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S1. Stiffness and resonance frequency of a deformed plate.  

We start with a plate with length 𝐿, width 𝑏 and thickness ℎ. The plate is isotropic, 

homogenous and uniform. The Young’s modulus and Poisson’s ratio are given by 𝐸 and 𝜈, 

respectively. A schematic of the plate and the coordinate system is shown in Fig. 2 of the main 

text. The length, width and thickness of the undeformed plate are oriented along 𝑥-, 𝑦- and 𝑧-

axes, respectively. The origin of the 𝑥-axis is at the left free edge of the undeformed plate, and 

the origins of the 𝑦- and 𝑧- axis are at the middle of the undeformed plate. We define the 

normalized coordinates 𝑋 =
𝑥

𝐿
 and 𝑌 =

𝑦

𝑏
. The deformed plate displays an out-of-plane 

displacement 𝑤𝑠(𝑋, 𝑌) = 𝛺 𝐿 𝑛(𝑋, 𝑌), where 𝛺 is the maximum static displacement 

normalized to the plate length and 𝑛(𝑋, 𝑌) is the dimensionless function that describes the 

deformation shape. This initial deformation is referred to as static deformation. We then 

induce an arbitrarily small deformation, referred to as dynamic deformation, which is 

characterized by an out of plane displacement Δ𝑤(𝑋, 𝑌). The relevant dimensionless 

parameters of the problem are 𝛽 ≡
𝑏

𝐿
 and 𝜂 ≡

ℎ

𝐿
. The proposed 𝑥 and 𝑦 in-plane displacements 

induced by the dynamic deformation are given by, 

𝑢(𝑋, 𝑌, 𝑧) = Ω 𝑢0(𝑋, 𝑌) −
𝜕Δ𝑤(𝑋,𝑌)

𝜕𝑋
(

𝑧−𝛺𝐿𝑛(𝑋,𝑌)

𝐿
)     (S1) 

𝑣(𝑋, 𝑌, 𝑧) = Ω 𝑣0(𝑋, 𝑌) −
1

𝛽

𝜕Δ𝑤(𝑋,𝑌)

𝜕𝑌
(

𝑧−𝛺𝐿𝑛(𝑋,𝑌)

𝐿
)     (S2) 

The Euler-Bernoulli beam bending relations are recovered when the plate is undeformed 

(Ω = 0). The functions 𝑓(𝑋, 𝑌) and 𝑔(𝑋, 𝑌) used in the main text are 𝑓(𝑋, 𝑌) = Ω 𝑢0(𝑋, 𝑌) 

and 𝑔(𝑋, 𝑌) = Ω 𝑣0(𝑋, 𝑌). 

The strains induced by the dynamic deformation are given by, 

𝜖𝑥𝑥 =
𝜕𝑋𝑢

𝐿
   𝜖𝑦𝑦 =

𝜕𝑌𝑣

𝛽𝐿
   𝜖𝑥𝑦 =

1

2
(

𝜕𝑌𝑢

𝛽𝐿
+

𝜕𝑋𝑣

𝐿
) 

𝜖𝑥𝑧 =
1

2
(𝜕𝑧𝑢 +

𝜕𝑋Δ𝑤

𝐿
)  𝜖𝑦𝑧 =

1

2
(𝜕𝑧𝑢 +

𝜕𝑌Δ𝑤

𝛽𝐿
)     (S3) 

The stresses are given by1, 

𝜎𝑥𝑥 =
𝐸

1−𝜈2 (𝜖𝑥𝑥 + 𝜈𝜖𝑦𝑦) 𝜎𝑦𝑦 =
𝐸

1−𝜈2 (𝜖𝑦𝑦 + 𝜈𝜖𝑥𝑥) 𝜎𝑧𝑧 = 0   

𝜎𝑥𝑦 =
𝐸

1+𝜈
𝜖𝑥𝑦   𝜎𝑥𝑧 =

𝐸

1+𝜈
𝜖𝑥𝑧   𝜎𝑦𝑧 =

𝐸

1+𝜈
𝜖𝑦𝑧  (S4) 
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The potential energy is given by, 

𝑈 =
1

2
𝐿𝑥𝑏𝑦 ∫ 𝑑𝑋

𝐿𝑥
𝐿

0 ∫ 𝑑𝑌
1

2

𝑏𝑦

𝑏

−
1

2

𝑏𝑦

𝑏

∫ (𝜎𝑥𝑥𝜖𝑥𝑥 + 𝜎𝑦𝑦𝜖𝑦𝑦 + 2𝜎𝑥𝑦𝜖𝑥𝑦 + 2𝜎𝑥𝑧𝜖𝑥𝑧 +
𝑤𝑠(𝑋,𝑌)+

1

2
ℎ𝑧

𝑤𝑠(𝑋,𝑌)−
1

2
ℎ𝑧

2𝜎𝑥𝑧𝜖𝑥𝑧)𝑑𝑧          (S5) 

The limits of integration in Eq. (S5) are given by projections of the length, width and thickness 

of the deformed plate onto the x-, y-, and z- axes, respectively (see Fig. 3 of the main text). In 

the limit of small deflections, the projected dimensions are given by, 

 𝐿𝑥 ≅ 𝐿 (1 −
1

2
Ω2 ∫ 𝜕𝑋𝑛2𝑑𝑋

1

0
) 

𝑏𝑦 ≅ 𝛽𝐿 (1 −
1

2
(

Ω

𝛽
)

2

∫ 𝜕𝑌𝑛2𝑑𝑌
1

2

−
1

2

)  

ℎ𝑧 = ℎ (1 +
1

2
Ω2 (𝜕𝑋𝑛2 +

𝜕𝑌𝑛2

𝛽2 ))       (S6) 

We calculate the Euler-Lagrange differential equations obeyed by the unknown functions 𝑢0 

and 𝑣0 for the potential energy density integrated along the projected thickness of the plate,   

𝜕𝑋𝑋𝑢0 + 𝜕𝑋(𝜕𝑋𝑛 𝜕𝑋Δ𝑤) +
1+𝜈

2𝛽
𝜕𝑋𝑌𝑣0 +

1

2𝛽2
{(1 − 𝜈)(𝜕𝑌𝑌𝑢0 + 𝜕𝑋𝑛 𝜕𝑌𝑌Δ𝑤 + 𝜕𝑌𝑌𝑛 𝜕𝑥Δ𝑤) +

(1 + 𝜈)𝜕𝑋(𝜕𝑌𝑛 𝜕𝑌Δ𝑤)} = 0  

𝜕𝑋𝑋𝑣0 +
2

𝛽3(1−𝜈)
{𝜕𝑌(𝜕𝑌𝑛 𝜕𝑌Δ𝑤) + 𝛽𝜕𝑌𝑌𝑣0 + 𝛽2[(1 + 𝜈)𝜕𝑌(𝜕𝑋𝑛 𝜕𝑋Δ𝑤) + 𝜕𝑋𝑌𝑢0 +

(1 − 𝜈)(𝜕𝑋𝑋𝑛 𝜕𝑌Δ𝑤 + 𝜕𝑌𝑛 𝜕𝑋𝑋Δ𝑤)]} = 0      (S7) 

Functions 𝑢0(𝑋, 𝑌) and 𝑣0(𝑋, 𝑌)  are involved in coupled differential equations that cannot be 

analytically solved. To obtain an analytical solution to the problem we expand 𝑢0, Δ𝑤 and 𝑛 as 

power series in 𝑌 up to the second-order, and the function 𝑣0 up to the third-order term, 

  𝑢0(𝑋, 𝑌) = 𝑢00(𝑋) +
1

2
𝑢02(𝑋)(𝛽𝑌)2         

𝑣0(𝑋, 𝑌) = (𝑣00(𝑋) +
1

2
𝑣02(𝑋)(𝛽𝑌)2) 𝛽𝑌  

𝑛(𝑋, 𝑌) = 𝑛0(𝑋) +
1

2
𝑛2(𝑋)(𝛽𝑌)2  

Δ𝑤(𝑋, 𝑌) = Δ𝑤0(𝑋) +
1

2
Δ𝑤2(𝑋)(𝛽𝑌)2       (S8) 

Notice that we assume in Eqns. (S8) that the plate deformation is symmetric in the 𝑦- axis.  The 

Euler-Lagrange equations provide four coupled differential equations for the unknown 

functions 𝑢00(𝑋), 𝑣00(𝑋), 𝑢02(𝑋) and 𝑣02(𝑋). An analytical solution can be obtained by 

neglecting terms  ~𝑂(𝛽4), 

𝑢00(𝑋) = − ∫ {𝑛0′(𝑃)Δ𝑤0′(𝑃) +
𝛽2

24
(𝑛2(𝑃)Δ𝑤0′′(𝑃) +  𝑛0

′′(𝑃)Δ𝑤2(𝑃))} 𝑑𝑃
𝑋

0
 (S9) 
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𝑢02(𝑋) = −𝑛2′Δ𝑤0′ −  𝑛0′Δ𝑤2′′ −
𝛽2

120
{2𝜈(2 + 𝜈)( 𝑛0′′Δ𝑤2′ + 𝑛2′Δ𝑤0′′) − Δ𝑤2(3𝑛2

′ +

2(2 + 𝜈) 𝑛0
′′′) − 𝑛2(3Δ𝑤2

′ + 2(2 + 𝜈)Δ𝑤0′′′)}      (S10) 

  

𝑣00(𝑋) = −
𝜈𝛽2

24
(𝑛2Δ𝑤0

′′ +  𝑛0′′Δ𝑤2)       (S11)  

𝑣02(𝑋) =
1

3
(𝜈 𝑛0′′Δ𝑤2 − 𝑛2(𝜈Δ𝑤0

′′ − 2Δ𝑤2)) +
𝛽2

10080
{(56 + 229𝜈 − 117𝜈2)(𝑛2Δ𝑤0

′′′′ +

𝑛0′′Δ𝑤2
′′ + +𝑛0′′′′𝛥𝑤2 + 2𝑛0′′′Δ𝑤2

′ + 2𝑛2′Δ𝑤0
′′′) + 3(39 − 11𝜈)𝑛2′′𝛥𝑤2 + 39(6 −

19𝜈)𝑛2′𝛥𝑤2′}          (S12)  

We substitute Eqns. (S9)-(S12) into the potential energy of the plate Eq. (S5). The resulting 

potential energy is given by, 

𝑈 =
1

24
𝐸𝐿𝛽𝜂 ∫ {

𝜂2

1−𝜈2 (𝛥𝑤2
2 + 𝛥𝑤0′′

2 + 2𝜈𝛥𝑤2𝛥𝑤0′′) +
1

60
Ω2𝛽4(𝛥𝑤2𝑛0

′′ + 𝑛2𝛥𝑤0′′)2} 𝑑𝑋
1

0
+

𝑂(𝛽𝜂3Ω2) + 𝑂(𝛽6𝜂 Ω2)        (S13) 

The first summand corresponds to the bending energy (𝑈𝑏) and the second to the straining 

energy (𝑈𝑏). Higher order terms in the bending energy ~𝑂(𝛽𝜂3Ω2) and the straining 

energy ~𝑂(𝛽6𝜂 Ω2)  are complex expressions that can be neglected for plates with 𝛽 < 0.4. 

The bending and straining energy can be written in terms of the curvatures of the out-of-plane 

displacements, 

𝑈𝑏 =
𝐸𝐿5𝛽𝜂3

24(1−𝜈2)
∫ {Δ𝜅𝑦(𝑋)2 + 2𝜈Δ𝜅𝑦(𝑋)Δ𝜅𝑥(𝑋) + Δ𝜅𝑥(𝑋)2}𝑑𝑋

1

0
   (S14) 

𝑈𝑠 =
𝐸𝐿7𝛽5𝜂

1440
∫ (𝜅𝑥(𝑋)Δ𝜅𝑦(𝑋) + 𝜅𝑦(X)Δ𝜅𝑥(𝑋))

2
𝑑𝑋

1

0
     (S15) 

where 𝜅𝑥and Δ𝜅𝑥 are the static and dynamic 𝑥- curvatures at the longitudinal axis of the plate 

(𝑌 = 0); and 𝜅𝑦and Δ𝜅𝑦 are static and dynamic 𝑦- curvatures.The relative change of stiffness 

Δ𝑘 𝑘⁄  and resonance frequency Δ𝑓 𝑓⁄  can be finally evaluated with the following equation,  

∆𝑘

𝑘
= 2

∆𝑓

𝑓
=

𝑈𝑠

𝑈𝑏
=

1−𝜈2

60 

𝐿2𝛽4

 𝜂2

∫ (𝜅𝑥Δ𝜅𝑦+𝜅𝑦Δ𝜅𝑥)
2

𝑑𝑋
1

0

∫ {Δ𝜅𝑦
2+2𝜈Δ𝜅𝑦Δ𝜅𝑥+Δ𝜅𝑥

2}𝑑𝑋
1

0

     (S16) 

We analyze the case, in which i) the static curvatures are constants  and ii) the sheet is subject 

to longitudinal bending moment, Δ𝜅𝑦(𝑋) ≈ −𝜈Δ𝜅𝑥(𝑋). The relative change of stiffness in this 

case is independent on how the load is distributed along the plate and reads as,  

Δ𝑘

𝑘
=

𝑈𝑠

𝑈𝑏
=

𝐿2

60

𝛽4

𝜂2 (𝜅𝑦 − 𝜈𝜅𝑥)
2
        (S17) 

S2. FEM validation of Free Plate Theory 

We compare Eq. (S17) with the results of thorough numerical analysis by the finite element 

method (FEM) using the commercial software COMSOL Multiphysics. The following boundary 

conditions were applied: 

i) at the plane 𝑌 = 0, we impose zero-displacement along the 𝑌 axis, i.e. 𝑣(𝑋, 0) = 0  
ii) at the plane 𝑋 = 0, we impose zero-displacement along the 𝑋 axis, i.e. 𝑢(0, 𝑌) = 0  
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iii) at the point (0, 0, 0), 𝑤 = 0.  

These three boundary conditions restrict the translation and rotation of the plate, but enable 

free deformation with no clamping restrictions. The parameters swept in the simulations are:  

i) The curvatures 𝜅𝑥and 𝜅𝑦 were varied from −4
ℎ

𝐿2 to +4
ℎ

𝐿2.  

ii) 𝜂 = ℎ/𝐿 was varied from 50 to 300. 

iii) 𝛽 = 𝑏/𝐿 was varied from 0.03 to 0.4. 

iv) Poisson’s ratio ν was varied from 0 to 0.45. 

The total amount of numerical simulations is ~105. For each simulation we applied free 

tetrahedral meshing and a convergence study was performed by refining the mesh element 

size until the relative error in the plate eigenfrequency is below 10−7. The average number of 

degrees of freedom in the simulations was ~106. The numerical simulations were carried out 

following two sequential steps: i) the plate static deformation is calculated by applying 

anisotropic differential surface stress in order to independently control the longitudinal and 

transversal curvatures of the plate2; ii) the statically deformed structure is imported and a 

eigenfrequency analysis is performed. Notice that the plate deformation in a vibration mode 

fulfils the relation Δ𝜅𝑦(𝑋) ≈ −𝜈Δ𝜅𝑥(𝑋)  assumed in the derivation of Eq. (S17). The relation 

between the relative resonance frequency shift and the relative stiffness change is given by 
∆𝑘

𝑘
= 2

∆𝑓

𝑓
. The numerical analysis shows that the accuracy of Equation (S17) in the main text is 

always below 10% for free plates in the range of the swept parameters. Fig. S1 plots the 

comparison between our theory and the FEM simulations of the dimensionless coefficient 

𝜁 ≡  

∆𝑓

𝑓

(𝜅𝐿)2  that gives the ratio between the fractional frequency change and the normalized 

curvature. The comparison is performed for several values of 𝛽, 𝜂 and ν; and for the case 

𝜅𝑥 = 𝜅𝑦 = 𝜅.  Our theory predicts that 𝜁 =
(1−𝜈)2𝐿2

120

𝛽4

𝜂2. 

 

Figure S1. Comparison between the theory (lines) and the FEM data (symbols) of the coefficient 𝜁 for a 

free plate in the case 𝜅𝑥 = 𝜅𝑦 = 𝜅. The values of 𝛽, 𝜂 and ν are specified in the graphs.   
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S3. Numerical Analysis of Cantilever Plates 

The clamping effect in the case of cantilever plates is simulated by restricting the displacement 

in the three directions at the plane 𝑋 = 0. The same procedure used for the free plate (Sect. 

S2) was followed. In this case, the FEM data was fitted to, 

Δ𝑘

𝑘
=

𝐿2

60

𝛽4

𝜂2 𝑒−𝑐𝛽(𝜅𝑦 − 𝜈𝜅𝑥)
2

         (S18) 

Numerical fittings, performed on about 12k simulations with a coefficient 𝑅2 always higher 

than 0.999, calculate a constant value of 𝑐 = 3.095 ± 0.001. Equation (S18) matches the 

numerical data with an error below 5%.    

Fig. S2 plots the comparison between our theory and the FEM simulations of the 

dimensionless coefficient 𝜁 defined in Sect. S2 for several values of 𝛽, 𝜂 and ν; and for the case 

𝜅𝑥 = 𝜅𝑦 = 𝜅.   

 

Figure S2. Comparison between the theory (lines) and the FEM data (symbols) of the coefficient 𝜁 for a 

cantilever plate  in the case 𝜅𝑥 = 𝜅𝑦 = 𝜅. The values of 𝛽, 𝜂 and ν are specified in the graphs.   

S4. Macro Experiment: Stiffness Measurement of a Deformed Aluminum Plate 

A plate was fabricated in aluminum with dimensions 29 × 10 × 0.0645 𝑐𝑚3. A permanent 

transversal curvature was achieved pressing the plate against a cylindrical metallic piece. 

Immediately after, the cantilever is clamped at one of the ends. The transversal curvature was 

determined by a caliper at the free end, 𝜅𝑦 = 1.15 ± 0.05 𝑚−1. For each case the plate was 

anchored by one of its edges. An out-of-plane force was manually applied to the free end and 

then released in order to make it vibrate. The transient oscillation of the plate was imaged by a 

smartphone camera at a rate of 240 frames per second (IPhone 6s, Apple Inc). A region of the 

free end was labelled with a red adhesive. The plate oscillation is obtained by tracking the 

position of the red label in the obtained movie by using MATLAB software. The resonance 

frequency curve is obtained by calculating the fast Fourier transform of the transient 

oscillation.  The resonance frequency is calculated by fitting the resonance peak to the damped 

harmonic oscillator equation. The initial longitudinal curvature is obtained by orienting the 

plate parallel and orthogonal with respect to the gravity force.  In the case of the orthogonal 

orientation, the cantilever plate is subject to gravity, and the longitudinal curvature is given by 

𝜅𝑥(𝑋) ≈
4𝑤𝐿

𝐿2
(𝑋 − 1)2 where 𝑤𝐿 is the deflection of the free end1. The deflections in our 
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experiments were 𝑤𝐿 = 2.0 ± 0.05 𝑐𝑚 in the case of zero transversal curvature and 

𝑤𝐿 = 1.3 ± 0.1 𝑐𝑚 and 𝑤𝐿 = 0.1 ± 0.05 𝑐𝑚 for the cases transversal curvature downward 

and upward with respect to gravity, respectively. The difference in deflection between the 

downward and upward configurations comes from the bending asymmetric effect discussed in 

the main text. The curvatures of the dynamic deformation are given by Δ𝜅𝑥 = 𝜓′′(𝑋) and 

Δ𝜅𝑦 = −𝜈 𝜓′′(𝑋) where 𝜓(𝑋) is the eigenmode shape of the fundamental mode obtained by 

the Euler-Bernoulli beam theory3, 

𝜓(𝑋) = Cos(𝛼𝑋) − Cosh(𝛼𝑋) + 𝐶(Sinh(𝛼𝑋) − Sin(𝛼𝑋))    (S19) 

where 𝐶 = 0.7340906 and 𝛼 = 1.8751. Eq. (S16) then transforms into  

Δ𝑓

𝑓
=

𝐿2

120

𝛽4

𝜂2 𝑒−𝑐𝛽 ∫ (𝜅𝑦−𝜈𝜅𝑥(𝑋))
2

𝜓′′(𝑋)2𝑑𝑋
1

0

∫ 𝜓′′(𝑋)2𝑑𝑋
1

0

      (S20) 

The exponential term accounts for the clamping restriction. The two main sources of error of 

the theoretical predictions in Fig. 3d of the main text comes from the 𝜅𝑦 uncertainty and from 

the plate thickness uncertainty, ℎ = 645 ± 20 𝜇𝑚.  
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