

Supp. Figure 1. Orientation of SB insertions in mouse Cftr gene. Analysis of *Sleeping Beauty* transposon insertions in a screen conducted in *Apc* wildtype mice (Starr *et al.*, Science, 2009) by next generation sequencing found intragenic *Cftr* insertions in 8/135 tumors. The orientation of insertions in both the forward and reverse direction is consistent with a model of gene inactivation.

Supp Fig. 2A. Small intestine. IPA- Drug Metabolism, Small Molecule Biochemistry and Lipid Metabolism

Supp. Fig. 2B. Small Intestine. IPA- Molecular Transport, Gastrointestinal Disease and Inflammatory Disease

Supp. Fig. 2C. Colon. IPA- Molecular Transport, Lipid Metabolism and Small Molecule Biochemistry

Supp. Fig. 2D. **Colon**. IPA- Cellular Growth and Proliferation, Renal and Urological System Development and Function

Supp. Fig. 3. GSEA showing enrichment plots comparing global gene expression in *Cftr*-depleted intestinal tissues to Indicated gene signatures. *Cftr*-deficient vs. *Cftr*-expressing normal epithelial-enriched intestine were compared. Gene signatures consist of (a) genes upregulated in *Kcnq1* KO small intestine (Than *et al.*, 2014), (b) genes upregulated in *Kcnq1* KO colon (Than *et al.*, 2014), (c) genes downregulated in *Muc2* small intestine (Yang *et al.*, 2008). (d) Enrichment score (ES), normalized ES (NES), nominal p value (p) and false discovery rate q-value (FDR) are shown for each value.

d

	vs. Cftr KO microarray						
Gene Signature	ES	NES	р	FDR			
a up in Kcnq1 KO	0.61	1.88	<0.001	<0.001			
b up in Kcnq1 KO	0.77	2.06	<0.001	<0.001			
c down in Muc2 KO	-0.889	-2.53	<0.001	<0.001			

Supp. Fig. 4. GSEA showing enrichment plots comparing global gene expression in *Cftr*-depleted intestinal tissues to indicated gene signature. *Cftr*-deficient tumor vs. *Cftr*-deficient normal epithelial-enriched intestine were compared. The gene signature consists of genes upregulated in intestinal epithelial stem cells identified by EphB2^{hi} expression (*Merlos-Suarez et al., 2011*). Enrichment score (ES), normalized ES (NES), nominal p-value (p) and false discovery rate q-value (FDR) are shown for each value. **Supp. Fig. 5**. **Deficiency for** *Cftr* **enhances colon organoid outgrowth**. 5 pairs of male littermate-matched C57BI/6J *Cftr*^{*fl*/*fl*} and *Cftr*^{*fl*/*fl*} *Villin-Cre*⁺ mice were sacrificed between 8 and 12 weeks of age. Colons were removed, cut open and washed in cold PBS. Colon organoids were then cultured using the protocol of Sato et al, 2011, following the plating of 500 crypt bottoms per well in triplicate per sample. * P < 0.05.

Supplemental Figure 5B. No morphological differences between C57BI/6J Cftr^{fl/fl} (Panel A, bar = 10X) and Cftrf^{I/fl} Villin-Cre⁺ (Panel B, bar = 10X) colon organoids. Examples of colon organoids are indicated by arrows in both panels.

Supp. Fig. 6. GSEA showing enrichment plots comparing global gene expression in *Cftr*depleted intestinal tissues to indicated gene signatures. *Cftr*-deficient (tumor or normal) vs. Cftr-expressing normal epithelial-enriched intestine were compared. Gene signature consists of genes upregulated in *Apc^{Min}* adenomas (SI or colon). Enrichment score (ES), normalized ES (NES), nominal p-value (p) and false discovery rate q-value (FDR) are shown for each value.

Supp. Fig. 7. GSEA showing enrichment plots comparing global gene expression in *Cftr*-depleted intestinal tissues to indicated gene signatures. *Cftr*-deficient tumors vs. Cftr-expressing normal epithelial-enriched intestine were compared. Gene signatures consist of Wnt target genes (van der Flier et al., 2007). Enrichment score (ES), normalized ES (NES), nominal p-value (p) and false discovery rate q-value (FDR) are shown for each value.

Supp. Figure 8. β-catenin immunohistochemistry.

Representative image of analysis of 4 small intestine adenomas (2 jejunum, 1 ileum, 1 duodenum) from $Apc^{+/+} Cftr^{fl/fl}-Villin-Cre$ mice and similar adenomas from Apc^{Min} mice.

Panel A. Small intestine adenoma from $Apc^{+/+}$ *Cftr^{fl/fl}-Villin-Cre* mouse showing multifocal areas with increased expression of β -catenin (arrows).

Panel B. Same adenoma as in panel A shows increased cytoplasmic labelling and nuclear translocation of β -catenin (arrows).

Panel C. Small intestine adenoma from Apc^{Min} mouse shows diffuse increased expression of β -catenin (arrow).

Panel D. Same adenoma as in panel C shows increased cytoplasmic labelling and nuclear translocation of β -catenin (arrow).

Panels B and D are high magnification images of the areas indicated by rectangular boxes in Panels A and C, respectively. Bars in panels A and C, and B and D are 500 and 50 µms, respectively.

Supp. Fig. 9. IPA analysis of gene expression changes in each of four *Cftr*-deficient tissues: colon tumor, small intestine (SI) tumor, normal colon, and normal SI, to identify pathways with overlapping changes in gene expression.

a. Heatmap of z-scores indicating overlap of LXR/RXR, Toll-like receptor, related canonical pathways, and upstream regulators with gene expression changes in *Cftr*deficient tissues. Z-score indicating extent and direction of overlap for each pathway is shown.

b. Heatmap representing expression levels of overlapping genes in LXR/RXR and Tolllike receptor pathways in each tissue is shown.

		Genes in the LXR/RXR Activation network			colon	SI	l colon	ISI
		Activation z-score	-3.530	2.840	umor	umor	Vorma	Vorma
		Exp Fold Change	-43.201	28.972			2	2
E.		IL1RL1						
D.		IL18						
		TNFRSF118			_	_		
Cones in the Toll-like Recentor Signaling E		ILIRN						
Genes in the Toll-like Receptor Signaling. 5	-	PTGSZ						
r Si cc	al s	INUS				-		
Activation z-score	E	MARO						
-3.530 2.640 2 2 2 2	R	TNE-0						
Exp Fold Change		1133						
-2.300 20.772		LBP						
118		CD14						
II IRN		C4A/C4B						
TNF		APOD						
133		SERPINF1						
LBP		C3						
c-FOS		TNFRSF18						
CD14		SR-A						
TLR2		ABCG1						
MAP4K4		IL1RL2						
TLR1		TF						
TIRAP		ABCG8			_			
MAP2K6		LYZ				-		
UBD		APOB						
© 2000-2015 QIAGEN. All rights reserved.		ABCA1						
		ApoC2						
		CD36						
		MIXIPI						
		ARCGS						
		SCD1						
		LPL						
		ApoA1						
		ADOA4						

© 2000-2015 QIAGEN. All rights reserved.

Supp. Fig. 10. Gene expression analyses based on RNA Seq data from AMC90 cohort

