the fluid has a corresponding opposite force on the microtubule

by Newton’s third law. Both of these forces are then transmitted to the fluid, so it is reasonable

to try to express these forces as some multipole expansion in a small parameter. The microtubules

have a significant stiffness which leads to a characteristic buckling length as described in Eq. S-25,

which sets a size scale for features of the microtubule motion. Compared to this size scale, the

impellers are very small, and bound very tightly to the microtubule backbone. In addition to this,
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Figure S8: (a) A gradient in tension creates a force density along the axis of the microtubule

backbone. This is determined by the microtubule configuration. (b) The microtubule curvature

creates a force density (black low and red high) that acts on the fluid. This is also determined by

the microtubule configuration. (c) The kinesin motors act on both the microtubule (red arrows)

and the impellers (green arrows), applying forces that bind them together and drive the impellers

along the microtubule. Both of these force densities are transmitted to the fluid. These force

densities arise due to a local coupling, and therefore are related by Newton’s third law.
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we assume that the impellers are attached to the microtubule in a cylindrically symmetric fashion.

This leads to a small scale force distribution that looks like a classic quadrupole configuration, as

shown in Fig. S9.

Figure S9: At a given location along the microtubule (maroon line), the forces generated by the

kinesin motors push on the microtubule and the impellers in opposite directions. This force density

has a cylindrically symmetric shape, which contributes to a rapid falloff in the effect it has on the

fluid.

We next investigate the contribution to the fluid velocity field from a small segment of the

microtubule impeller system. For convenience, place the segment at the origin, and calculate the

fluid motion at position r. The kinesin motors apply force between the microtubule and impellers

in two ways. They walk along the axis of the microtubule producing significant force along the
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axis, and they also hold the impellers onto the microtubule, creating a rigid link force radially. A

key feature of the nature of these forces is symmetry of inversion through the center axis.

We can now write down the fluid response due to this force density.

δu(r) =
1

8πµ

∫
f

|r + a|
+

(r + a)((r + a) · f)

|r + a|3
dâ− F

|r|
− r(r · F)

|r|3
(S-31)

Where δu(r) is the contribution to the fluid velocity at position r from a differential segment of

the microtubule impeller system, a is the vector pointing from the center of the microtubule to a

point in the impeller sheath, F is the linear force density on the microtubule backbone produced by

the kinesin walkers, and f is an area force density of the force needed to drag the impeller sheath

through the fluid. Because the kinesin binds the microtubule and the impeller together, Newton’s

Third Law dictates that the linear force density along the backbone needs to be equal and opposite

for the impeller microtubule pair. This gives us that integrating f around the full circle must give

the same value as F . Due to the small size of the kinesin molecule, for long range interaction on

the order of the length of the microtubule, or even characteristic curvatures of the microtubule, we

should have a << r, where a and r are the magnitudes of a and r respectively. We can pull out a

factor of r to obtain these expressions in terms of a unit-less small parameter ε = a/r.∫
f

|r + a|
+

r(r · f)

|r + a|3
da (S-32)

Becomes ∫
f

r|r̂ + εâ|
+

(r̂ + εâ)((r̂ + εâ) · f)

r|(r̂ + εâ)|3
dâ (S-33)

Apart from a global factor of 1/r, only the directions of r and a remain, with all of the distance

scaling being absorbed into the small parameter ε. We can now expand the expression to find what

the leading order contribution to the fluid velocity field will be. The zeroth order term reduces

simply to

δu0(r) =

∫
f

r|r̂|
+

(r̂)(r̂ · f)

r|(r̂)|3
dâ− F

|r|
− r(r · F)

|r|3
(S-34)

Which will vanish due to the requirement of Newton’s Third Law. The first order term in ε requires

a bit more work, but is still a straightforward derivative. We first need to expand the magnitudes
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in terms of a square root as follows,

δu(r) =
1

r

∫
f [(r̂ + εâ)2]−1/2dâ + (r̂ + εâ)(r̂ + εâ) · f [(r̂ + εâ)2]−3/2da− F

|r|
− r(r · F)

|r|3
(S-35)

d
dεδu(r) = 1

r

∫
−f [(r̂ + εâ)2]−3/2(r̂ + εâ) · â

+ â(r̂ + εâ) · f [(r̂ + εâ)2]−3/2

+ (r̂ + εâ)(â · f)[(r̂ + εâ)2]−3/2

− 3((r̂ + εâ)(r̂ + εâ) · f [(r̂ + εâ)2]−5/2(r̂ + εâ) · â

(S-36)

limε→0
d
dεδu(r) = 1

r

∫
−f [(r̂)2]−3/2(r̂) · â

+ â(r̂) · f [(r̂)2]−3/2

+ (r̂)(â · f)[(r̂)2]−3/2

− 3((r̂)(r̂) · f [(r̂)2]−5/2(r̂) · â

(S-37)

As we can see, each term in the integrand is an odd function of â, and the integral is around the

whole circle, so this vanishes. This means that the leading order term from the kinesin coupling

force density is going to be suppressed by two factors of the small parameter ε. In comparison,

the tension can be decomposed into equal and opposite pairs between adjacent segments of the

microtubule. However, we will find that they are not able to form a quadrupole like the kinesin

forces do. The separation between the two opposing forces is axial, and lacks the mirror symmetry

needed to form the quadrupole. This means that it would give rise to a dipolar term. And even

in the case of the dipolar term, the corresponding small parameter needed to form the multipole

cancellation is directly tied to the characteristic length scale of the microtubule curvature; indeed,

the curvature is defined by these forces. So not only would it be a chain of dipoles, the density of

those dipoles would need to diverge in the limit of small separation between the opposing forces.

If we instead sum the forces on each individual segment, we are left with the simple linear force

density of the gradient of the tension. This gradient is expected to be nonzero due to the tethering

of the microtubule minus-end. A nonzero linear force density along the axis of the microtubule

would apply directly through the Oseen tensor with no cancellation, and thus fall off as r−1, where
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Figure S10: While the forces connecting the microtubule backbone must balance, these forces are

a) axial and lack the symmetric cancellation of the quadrupole and b) the separation between them

is the basis for the characteristic length scale of the microtubule itself, and is thus fixed in relation

to the size scale of the interaction.
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as we saw the kinesin forces fall off as r−3. This is not to say that the kinesin does not effect the

system at all.

While the long range fluid motion will not be strongly influenced by the kinesin motor forces,

these short range effects will allow the impellers and microtubule to move relative to each other.

While the details of the local fluid motion are complex, the bulk effect is known; the kinesin

walks along the microtubule at a steady rate, creating a fixed relationship between the impeller

velocity and the microtubule velocity. Because the relative motion between the microtubule and

the impeller layer is known, only the motion of the fluid at the impeller interface is needed to

determine the motion of the system. As we have shown, the forces due to the kinesin motors

directly do not contribute to the long range fluid motion, and the only remaining forces are those

from microtubule backbone. Note that this does not contradict the analysis of Sec. 2 where we

analyzed the hydrodynamics of a line of impellers. In both cases, the force on the fluid due to the

power expenditure of the motors is the same. In the current analysis, we have separated out the

internal force-pairs that were lumped together in the previous analysis. Instead of considering fluid

flow to be directly caused by forces from the impeller as we did previously, we have considered all

the separate elements, kinesin, impellers, tension, and microtubule curvature, that are all coupled

to the fluid as expressed by Eq. S-30. What we showed above is that there is a cancellation of the

long range fluid flow from the terms involving kinesin forces. The long range flow that remains is

due to the tension and curvature terms. Because of Newton’s third law, the long range flow in Sec.

2 is the same for these two descriptions.

This leads us to a method for determining the dynamics of the system. The Oseen tensor

should be integrated over the force densities fint along the backbone of the microtubule, ignoring

the contribution from the impeller directly.

u(r) =

∫
backbone

fint(r
′) · J(r− r′)dr′ (S-38)

This will give us the large scale fluid motion that will determine the large scale motion of the entire

system. The coupling from the fluid back to the impeller/microtubule system will depend on the

31



short range fluid interactions brought about by the kinesin motors; however, we still expect the

long range motion of the microtubule/impeller system to match that of the fluid. By symmetry, the

difference in velocities will be axial, and the kinesin will still maintain a fixed relationship between

the microtubule and impeller. From that we expect the fluid velocity to appear to be a weighted

average of the microtubule and impeller velocity.

u(r) = vI(1− δ) + vMδ (S-39)

Where vI and vM are the impeller and microtubule velocities, respectively. If we use the fact that

vI − vM = vk
∂r
∂s , we find an expression for our microtubule velocity

dr

dt
= vM = u(r)− (1− δ)vk

∂r

∂s
(S-40)

where vk is the kinesin velocity. As we can see, the effect of the coupling on the microtubule

motion is to act as though the kinesin velocity is suppressed by some fraction, relative to if the

entire microtubule were covered with kinesin. This is the same result as was obtained in the

single microtubule discussion (Sec. 2). While the exact value of this suppression depends on the

detailed hydrodynamic interactions of the microtubule and impellers, the large scale behavior can

be obtained by a simple rescaling of the walk speed, giving us the relation:

dr

dt
= u(r)− vk

∂r

∂s
(S-41)

5.4 Hydrodynamics near a hard wall

Up until now, we have only considered microtubules pinned at one end and unhindered by any other

structures nearby. However our photobleaching tests (Fig. 7) and prior observations agree that

microtubules are attached by their minus ends to the oocyte cortex. The presence of this stationary

wall may have a significant effect on the microtubule motion, as it imposes a new boundary condition

on the fluid motion; namely that the velocity must vanish at the wall.

This new boundary condition changes the Green’s function used to construct the fluid velocity

from the forces applied to the system. The determination of this Green’s function is dependent on
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the specific boundary geometry, and potentially intractable. Because of this, we will first investigate

the case of an infinite plane hard wall at z = 0, to provide some insight into the behavior of the

microtubule impeller system near the cortex.

Fortunately, the Green’s function for the infinite wall case has already been solved[S10]. The

technique is similar to that of the method of image charges in classical electromagnetism, with the

added complication of the sources being vector quantities instead of scalers. This vector nature of

the sources gives rise to a number of corrections to the simple reflection. It is somewhat complex,

though not of higher order scaling than the unmodified Oseen tensor. The interaction Jw(x,y)

between a point force f at location x and a fluid location y is now:

Jw(x,y) · f =
1

8πµr∗
[−(I +

(r∗ · f)r∗

r∗2
) +

2H

r∗2
((

3x3(r∗ · f̃)

r∗2
r∗ − f̃3)r∗ − x3f̃ + (r∗ · f̃)ẑ)] (S-42)

Where r∗ is equal to (x1 − y1, x2 − y2, x3 + y3), the reflected displacement vector, H = y3, the

distance of the fluid from the wall, and f̃ = (f1, f2,−f3), the reflected force. One can recognize

the first term as the reflected Oseen tensor, similar to a negative charge in the method of images.

However, as previously mentioned, the fact that the force must also have its direction flipped adds

several additional terms. These terms together ensure that the velocity of the fluid will vanish at

the boundary.

Other than the modification of the interaction tensor, the model remains almost unchanged.

Due to the assumptions used to generate this solution, it is of course only valid for z > 0, and can

result in strange behaviors if applied for regions below the plane z < 0. These usually result in

extremely singular velocities, and so care must be taken to ensure that no part of the finite time

step used in a simulation will cross this boundary. To ensure this, a hard wall potential similar to

that used for the hard core repulsion of the microtubule segments is placed at z = 0, as will be

described in more detail below in Sec. 5.6.
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5.5 Numeric Implementation of the Model

The complexity of the interaction makes analytic solutions difficult, however, the dependence of

the fluid flow only on the current state of the microtubule makes it suitable for direct simulation.

A straightforward integration of the velocity field will yield the complete system dynamics.

5.6 The discrete model

As with the single microtubule case, the microtubules are modeled as a chain of discrete points.

The use of the long range fluid interactions prevents us from using pure rigid links, so this model

uses a backbone comprised of stiff spring links, such that the force on each element is:

T(ri) = kT (|di−| − l)d̂i− + (|di+| − l)d̂i+ (S-43)

With

di− = ri−1 − ri

di+ = ri+1 − ri

Where ri are the positions of the individual microtubule segments, with kT being the backbone

spring constant and l being the rest length of the segment. The spring constant is chosen to

be as strong as possible for the given time step, in order to match as closely as possible to an

incompressible chain. In addition to the spring force tension term, the backbone stiffness is modeled

as a discrete fourth derivative along the spine, with an adjustable scaling parameter.

C(ri) = −kC [(ri+2 − ri)− (ri − ri−2)] (S-44)

In order for the microtubules to not cross through each other, they are also given a hardcore

repulsion force that is divergent at zero distance along with rapidly and smoothly falling off to zero

at some characteristic radius d. This was implemented as a inverse fourth power law with a cutoff.

In addition we also allowed for an attractive interaction between microtubules over a shell spanning
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d < r < da, which we added as an explanation of the bundling of microtubules that is apparent in

movies of fast streaming:

fh(∆r) =


(1− d4

∆r4
)∆r, for ∆r < d

− 32∗fa
(da−d)2

(∆r − d)(∆r − da)(2∆r − d− da)∆r
∆r , for d < ∆r < da

0, for ∆r ≥ da

(S-45)

fH(ri) =
∑
j

fh(ri − rj) (S-46)

The attractive force is normalized so that the minimum depth of the corresponding potential is

−fa.

In addition to the bulk forces, there are also boundary cases, as well as tethering the minus-ends

of the microtubule. The tethering is accomplished simply by including a spring force, similar to

the tension spring force, that is centered to a specific fixed point in space. All of these forces are

directly transmitted to the fluid, and thus must be included in the Oseen tensor calculation. There

is a difficulty when transitioning to the discrete case due to the singularity of the Oseen tensor at

the origin. For this reason, the effect of the forces generated on a specific segment on the fluid at

the same location is more difficult to determine. The standard practice in this case is to use the

Oseen tensor as an interaction between elements, and to use a simple free draining drag model for

the local motion. Since our microtubule is modeled as a long chain of beads we simply use the drag

due to a small sphere

Jii =
1

4πµ
. (S-47)

By combining equations S-43, S-45, S-44, and S-38, we see that for any point in space, the fluid

velocity is given by:

u(ri) = Jii[T (ri) + C(ri) +H(ri)] +
∑
j 6=i

J(ri − rj)[T(rj) + C(rj) + fH(rj)] (S-48)
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However, due to the relative velocity between the fluid and the microtubule backbone, the velocity

used to update the position of the microtubule locations ri is found by subtracting the kinesin walk

speed.
dri
dt

= u(ri)−
1

2
vk(ri−1 − ri+1) (S-49)

This derivative is then used for a standard fourth order Runge Kutte integration in order to advance

the system in time.

5.7 Single Microtubule verification

The new algorithm was then used to simulate a single microtubule in order to see what effect the

fluid interaction would have on the single microtubule solution. Because this simulation does not

apply any external flow fields, we expect the solution to closely resemble the zero field case from

the theory without fluid coupling (see Sec. 4).

We ran this simulation using the same parameters for a single microtubule with and without

the fluid interaction, again using a random starting configuration and tethering the minus-end of

the microtubule to a fixed point in space. The result was essentially as expected, with a solution

that asymptotically approached a circle rotating at a constant rate (Fig. S11).

It is interesting to note that the hydrodynamic interaction has little to no effect on this type of

solution.

5.8 Properties of the Many Polymer Model

More microtubules are added to the simulation, so that there are on the order of tens to hundreds

of them. The microtubules have their minus ends tethered in a planar configuration, to mimic

tethering to the cortex. Spacing between the individual anchors can be varied, but will never be

close enough for their hardcore radii to overlap.
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Figure S11: Simulation results for a single polymer without fluid interaction(blue) and with fluid

interaction(orange), with all other parameters held the same. Both polymers are tethered at the

center of the image, near the center of the circular configuration. The images are super imposed,

but the polymers were simulated separately. They are qualitatively the same, though the radius is

slightly larger with fluid interactions activated.
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5.9 Important Length Scales

The introduction of more than one microtubule, along with the addition of the hard wall, introduces

new length scales to the system. The microtubules are placed with their tether points in a plane

parallel to the hard wall, each initialized with a random configuration subject to the constraint that

they not pass through the wall. Within this plane, the tethered minus ends have a characteristic

separation, Rs, and this separation defines one of the new length scales in the system.

In the oocyte, the hard wall is the plasma membrane and a closely associated dense meshwork

of proteins, including filamentaous actin. Inward from that, the f-actin meshwork becomes less

dense. The inward side of this cortical meshwork is loose enough to allow fluid flow, but able to

tether microtubules such that their initial point of bending (tether point) is at some distance away

from the impenetrable oocyte wall. For this reason we study microtubule patches that are at some

small fixed distance H away from the hard wall boundary. Although the real situation involves a

more complicated flow, due to the meshwork described above, we expect that this should be similar

to our system with H chosen appropriately. In addition, the means by which they are attached

may hinder rotation about the attachment, so if they are pointing perpendicular to the oocyte wall,

then they will be effectively raised from it. For these reasons, we take the separation between the

plane of the hard wall and the plane of anchors, H, to be nonzero. This represents a second new

length scale.

These two new lengths are set to be less than the characteristic buckling length of the micro-

tubule, Rb, in order to more closely match what is seen in the biological data. We will see that these

two length scales play an important role in determining the correlation behavior of the system.

5.10 Correlation Between Multiple Microtubules

A key feature found during fast streaming is the formation of correlated groups to enable larger scale

coordinated forces on the fluid. These correlations arise as the motion of fluid near a microtubule

causes that microtubule to align with the preexisting flow. The microtubules contribute to that

38



flow because a type of field amplification occurs. Essentially, the long range interaction through

the cytoplasmic fluid could bring about a transition to a phase of long range order.

When the simulation is run with a small number of microtubules placed with their tethered

minus-ends near each other (less than the microtubule buckling length), short range correlation

almost always emerges. Using a random walk starting condition, the microtubules initially fall into

seemingly independent circular solutions similar to those of the single microtubule case. However,

after a few periods of revolution the microtubules eventually collapse into one circular solution (see

Fig. S12).

While this correlation is a promising feature, it is not enough to produce a long range directed

flow field, particularly because of the circular nature of the motion. To sustain linear streaming,

the forces transmitted to any one microtubule from the rest of the system need to be stronger than

the local kickback force from the kinesin motors. A small number of microtubules will not be able

to achieve this.

5.11 Microtubule Patches

To attain linear streaming in our simulation, we include more microtubules. These microtubules are

placed with their minus-end anchor points in a square grid, and then some small random jitter is

applied within the plane to their positions. The random noise is added to suppress periodic lattice

effects, which should not be present in the cell. Once the anchor points are chosen, the microtubules

are initialized with a random walk biased slightly in the positive z direction to avoid problems

caused by starting in the hard wall. Any configuration that penetrates the wall is rejected. Due

to the random nature of the initial conditions, the microtubules often start with high curvatures.

This causes the first few steps of the simulation to be dominated by the microtubules rapidly

relaxing to their more typical curvature. This artifact of the somewhat artificial initial conditions

should not be relevant to the actual biological system, so these initial steps are not shown. The

forces that cause this relaxation are quite high, and occasionally they can cause the microtubules
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(a) (b)

(c)

Figure S12: (a) A typical starting configuration of four microtubules, with Rs = 2 and H = 2. The

apparent thickness is an artifact of the display method. (b) After a short time, the microtubules

fall into individual circular solutions, with some correlation. (c) After a few revolutions, all of the

microtubules collapse into correlated circles.
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to break through the hard wall. This most often results in a divergence due to the hard wall

Oseen tensor having odd behavior for negative z values. Initial conditions that lead to this effect

are also rejected. A typical initialized patch is shown in Fig. S13 To check that these extreme

initial conditions were not influencing our final steady state behavior, and to improve the realism

of the model, we employed a Monte Carlo algorithm to initially anneal the chains to give more

realistic curvatures. This greatly improved the robustness of our initial configurations preventing

the breakthroughs mentioned above. However, it had no discernable effect on the steady state

behavior despite testing the simulation with a wide variety of different conformations.

5.12 Linear Streaming with Microtubule Patches

There is a fairly wide range of parameters for which, regardless of the random initialization, the

microtubule patch will self organize into a stable directed flow (Fig. S14).

The length of time needed for the patch to reach this linear streaming phase can vary based

on the parameters of the simulation, but in general it will be within a few periods of the single

microtubule rotation. During this correlation time, smaller sub regions of extended microtubules

appear. These sub regions can slowly rotate as a unit, and tend to cause more microtubules to

correlate along with them as they pass nearby. Once established, the linear streaming regions are

stable and settle into a single direction.

It is important to re-emphasize that there is no externally imposed fluid motion in this simu-

lation, and that the linear configuration is brought about by fluid mediated interactions between

microtubules. The final direction of the array and of streaming is dependent on the exact nature of

the random initial conditions, which are not guaranteed to be perfectly isotropic. The spontaneous

generation of this ordered phase will cause some aspects of the resulting system, such as the direc-

tion of the resulting global flow field, to depend sensitively on the initial conditions of the system.

However, many properties of the system in this phase, such as the flow speed and characteristic

oscillation frequencies, should be independent of the initial conditions. As long as the microtubules
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Figure S13: A typical starting configuration for a microtubule patch, viewed from directly above

the plane of the hard wall. The microtubules are tethered at their minus ends in a square grid

pattern above the wall by the same distance as the separation between the anchor points. The grid

of anchor points occupies the majority of the view, though it is slightly shifted to give a better

view of the microtubules.
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Figure S14: A typical configuration after correlation, viewed from an angle to better show the

planar nature of the solution. The grid of anchor points is significantly farther from the hard wall

boundary in this simulation than was used in the previous image, in order to increase long-range

correlation. The microtubules minus-ends are tethered at their rightmost endpoint in this image,

and the fluid flow is left and upward, away from the viewer. The microtubules on the edges of the

patch can be seen to execute a helical pattern reminiscent of the single microtubule dynamics.
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are essentially at rest in a steady state, the fluid velocity should be determined by the analysis in

Sec. 2.

5.13 Disordered Solutions

For some ranges of input parameters, the system does not align well enough to create the fast

linear streaming phase. When the fluid interaction forces are not sufficient to overcome the kinesin

reaction force, individual microtubules buckle and begin rotating around their tether points. Even

though the hydrodynamic interaction is not strong enough to force a straight line solution, it can

still cause the rotational solutions to correlate with each other, much like in the case of just a few

microtubules (see Sec. 5.10 above). Regions of correlated microtubules can develop (Fig. S15).

The dynamic correlations found in this phase might include large numbers of microtubules, but

rarely include the anchor points. These masses of loose microtubule ends tend to flow back along

their length, and as such generate very little long range fluid motion.

5.14 Conditions for Linear Streaming

Not all microtubule patches will reach the linear streaming phase from a random initial condition.

There are ranges of parameters for which the system will only exhibit short range correlation, often

in the same manner as the systems with only a few microtubules. In these cases the forces from

the fluid interaction are not strong enough to overcome the local kinesin reaction force, and the

microtubules buckle and rotate around their anchor points.

Whether a system will reach the correlated directed fast streaming phase is determined by a

number of parameters that effect the relative strength of the forces in the system. These parameters

can be the internal properties of the microtubule/impeller system, or properties of the arrangement

of the microtubules in the patch.

In the next section we will investigate the effects of a wall on the system’s propensity for linear

streaming and show that it plays an important role.
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Figure S15: A system that does not achieve directed fast streaming. It does show temporary local

correlations, but these are not stable in any one direction.
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5.15 Effects of the wall

The hard wall serves to damp out fluid motion near its surface due to its strong interaction with

the fluid viscosity. This is seen in the interaction tensor as a negative force mirrored across the

wall, opposing the motion of the true force above it. One can imagine that, much like the case in

electromagnetism, these mirror forces could form some sort of dipolar arrangement. This arrange-

ment would have faster falloff with distance and could easily interfere with the ability of the entire

system of microtubules to correlate over large distances. We can see this effect in the simulation

by simply placing the microtubule patch at several distances from the wall while holding the other

parameters fixed (Fig. S16).

At large elevations above the wall, the patches reach the linear streaming phase from the random

initial state quite rapidly(within only a few rotation periods). As the elevation is decreased, the

time the system takes to reach the linear streaming state increases.

Eventually, the wall decreases the interaction strength significantly enough that the nucleation

of the linear streaming regions cannot occur. At these distances, the microtubules will often still

correlate, but do not manage to achieve the straight line configuration.

5.16 Relative Viscosity

One can also vary the viscosity of the fluid in this system. As can be seen from Eq. S-48 and S-29,

there is a global factor of µ−1 on all of the driving force terms. Changing the viscosity on any

given system will then inversely effect the fluid velocity field from any given set of forces. At first,

it might seem that this would only cause a change in the overall timescale of the dynamics, but

that turns out to be incorrect. The motion of the microtubule itself is given by Eq. S-49, which

includes a term only proportional to the kinesin walk speed. If this speed remains unchanged, the

effect of the kinesin forces will be scaled proportionately to the viscosity.
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(a) (b)

(c) (d)

Figure S16: (a-d) Configuration of microtubule patches after 200 simulation frames. (a)Patch at

H = 5, shows strong directed streaming (b)Patch at H = 3, shows directed streaming, but with

more loose edges (c)Patch at H = 2, shows directed streaming, but propagates large correlated

“waves” and is not as straight (d)Patch at H = 1, shows no directed streaming, only short range

correlated circular motion.
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5.17 Hysteresis of Streaming

Because it is a self reinforcing effect, the fast streaming behavior could very easily depend on the

initial configuration of the microtubules. For instance, it is believable that a system could be just

barely able to support streaming with the microtubules aligned, but that such a system would be

unable to spontaneously generate that alignment. This divides our phase space up into additional

regions. One region is where the system always transitions to correlated streaming. One would

imagine that this region would be one where interactions between microtubules are strong and

long range compared to the other length scales in the system. Another region is one where the

system can support fast, correlated streaming, but may only reach it from certain classes of initial

configurations. This region is obviously less robust if the intent is to achieve fast streaming. A

third region is one in which the system can never support fast correlated streaming. This would

most likely be a region in which the interaction between microtubules is cut off at a range less than

the typical spacing between microtubules.

We focus here primarily on the transition from disordered microtubules into correlated fast

streaming. This focus comes from the behavior of the cell during the stages before and after the

start of fast streaming. In the oocyte, microtubules are observed to be largely non-correlated or

correlated in circular motions during the slow streaming phase (Movie S1), while they are observed

in strongly correlated arrays during fast streaming (Movies S2 and S3). The oocyte likely undergoes

changes in key streaming parameters to cross the phase boundary from weakly correlated slow

steaming to strongly correlated fast streaming. It is well known that reductions in cytoplasmic

f-actin and an inward shift of microtubule minus ends coincide with the shift from slow to fast

streaming [8,15,16,36].
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[S1] Meyhöfer, E. and Howard, J. (1995). “The force generated by a single kinesin molecule against

an elastic load.” Proc. Natl. Acad Sci. USA. 92 574-578.

[S2] Yin, H. L. and Stossel, T. P. (1979). “Control of cytoplasmic actin gelsol transformation by

gelsolin, a calcium-dependent regulatory protein.” Nature 281, 583-586.

[S3] Cushman, R. H. and Bates, L. M. (1997). “Global aspects of classical integrable systems.”
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