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ABSTRACT Biopolymers serve as one-dimensional tracks on which motor proteins move to perform their biological roles.
Motor protein phenomena have inspired theoretical models of one-dimensional transport, crowding, and jamming. Experiments
studying the motion of Xklp1 motors on reconstituted antiparallel microtubule overlaps demonstrated that motors recruited to the
overlap walk toward the plus end of individual microtubules and frequently switch between filaments. We study a model of this
system that couples the totally asymmetric simple exclusion process for motor motion with switches between antiparallel fila-
ments and binding kinetics. We determine steady-state motor density profiles for fixed-length overlaps using exact and approx-
imate solutions of the continuum differential equations and compare to kinetic Monte Carlo simulations. Overlap motor density
profiles and motor trajectories resemble experimental measurements. The phase diagram of the model is similar to the single-
filament case for low switching rate, while for high switching rate we find a new (to our knowledge) low density-high density-low
density-high density phase. The overlap center region, far from the overlap ends, has a constant motor density as one would
naı̈vely expect. However, rather than following a simple binding equilibrium, the center motor density depends on total overlap
length, motor speed, and motor switching rate. The size of the crowded boundary layer near the overlap ends is also dependent
on the overlap length and switching rate in addition to the motor speed and bulk concentration. The antiparallel microtubule over-
lap geometry may offer a previously unrecognized mechanism for biological regulation of protein concentration and consequent
activity.
INTRODUCTION
The motion of motor proteins on biopolymers is important
for diverse biological processes (1). Actin, microtubules,
and nucleic acids can serve as one-dimensional tracks on
which motor proteins (including myosins, kinesins, heli-
cases, and ribosomes) move (2,3). Motors must accumulate
on filaments in sufficient density to perform their biological
roles. This motor accumulation along a biopolymer is aff-
ected by two key effects: directional walking of motors,
and motor binding to/unbinding from the filament.

Motor accumulation on filaments is related to extensive
theoretical work on asymmetric simple exclusion processes
(ASEP) (4). In ASEP models, particles move on a one-
dimensional lattice by biased hopping and experience
excluded-volume interactions with other particles. These
models have been applied to diverse examples of one-
dimensional nonequilibrium transport ranging from molec-
ular motors to vehicular and pedestrian traffic. Active
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particle motion leads to nonzero flux of particle density
and nontrivial flux and density profiles. To compare to
experimental studies of molecular motors, ASEP models
have been extended to incorporate important biophysical in-
gredients such as binding kinetics. A model extending the
totally asymmetric simple exclusion process (TASEP) to
include motor binding and unbinding (Langmuir kinetics)
predicted motor density profiles along single fixed-length
filaments (5). Experimental work measured kinesin-8 motor
protein traffic jams on microtubules and found good agree-
ment with the predicted density profiles (6).

Motor motion on cytoskeletal filaments is important for
biological length regulation, including regulation of the
length of the polymer (7), lengths of overlap regions be-
tween filaments (8), and the length of cytoskeletal assem-
blies such as the mitotic spindle (9,10) and even whole
cells (11,12). The case of regulation of microtubule (MT)
length has seen the most work. MTs undergo nonequilib-
rium polymerization dynamics characterized by switching
between distinct growing and shrinking states. While this
dynamic instability alone leads to a broad distribution of
MT lengths (13), numerous proteins targeted to MT ends
modify their dynamics and can dramatically alter the length
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distribution (14). Single MTs can have their length regu-
lated, for example, by kinesin-8 motors that walk with direc-
tional bias and shorten the MT from its end (7,15,16).
Theoretical work on TASEP-like models has described
how length-dependent depolymerization affects otherwise
static filaments (7,17,18), filaments with simplified poly-
merization kinetics (19–22), and dynamic MTs (23–25).

Because the mitotic spindle includes arrays of overlapping
antiparallel MTs at the spindle midzone, regulation of MT
overlaps is important for mitotic spindle function and cytoki-
nesis. The MT crosslinking protein PRC1/Ase1/MAP65 and
kinesin-4 motors (chromokinesins) play roles in mainte-
nance of the spindle midzone in anaphase (26–28), along
with other motors and MAPs (29). Direct binding interac-
tions of PRC1 and kinesin 4 can cause length-dependent
accumulation at plus ends of single MTs (30). Bieling et al.
(8) reconstituted a minimal system of stable antiparallel
MToverlaps in which PRC1 bound preferentially to overlap-
ping regions of antiparallel MTs (8) (see also Subramanian
et al. (31)). PRC1 recruited the kinesin-4 motor Xklp1 to
the overlap. Xklp1 motors could bind to and unbind from
the MTs, walk toward the plus end of each MT, and switch
between the twoMTs at a relatively high rate (8).Motors pre-
sent near theMT plus ends slowed the polymerization speed,
consistent with earlier work showing that Xklp1 inhibits dy-
namic instability (32) and affects spindleMTmass (33). As a
result, antiparallelMToverlaps reached a constant length that
depended on the bulk concentration of motors. This work
demonstrated that motor-dependent regulation of dynamics
and length can occur not just for singleMTs, but also for over-
lapping MT pairs.

Here we model the density profiles of motor proteins on
antiparallel MT overlaps of fixed lengths. We do not explic-
itly consider MT length regulation in this system, as the
combination of binding kinetics and coupled switching of
the motors between the two antiparallel filaments is suffi-
cient to produce a rich phenomenology. Our work is an
extension of the TASEP with binding kinetics on a single
filament (5,34) to include two antiparallel filaments coupled
by switching; it is also an extension of TASEP models of
two antiparallel lanes with lane switching (35,36) to incor-
porate binding and unbinding kinetics.

We first develop the model and show that measured and
estimated parameters can give overlap motor density pro-
files and motor trajectories qualitatively similar to those
found in the experiments of Bieling et al. (8). We then
develop an analytic solution to the mean-field steady-state
equations, and use it to determine the phase diagram of the
model. For high motor switching rate between filaments,
we find a new (to our knowledge) low density-high den-
sity-low density-high density phase. We then study the
model for the reference parameter set in more detail.
Because the motor density profiles are controlled by both
boundary conditions and a nonlocal total binding con-
straint, the density in the center of the overlap depends
not just on motor binding kinetics but also on motor speed
and overlap length. We find an analytical approximation
that describes the overlap center density and the size of
the motor-dense boundary layer near the overlap ends.
The degree of motor accumulation near the overlap ends
depends on the overlap length and motor switching rate
in addition to the motor speed and bulk concentration.
The coupling of motor motion, binding, and switching ki-
netics on antiparallel MT overlaps may therefore offer a
previously unrecognized mechanism for the control of
one-dimensional motor density profiles.
MATERIALS AND METHODS

Model

In this section, we develop a mathematical model of motor density on anti-

parallel filament overlaps, inspired by the experiments of Bieling et al. (8).

In the experiments of Bieling et al. (8), the cross-linking protein PRC1

binds preferentially to overlapping regions of antiparallel MTs and recruits

the kinesin motor protein Xklp1 to the overlap region. Because PRC1 and

therefore the motors are present at much higher concentrations in the over-

lap, in the model we consider the overlap region only and model the regions

of single filaments as sources or sinks of motor proteins (Fig. 1 A). While

previous work has shown that PRC1/Ase1 alone can develop density inho-

mogeneities and exert forces on sliding MTs (37,38), in the experiments of

Bieling et al. (8), little to no MT sliding occurred and the PRC1 distribution

was uniform in the overlaps (8). Therefore we do not explicitly model the

PRC1 molecules or their spatial distribution, but assume they are uniformly

distributed so that each lattice site in the overlap is identical with a binding

affinity that would correspond to the density-weighted average of the PRC1

and bare tubulin affinities. We treat each MT as a single track and neglect

the multiple-protofilament structure of the MT, consistent with previous

theoretical work (7,17–22,24). In our model, motors can bind to and unbind

from each of the MTs, walk toward the plus end of a MT, and switch be-

tween the two MTs (Fig. 1 A).

There are two competing processes in this model: motor stepping

(TASEP); and motor binding, unbinding, and MT switching (Langmuir ki-

netics). The Langmuir kinetics dominate the system behavior if the overlap

length is sufficiently large, N>> 1, so that each bound motor can only walk

for a short fraction of the overlap length before it unbinds. Thus, the compe-

tition between TASEP and Langmuir kinetics occurs only if the overall

binding rate to one MT in the overlap Konc ¼ Nkonc (where c is the bulk

motor concentration), and unbinding rate Koff ¼ Nkoff , are of similar

magnitude to the motor speed v (5).

In the next section, we develop the discrete microscopic model and cor-

responding stochastic simulation, then derive the mean-field continuum

description.
Discrete model

We consider two overlapping antiparallel MTs of fixed length, so the num-

ber of sites N is fixed (Fig. 1 A). At each site, motor binding or unbinding

can occur with binding rate konc, where kon is the binding rate constant per

site and c is the bulk motor concentration; the unbinding rate is koff . Each

bound motor steps at rate v to the next site toward the MT plus end (if the

next site is unoccupied), and switches at rate s to the site on the adjacent MT

(if that site is unoccupied). Note that Xklp1 is plus-end directed, and we

therefore assume that the motion on a single MT is unidirectional.

The occupation number bni is 1 if site i is occupied or 0 if site i is empty.

Then the equations for interior sites (2< i < N� 1) on MTs with plus ends

to the right (R) and left (L) are
Biophysical Journal 110, 2034–2043, May 10, 2016 2035



A B C FIGURE 1 Model and results overview. (A)

Schematic of the model of motor motion on an

antiparallel microtubule overlap. Two filaments

(green and blue) are modeled as one-dimensional

lattices with their plus-ends oppositely oriented.

The filaments are labled R (L) if the plus end is

pointing to the right (left). Motors (red) bind to

empty lattice sites with rate konc and unbind with

rate koff . Bound motors step toward the MT plus-

end with rate v (if the adjacent site toward the

MT plus-end is empty) or switch to the other MT

with rate s (if the corresponding site on the adjacent

MT is empty). At MT minus ends, motors are in-

serted at rate av. At MT plus ends, motors are

removed at rate bv. (B) Simulated experimental im-

ages made from our kMC model. (Green) Motor

density. (Red) Overlap region. Scale bar, 5 mm.

Simulations used to generate these images used the reference parameter set (Table 1) and the indicated bulk motor concentrations. (C) Simulated kymograph

made from our kMC model with motor spatial position on the horizontal axis and time increasing downwards. Horizontal scale bar, 10 mm. Vertical scale

bar, 5 s. The simulations used to generate the kymograph used the reference parameter set and 0.5 nM bulk motor concentration. To see this figure in color,

go online.
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dbnR;iðtÞ
dt

¼ vbnR;i�1ðtÞ½1� bnR;iðtÞ� � vbnR;iðtÞ½1� bnR;iþ1ðtÞ�
þ konc½1� bnR;iðtÞ�� koffbnR;iðtÞ� sbnR;iðtÞ½1� bnL;iðtÞ�
þ sbnL;iðtÞ½1� bnR;iðtÞ�;

(1)

dbnL;iðtÞ

dt

¼ vbnL;iþ1ðtÞ½1� bnL;iðtÞ� � vbnL;iðtÞ½1� bnL;i�1ðtÞ�
þ konc½1� bnL;iðtÞ�� koffbnL;iðtÞ� sbnL;iðtÞ½1� bnR;iðtÞ�
þ sbnR;iðtÞ½1� bnL;iðtÞ�:

(2)

At the boundary sites, we modify these equations to incorporate fluxes into

and out of the overlap. The flux into the overlap is va½1� bn1ðtÞ�, where

nonzero a results from motors moving into the overlap from the adjacent

single-MT region. The flux out of the overlap is vbbnNðtÞ, where b is derived

from the rate at which motors at an MT plus-end unbind. In principle, each

filament could have different boundary conditions. Because we have no

physical reason to distinguish the two halves of the overlap, we focus on

the symmetric case aL ¼ aR ¼ a and bL ¼ bR ¼ b. The resulting boundary

site equations are

dbnR;1ðtÞ
dt

¼ va½1� bnR;1ðtÞ� � vbnR;1ðtÞ½1� bnR;2ðtÞ�; (3)

dbnR;NðtÞ

dt

¼ vbnR;N�1ðtÞ½1� bnR;NðtÞ� � vbbnR;NðtÞ; (4)

dbnL;1ðtÞ

dt

¼ vbnL;2ðtÞ½1� bnL;1ðtÞ� � vbbnL;1ðtÞ; (5)

dbnL;NðtÞ

dt

¼ va½1� bnL;NðtÞ� � vbnL;NðtÞ½1� bnL;N�1ðtÞ�: (6)

As shown below, these boundary conditions fix the motor densities to be

a at the minus-end and 1 � b at the plus-end of each filament.
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At steady state, we can derive a total binding constraint on the equations

by summing all of the sites on both filaments. The bulk flux terms of the

form bni�1ðtÞ½1� bniðtÞ� sum to zero and only the binding and boundary

terms remain:

XN�1

i¼ 2

�
2konc�

�
koncþ koff

�ðbnR;i þ bnL;iÞ
�

þ va½2� bnR;1ðtÞ � bnL;NðtÞ� � vb½bnR;NðtÞ þ bnL;1ðtÞ� ¼ 0:

(7)

We find a binding constraint on the total motor binding

PN
i¼ 1

bnR;iþbnL;i ¼ 2ðN�2Þ konc

koncþkoff
þ2v½að1�aÞ�bð1�bÞ�

koncþkoff

¼ 2ðN�2Þr0 þ
2v½að1� aÞ � bð1� bÞ�

koncþ koff
;

(8)

where we have defined the Langmuir density r0 ¼ konc=ðkoncþ koffÞ.
Therefore, at steady state, an equilibrium involving binding, unbinding,

and the filament-end boundary conditions must be reached on average for

the entire overlap. This is related to the zero-current condition found in

previous work on the antiparallel TASEP without binding kinetics

(35,36). We did not find an analytical solution to the discrete equations.

Instead, we performed kinetic Monte Carlo (kMC) simulations of the

discrete model (Supporting Material) and compared it to solutions in the

continuum limit.
Mean-field continuum model

We derive the mean-field continuum model as in Parmeggiani et al. (5) by

taking the stationary average hbniihri, and applying the random phase

approximation hbnibniþ1i ¼ hbniihbniþ1i. We also assume motor commutation

during track switching, hbnR;ibnL;ii ¼ hbnL;iihbnR;ii, to give discrete mean-field

equations with linear switching terms (Supporting Material). We take the

continuum limit and nondimensionalize the parameters and variables by

choosing the length of the overlap, L, as the unit of length and L/v as the

unit of time. Capital letters denote the nondimensionalized parameters
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(S¼ sL/v and so on; Supporting Material). We choose x¼ 0 as the center of

the overlap, and the boundary conditions become rRð�0:5Þ ¼ rLð0:5Þ ¼ a

and rRð0:5Þ ¼ rLð�0:5Þ ¼ 1� b. The steady-state continuum mean-field

equations are

0 ¼ ð2rR � 1Þ vrR
vx

þ Koncð1� rRÞ � KoffrR � SrR þ SrL;

(9)

vrL
0 ¼ ð1� 2rLÞ
vx

þ Koncð1� rLÞ � KoffrL þ SrR � SrL:

(10)

In the continuum mean-field model, the total binding constraint (Eq. 8) isZ 1=2

�1=2

dx rR ¼
Z 1=2

�1=2

dx rL

¼ Konc

Koncþ Koff

þ að1� aÞ � bð1� bÞ
Koncþ Koff

¼ r0 þ
að1� aÞ � bð1� bÞ

Koncþ Koff

: (11)

RESULTS

Motor density and trajectories in overlap

To study whether our model can qualitatively describe the
motor density in antiparallel MT overlaps observed experi-
mentally, we determined a reference parameter set corre-
sponding to the experiments of Bieling et al. (8) (Table 1).
Most parameters were directly measured by Bieling et al.
We estimated the motor on rate constant kon by comparison
to the single-molecule imaging of low-density Xklp1 in
an overlap (8). To estimate the minus-end boundary condi-
tion a, note that Bieling et al. found that Xklp1 binding
was greatly increased on overlaps due to recruitment by
PRC1. Low ionic strength (which favors motor-MT binding)
was needed to observe significant Xklp1 binding to single
TABLE 1 Parameter Values for the Reference Parameter Set

Symbol Parameter Reference Value

v motor speed 0.5 mm s�1

kon binding rate constant 2.7 � 10�4 nM�1 s�1

c bulk motor concentration 1–200 nM

koff unbinding rate 0.169 s�1

s switching rate 0.44 s�1

a motor flux constant into overlap

from MT minus end

0

b motor flux constant out of overlap

from MT plus end

0

N number of sites 120–2500

d length of a single site 8 nm
MTs outside of overlaps. Therefore, we assume that the
flux of motors into the overlap from outside is negligible,
and set a ¼ 0 in our reference parameters. The plus-end
boundary condition b is related to the motor unbinding rate
at MT plus ends. While this end off-rate was not directly
measured by Bieling et al. (8), kinesin motors typically
pause at MT plus ends and have an end unbinding rate
smaller than the unbinding rate in the bulk. We therefore
expect that b lies between 0 (no end unbinding) and 2.7 �
10�3 (the value of b corresponding to an unbinding rate equal
to koff, the motor unbinding rate in the bulk). We found that
b ¼ 2.7 � 10�3 is so small that the motor density profiles
were indistinguishable from those with b ¼ 0 (Fig. S1 in
the Supporting Material). Therefore we used b ¼ 0 in our
reference parameter set.

With these parameters, we studied kMC simulations of
our model with varying motor concentration and overlap
lengths corresponding to the steady-state values measured
by Bieling et al. (8). We made simulated images that repre-
sent how our model’s motor distributions would appear in an
experiment with fluorescently tagged motors (green) and
antiparallel MT overlap region (red; Fig. 1 B, and Support-
ing Material). Motors decorate the overlap, with greater
density and end accumulation for higher bulk motor concen-
tration. The simulated images are qualitatively similar to the
experimental images (see Fig. 4 in Bieling et al. (8)). We
also made simulated kymographs (Fig. 1 C, and Supporting
Material), which show directed motor motion with direction
reversal, qualitatively similar to the experimental results
(see Figs. 6 and S5 in Bieling et al. (8)). We note that the
experimental kymographs show a larger population of
paused/immobile motors than occurs in our model.
Analytic solution of the steady-state continuum
equations

To further study the behavior of our model, we determined
analytic steady-state solutions of the continuum mean-field
Notes

measured by Bieling et al. (8); varied up to 8 mm s�1 to study effect of

varying speed on density profiles

estimated based on motor density profiles and kymographs to give affinity

of 6.3 nM, ~15� higher than measured for motor on single MT by

Bieling et al. (42)

varied by Bieling et al. (8)

measured by Bieling et al. (8)

measured by Bieling et al. (8)

motors bind primarily inside the overlap; see discussion in the Results;

we varied a between 0 and 1 to determine the model phase diagram

an upper bound on the end motor unbinding rate is

b ¼ 2.7 � 10�3; see discussion in the Results; we varied

b between 0 and 1 to determine the model phase diagram

varied to study overlaps of length 1–20 mm

length of an a-b tubulin dimer; see Bray (1)
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equations. One solution to Eqs. 9 and 10 is the constant
Langmuir density set by binding/unbinding equilibrium,
r0 ¼ Konc=ðKoncþ KoffÞ. To find spatially varying solu-
tions, we first define sR;L ¼ rR;L � 1=2, the difference of
the motor occupancies from 1=2. The rate combinations
are k ¼ Koncþ Koff þ S and g ¼ Konc� Koff . Then the
equations become

dsR

dx
¼ k

2
� g

4sR

� SsL

2sR

(12)

dsL ¼ �k þ g þ SsR
: (13)
dx 2 4sL 2sL

Equations 12 and 13 are well defined for sR;Ls0. This al-

lows solution of the differential equation relating sR þ sL
and sR � sL with one integration constant (Supporting Ma-
terial). Our kMC simulation results for motor density in the
overlap differ substantially from this analytic solution
(Fig. S2), because the analytic solution (Eq. S18 in the Sup-
porting Material) does not satisfy the total binding
constraint (Eq. 11). Therefore, the full density profiles
must be determined by matching continuum solutions cor-
responding to different integration constants. This mathe-
matical result implies several remarkable properties of the
density profiles, as discussed below.
Phase diagram

We determined the phase diagram of the model as a function
of the boundary condition parameters a and b, as well as
how the phase diagram changes with the other model
parameters. We find four phases previously observed for
the single-filament case (5), the low density (L), high den-
FIGURE 2 Nonequilibrium phases. (Left) Motor density rRðxÞ on MT wi

on both MTs in the overlap. The parameters comprise the reference parameter

switching rates, which are 0.5 s�1 for the LHLH curve and 0.1 s�1 for all oth

sity-high density-low density-high density coexistence (a ¼ 0.3, b ¼ 0.9, oran

blue). (Hx) High-density center-maximum phase (a ¼ 0.6, b ¼ 0.95, dark blue

b ¼ 0.95, green). (M) Meissner phase a ¼ 0.6, b ¼ 0.4, yellow). (Ln) Low-den

high-density center-minimum coexistence (a¼ 0.1, b¼ 0.95,magenta). (Lx) Low

in color, go online.
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sity (H), low density-high density (LH), and Meissner (M)
phases (Figs. 2 and S3). We distinguish two different classes
of L, H, and LH phase on overlaps by whether they have a
local maximum (labeled x) or a local minimum (labeled n)
of the total motor density at the overlap center. In addition,
for high switching rate, we observe a new (to our know-
ledge) low density-high density-low density-high density
(LHLH) phase (Fig. 2).

We studied flows in the sL � sR phase plane to determine
the motor concentration profiles (Fig. S4) and therefore the
phase diagram, as discussed in the Supporting Material and
a followup article (39). Representative phase diagrams for
small and large switching rates are shown in Fig. 3. We
note that the new (to our knowledge) LHLH phase occurs
when a < 0.5 and the switching frequency is sufficiently
high, conditions that could occur experimentally. This
phase can appear for high switching rate when two analytic
solutions to the steady-state continuum equations intersect,
causing transition points in the phase plane where the
density is ill defined (Figs. S4 and S5). Our LHLH phase
is reminiscent of multiphase coexistence, as found by
Pierobon et al. (40). However, in this previous work the
multiphase coexistence occurs due to a point defect in
the lane, while here it occurs for spatially uniform
dynamics.

The phase boundaries change with parameters of the
model. Increases (decreases) to the Langmuir density
(through changes in bulk motor concentration or binding/
unbinding rate constants) shift the lower boundary of the
LH phase closer to (farther from) the line where
1� b ¼ 0:5 when a> r0 and closer to (farther from) the
line a ¼ b when a< r0. Similar shifts occur for the upper
boundary of the LH phase. The motor speed affects the
width and the shape of the LH phase: for higher motor
th rightward-moving motors. (Right) Total motor density rRðxÞ þ rLðxÞ
set of Table 1 with a bulk motor concentration of 200 nM, except for the

er curves and the boundary conditions, as noted below. (LHLH) low den-

ge). (Hn) High-density center-minimum phase (a ¼ 0:95, b ¼ 0:99, light

). (LHx) Low-density/high-density center-maximum coexistence (a ¼ 0.3,

sity center-minimum phase (a ¼ 0.3, b ¼ 0.4, black). (LHn) Low-density/

-density center-maximum phase (a¼ 0.05, b¼ 0.1, red). To see this figure



FIGURE 3 Phase diagrams. (Left) Low switch-

ing rate (0.1 s�1); (right) high switching rate

(0.5 s�1). Solid lines indicate phase boundaries,

and dotted lines indicate boundaries between cen-

ter-maximum (x) and center-minimum (n) overlap

motor density profiles. The bulk motor concentra-

tion is 200 nM, the motor speed is 5 mm s�1, and

other parameters are the reference values (Table 1).

Motors on Antiparallel MT Overlaps
speed, the LH phase region becomes narrower in width and
the LH boundaries become more flat.
Density profiles for reference parameters

The motor density profiles that we determine by kMC simu-
lation are qualitatively consistent with those observed
experimentally (Figs. 1 and 4). Here we illustrate our
results for the reference parameter set (Table 1); in the Sup-
porting Material we also discuss a large-S parameter set
chosen to approximate the limit of large switching rate (Ta-
ble S1; Fig. S6). This parameter regime typically shows the
LH phase, where the density profiles have three regions
separated by domain walls. For motors moving to the right,
there is a boundary layer on the left with the motor density
increasing from zero, then a region of approximately line-
arly varying density, then a sharp transition to another
boundary layer of linearly increasing density that ap-
proaches 1 on the right boundary (Fig. 4). If we fix all other
parameters, the boundary layer regions increase in size as
the bulk motor concentration increases. The total motor den-
sity in the overlap is the sum of the motor densities on the
two filaments, which have the symmetry rLð�xÞ ¼ rRðxÞ.
The linear density variation near the overlap ends can be
seen in the continuum mean-field equations (Supporting
Material): the slope is Koncþ S at the minus end and
Koff þ S at the plus end. This approximation agrees well
with simulation results near the overlap ends (Figs. S2
and S7).
Control of center density by the total binding
constraint

Motor density profiles must satisfy the total binding
constraint of Eq. 11, which requires that when a ¼ b ¼ 0,
the integral of the density on a single MT must equal r0,
the Langmuir density determined by binding/unbinding
equilibrium. We verified that the total binding constraint is
satisfied in our simulations by determining the integrated
motor density and comparing it to r0 (Fig. S8). However,
as noted above, the analytic solutions we found for the
steady-state motor density (Eqs. S18, S23, and S24) do
not in general satisfy the total binding constraint. As a
result, the motor concentration in the center of the filaments
does not necessarily approach the Langmuir density
r0 ¼ Konc=ðKoncþ KoffÞ (Fig. 4). This is a significant dif-
ference between the model of microtubule overlaps we
study and the single-filament model (5).

The total binding constraint also controls the length of the
boundary layer regions near the overlap ends. To derive
an analytic approximation for this length, we approximate
the motor densities as piecewise linear, and assume the
FIGURE 4 Motor density profiles for the refer-

ence parameter set. (Left) Motor density rRðxÞ on
MT with rightward-moving motors. (Right) Total

motor density rRðxÞ þ rLðxÞ on both MTs in the

overlap. Parameters comprise the reference param-

eter set of Table 1 with the bulk motor concentra-

tions indicated in the legend. To see this figure in

color, go online.
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domain walls are infinitely thin so that we can neglect them
in integrating the concentration (Fig. S9). A filament is
divided into three regions: boundary layers near the plus-
and minus-ends (xbl) and the central region. We can then
determine the motor density profile (Eq. S28), the boundary
layer ends (Eq. S30), and the motor density in the center of
the overlap, rc (Eq. S31).

The motor density at the center of the overlap is rcsr0,
even when the overlap is long. Instead, the center density de-
pends on themotor speed and filament switching rate in addi-
tion to binding parameters (Fig. 4). In Fig. 5, we compare
simulation results and the prediction of Eq. S31, showing
that our approximation is in good agreement with simula-
tions. (Note that our approximation of the density as linearly
varying becomes less exact for slowmotor speeds, leading to
a discrepancy between simulation results and our analytic
approximation.) For comparison, we show the Langmuir
density r0 for the same parameters. Varying motor speed
has no effect on r0 (right panel), but a significant effect on
rc. To further illustrate the dependence of the center density
on motor kinetic parameters, we show in Fig. 6 examples of
motor density profiles from kMC simulations with varying
motor speed. Changing motor kinetic parameters can have
a large effect on the center density in the overlap, even for
systems with identical binding kinetic parameters and r0.
Control of end accumulation by the total binding
constraint

The length of the boundary layer at the overlap ends de-
pends on motor binding and kinetic parameters as well as
the overlap length (Eq. S30). We compared the analytic
approximation to simulation results and found good agree-
ment (Fig. S10), allowing us to predict how varying exper-
imental control parameters will alter the degree of motor
accumulation near the overlap ends (Fig. 7). We note that
although the boundary layer lengths predicted for typical
experimental parameters are below the optical resolution
limit of z250 nm, they could be distinguished by fits of
fluorescent motor intensity profiles to model predictions
(compare to Figs. 1, 4, and 6), similar to how fits to a
Gaussian fluorescence intensity profile allow subresolution
localization of single molecules (41).
2040 Biophysical Journal 110, 2034–2043, May 10, 2016
The total binding constraint means the boundary layer
length is determined as fraction of the overlap length. In
the single-filament model, the motor density profile in the
MT minus-end boundary layer is independent of MT length
(17,24), with important consequences: MT length regulation
by the kinesin-8 motor Kip3 (7,16) depends on a motor den-
sity profile that maintains the same functional form near the
minus end as MT length changes. By contrast, on antipar-
allel MT overlaps, the density profile, boundary-layer
length, and extent of motor accumulation at the overlap-
ends change with overlap length (Fig. 7). This means that
a length-regulation mechanism identical to that of Kip3
cannot occur on antiparallel MT overlaps.
CONCLUSIONS

We studied a model of motor motion on antiparallel MT
overlaps that incorporates motor binding and unbinding,
plus-end directed motor motion, and switching between fil-
aments (Fig. 1). Our model is inspired by the experiments of
Bieling et al. (8) on the motion of the kinesin-4 motor Xklp1
on antiparallel MT overlaps. Our model is an extension of
previous theory that studied motor motion on a single MT
with binding kinetics (5,34), or motor motion on two
antiparallel filaments with lane switching, but no binding ki-
netics (35,36). To our knowledge, this is the first theoretical
study of a two-lane TASEP model with oppositely oriented
lanes, switching, and binding/unbinding.

To compare to the experiments of Bieling et al. (8), we
used measured or estimated parameters (Table 1). Because
PRC1 recruits motors directly into the overlap and motor
binding to single MTs is much weaker, we neglect
motor binding to MTs outside of the overlap and set the
minus-end flux parameter a ¼ 0. Using the bulk motor un-
binding rate Koff as an upper bound on the plus-end
unbinding rate, we find b % 2.7 � 10�3. This value is
sufficiently small that it gives motor density profiles indis-
tinguishable from those with b ¼ 0 (Fig. S1). Therefore
no-flux boundary conditions with a ¼ b ¼ 0 are used to
model the experiments. Simulated images of the motor
distribution in an overlap and simulated kymographs of
motor trajectories are similar to those found experimen-
tally (Fig. 1).
FIGURE 5 Motor density at the center of the

overlap. (Left) Variation with bulk motor concen-

tration; (right) variation with motor speed. Points

indicate simulation results and dashed lines theo-

retical prediction from Eq. S31. The red line shows

the value of the Langmuir density r0 for the same

parameters. To see this figure in color, go online.



FIGURE 6 Dependence of density profiles on

motor speed. (Left) Motor density rRðxÞ on MT

with rightward-moving motors. (Right) Total motor

density rRðxÞ þ rLðxÞ on both MTs in the overlap.

Varying motor speed can significantly alter the mo-

tor density at the center of the overlap. These sim-

ulations use the large-S parameter set of Table S1

with bulk motor concentration c ¼ 200 nM and

the motor speeds indicated in the legend. To see

this figure in color, go online.

Motors on Antiparallel MT Overlaps
We derived analytical and approximate solutions of the
continuum steady-state equations and compared them to
kMC simulation results (Fig. S2). Focusing on the symmet-
ric case where the boundary conditions a and b are the same
for both filaments in the overlap, we used both kMC simu-
lations and phase plane flows (Figs. S3–S5) to determine the
nonequilibrium phases possible in our model (Fig. 2). For
low rate of motor switching between filaments in the over-
lap, we find the low-density, high-density, low-density/
high-density, and Meissner phases previously studied for
the single-lane case (5). In addition, for high switching
rate we find a novel (to our knowledge) low density-high
density-low density-high density phase with three domain
walls. We determined representative phase diagrams for
small and large switching rates (Fig. 3). We discuss determi-
nation of the phase diagram in more detail in a longer
follow-up article (39).

We then studied themodel inmore detail both for the refer-
ence parameters and a high-switching-rate parameter set
(Table S1). Results of kMC simulations (Figs. 4 and S6)
agree well with exact and approximate solutions of the con-
tinuum steady-state equations (Figs. S2 and S7). In contrast
to systems in which motors move on single filaments
(7,17–22,24), we find that antiparallel overlaps with no-
flux boundary conditions have zero total current. This leads
to a total binding constraint that the integral of the total motor
density on a single filament must equal r0, the motor density
set by binding/unbinding equilibrium (Fig. S8).

For the experimentally relevant low-density/high-density
coexistence phase, the density profiles are approximately
piecewise linear (Fig. S9). This motivates an analytic
approximation to determine the density profiles consistent
with the total binding constraint and gives analytic expres-
sions for the overlap center motor density and the length
of the boundary layer in which motors accumulate near
the overlap ends. We find that as a result of the total binding
constraint, the motor density at the center of the overlap is
not determined solely by the motor binding equilibrium,
but is also controlled by the overlap length, motor speed,
and filament switching rate (Figs. 5 and 6). These same
parameters control the length of the boundary layer at the
overlap ends where motors accumulate (Fig. S10).

The mitotic spindle contains arrays of overlapping anti-
parallel MTs to which multiple motors and cross linkers
bind (29). The surprising differences in motor density pro-
files between single filaments and the antiparallel overlaps
we study here are therefore of interest in the study of the
spindle midzone. For antiparallel overlaps, both the motor
density far from the overlap ends and the number of motors
near the overlap ends can be tuned not just by motor binding
kinetics but also by motor speed, filament switching rate,
and overlap length (Fig. 7). The antiparallel filament geom-
etry gives biological systems additional handles to control
motor density, its spatial distribution, and therefore motor
function. Motor density can affect recruitment of other pro-
teins and MT dynamics. Therefore, this previously unde-
scribed mechanism of regulation of motor density along
MTs may offer advantages to the control of motor activity.

For single MTs, length regulation by the kinesin-8 motor
Kip3 depends on a functional form of motor density that is
independent of MT length (7,16). The physics we describe
here means that the motor density and extent of motor
FIGURE 7 Control of boundary layer length.

(Left) Boundary layer length as a fraction of total

overlap length, shown as a function of bulk motor

concentration and motor speed. (Right) Boundary

layer length as a function of overlap length for

the reference parameter set and varying bulk motor

concentration. The boundary layer length is the dis-

tance at each end of the overlap where significant

motor accumulation occurs and is determined by

Eq. S30. To see this figure in color, go online.
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accumulation at the overlap ends depends on overlap length.
Therefore, length regulation of antiparallel MT overlaps
must occur differently. In future work, it will be of interest
to understand how the motor density profiles on fixed-length
overlaps can be used to understand the length regulation of
dynamic overlaps.
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I. KINETIC MONTE CARLO SIMULATIONS

We performed kinetic Monte Carlo (kMC) simulations of the discrete model with time step ∆t
and the following rules at each time step for an overlap with 2N sites:

1. Randomly choose a filament (R/L) and site i.

2. If the site is empty, attach a motor with probability konc∆t. If the site is occupied, detach
the motor with probability koff∆t.

3. If the site is occupied and the adjacent site toward the MT plus end is empty, move the
motor forward with probability v∆t.

4. If the site is occupied and the corresponding site on the neighboring MT is empty, switch
the motor to the other filament with probability s∆t.

5. Enforce the boundary conditions: site 1 on filament R and site N on filament L are occupied
with probability α, while site N on filament R and site 1 on filament L are occupied with
probability (1− β).

6. Repeat steps 1-5 2N times total to sample all sites on both MTs.

We typically choose ∆t = 5 × 10−4 s such that the characteristic time for motor bind-
ing/unbinding is about 105 time steps, if the bulk motor concentration is 200 nM. To reach
steady state we run for 4× 107 time steps, and then collect data in a measurement run of 2× 107

time steps. The average motor concentration is obtained by averaging 104-105 samples, separated
by 200 time steps. For simulations of the large-S parameter set, we choose ∆t = 5 × 10−6 s such
that the characteristic time for motor binding/unbinding is about 107 steps if the bulk motor
concentration is 200 nM.

A. Simulated images

The simulated images of motor density profiles shown in fig. 1B in the main text were created
by running kMC simulations with 100 nM bulk motor concentration on a 120-site overlap (0.96
µm long), 25 nM bulk motor concentration on a 360-site overlap (2.88 µm long), and 5 nM bulk
motor concentration on a 600-site overlap (4.8 µm long). After the simulation reached steady state,
we created the images by sampling the motor density. In the green channel, we approximated a
100-ms experimental exposure by summing instantaneous density profiles from 20 consecutive 0.005
s simulation snapshots. Each motor simulated image produced a Gaussian intensity profile with a
standard deviation of 150 nM. The intensity profiles were binned into 150-nm wide simulated pixels.
We then added a constant background intensity level and Gaussian noise to each pixel. In the red
channel, the overlap was defined by a Gaussian line of constant intensity, with background and
noise added. The green and red simulated channels were offset by 2 pixels to simulate chromatic
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FIG. S1. Comparison of motor density profiles for zero and small β. Left: motor density ρR(x) for β = 0.
Right: motor density ρR(x) for β = 2.7× 10−3. Other parameters are the reference parameters with motor
concentrations as shown in the legend.

aberration. In the blue channel, only background and Gaussian noise were present. The images
from each motor concentration were brightness and contrast adjusted.

The simulated motor kymographs shown in fig. 1C in the main text were made by sampling
a kMC simulation performed at 0.5 nM bulk motor concentration on a 2500-site overlap (20 µm
long). The motor density was sampled every 0.025 s over a 50 s simulation, and the kymograph
was constructed from the central 2000 sites of the overlap. Each motor in the simulated kymograph
produced a Gaussian intensity profile with a standard deviation of 150 nM. The intensity profiles
were binned into 150-nm wide simulated pixels. We then added a constant background intensity
level and Gaussian pixel noise. The kymograph was brightness and contrast adjusted.

B. Comparison of zero and small β

In fig. S1 we show simulation results for the reference parameter set for filament flux plus-end
boundary conditions with β = 0 and β = 2.7× 10−3. The density profiles are nearly identical.

II. MEAN-FIELD CONTINUUM MODEL

To derive the mean-field continuum model, we first take the stationary average 〈n̂i〉 ≡ ρi, apply
the random phase approximation, 〈n̂in̂i+1〉 = 〈n̂i〉〈n̂i+1〉, and assume motor commutation during
track switching 〈n̂R,in̂L,i〉 = 〈n̂L,i〉〈n̂R,i〉. The resulting discrete equations in the bulk are

∂ρR,i

∂t
= −vρR,i(1− ρR,i+1) + vρR,i−1(1− ρR,i) + konc(1− ρR,i)− koffρR,i − sρR,i + sρL,i (S1)

∂ρL,i
∂t

= −vρL,i(1− ρL,i−1) + vρL,i+1(1− ρL,i) + konc(1− ρL,i)− koffρL,i − sρL,i + sρR,i (S2)

and for the boundaries:

∂ρR,1

∂t
= vα(1− ρR,1)− vρR,1(1− ρR,2), (S3)

∂ρR,N

∂t
= −vβρR,N + vρR,N−1(1− ρR,N ), (S4)
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FIG. S2. Phase portraits in the σR-σL plane. Left: experimental parameter set; right: large-S parameter
set. Both use a bulk motor concentration of 200 nM. The arrows indicate the direction of change of the
densities as determined by Eqns. S9, S10. Black lines are the exact solutions to the continuum equations
(Eqn. S18), red dots are simulation results, green line is the linear approximate solution near the ends of the
overlap (Eqns. S19, S20), and blue line is the linear-log approximate solution near the ends of the overlap
(Eqns. S23, S24).

and similarly for L.

We take the continuum limit where ρi becomes a continuous field ρ(x), and define ρi±1 →
ρ(x ± δ), where δ is a length per motor binding site on the MT. We Taylor expand ρ(x ± δ) to
second order and nondimensionalize the parameters and variables by choosing the length of the
MT, L, as the unit of length and L/v as the unit of time. We use capital letters to denote the
nondimensionalized parameters (S = sL/v and so on). Then the equations become

∂ρR
∂t

=
δ

2

∂2ρR
∂x2

+ (2ρR − 1)
∂ρR
∂x

+Konc(1− ρR)−KoffρR − SρR + SρL (S5)

∂ρL
∂t

=
δ

2

∂2ρL
∂x2

+ (1− 2ρL)
∂ρL
∂x

+Konc(1− ρL)−KoffρL + SρR − SρL. (S6)

We choose x = 0 as the center of the overlap, so the boundary conditions become ρR(−0.5) =
ρL(0.5) = α and ρR(0.5) = ρL(−0.5) = 1− β.

Because δ is small, we typically neglect the second derivative terms. However, if the first
derivative terms are close to 0, which occurs when ρ ≈ 1/2, the second-derivative terms may be
important. The steady-state equations with second-derivative terms neglected are

0 = (2ρR − 1)
∂ρR
∂x

+Konc(1− ρR)−KoffρR − SρR + SρL, (S7)

0 = (1− 2ρL)
∂ρL
∂x

+Konc(1− ρL)−KoffρL + SρR − SρL. (S8)
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FIG. S3. The phase space flows for the simulations shown in figure 2 in the main text. The parameters used
are the reference parameter set of table 1 with a bulk motor concentration of 200 nM, except for the switching
rate which is 0.1 s−1 and the boundary conditions as noted below. Hn: high-density center-minimum phase
(α = 0.95, β = 0.99, light blue). Hx: high-density center-maximum phase (α = 0.6, β = 0.95, dark blue).
LHx: low density-high density center-maximum coexistence (α = 0.3, β = 0.95, green). M: Meissner phase
α = 0.6, β = 0.4, yellow). Ln: low-density center-minimum phase (α = 0.3, β = 0.4, black). LHn: low
density-high density center-minimum coexistence (α = 0.1, β = 0.95, magenta). Lx: low-density center-
maximum phase (α = 0.05, β = 0.1, red).

A. Exact solution

To find spatially varying solutions to Eqn. S7, S8, we first define σR,L = ρR,L− 1
2 as the difference

of the densities from 1/2. We also define a shorthand for the rate combinations k = Konc+Koff +S
and γ = Konc−Koff . Then the equations become

dσR
dx

=
k

2
− γ

4σR
− SσL

2σR
(S9)

dσL
dx

= −k
2

+
γ

4σL
+
SσR
2σL

. (S10)

Eqns S9 and S10 are well defined for σR,L 6= 0. Next we introduce the sum and difference of the
densities, the total motor concentration φ(x) = σR + σL and ω(x) = σR − σL. The equations are

dφ

dx
=
γω + 2Sφω

φ2 − ω2
, (S11)

dω

dx
=

(k − S)φ2 − γφ− (k + S)ω2

φ2 − ω2
, (S12)

which can be combined to give

ω
dω

dφ
=

(k − S)φ2 − γφ− (k + S)ω2

γ + 2Sφ
. (S13)

Defining η(φ) = ω2(φ), this can be rewritten

1

2

dη

dφ
=

(k − S)φ2 − γφ− (k + S)η

γ + 2Sφ
, (S14)
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LI

TP

TP

LI

FIG. S4. Phase space flows. Left: low switching rate (0.1 s−1); right, high switching rate (5 s−1). Other
parameters are the reference parameter set of table 1 with a bulk motor concentration of 200 nM, except the
motor speed is 5 µm s−1. The Langmuir isotherm is labeled LI, and the transition points are labeled TP.

or

γ + 2Sφ

2
dη + [γφ− (k − S)φ2 + (k + S)η]dφ = 0. (S15)

This inexact ODE can be made exact through multiplication by the integrating factor (γ+2Sφ)k/S .
We then obtain the solution by direct integration,

C1 =

∫
dη (γ + 2Sφ)k/S

[
γ + 2Sφ

2

]
+

∫
dφ (γ + 2Sφ)k/S

[
γφ− (k − S)φ2 + (k + S)η

]
,(S16)

C1 =
η

2
(γ + 2Sφ)1+k/S − (γ + 2Sφ)1+k/S γ

2 − 2(k + S)γφ+ (k − S)(k + 2S)φ2

2(k + 2S)(k + 3S)
, (S17)

which gives the exact solution

ω2(φ) =
C

(γ + 2Sφ)1+k/S
− 2(k + S)γφ− (k − S)(k + 2S)φ2 − γ2

(k + 2S)(k + 3S)
. (S18)

Here C1 and C denote integration constants.

This solution is the relationship between ω and φ that satisfies the steady-state equation. This is
plotted as the black curves in the phase portraits of figs. S2 – S5. Note that for boundary conditions
α = β = 0, σR(∓0.5) = ∓0.5 and σL(∓0.5) = ±0.5. Therefore, the filament ends correspond to
the upper left and lower right corners in the phase portraits of fig. S2. Other boundary conditions
correspond to other pointes in the phase plane. As expected, the direction of change of the exact
solutions follow the phase arrows. In fig. S2, the linear and linear-log curves are approximations
that hold near the overlap ends, as described below.

We overlaid the results of kMC simulations of the discrete model in red. From this representa-
tion, we can see how the phase-plane motor density is connected to the approximately linear varia-
tion of motor density: the boundary layers where the motor density is linearly increasing/decreasing
show up as the sloped red lines near the upper left and lower right corners of the phase plane. The
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FIG. S5. Phase space flows showing curves adjacent to the the C = 0 curve. The green curve has C slightly
greater than zero and is an open curve. The blue curve has C slightly less than zero and is a closed curve.
The red lines are nullclines.

approximately constant density region in the center of the filaments corresponds to the set of
points in the lower left of the phase plane, and the crossover between the boundary layers and the
approximately constant region are the red horizontal and vertical lines.

Our simulation results (red) deviate substantially from the exact solutions to the continuum
equations (black). In particular, near the overlap edges, the densities follow an exact solution with
integration constant C1, then cross over to an exact solution with integration constant C2 for the
overlap central region. This occurs because the exact solution we found to the continuum equations
(Eqn. S18) does not satisfy the nonlocal total binding constraint (Eqn. 11).

III. PHASE DIAGRAM

Similar to the single-filament case [5], we find low density (L), high density (H), low density-high
density (LH), and Meissner (M) phases. Low density is < 0.5, and high density > 0.5. Switching
between the two antiparallel filaments causes the motor density to become either higher or lower at
the center. In addition, for high switching rate a low density-high density-low density-high density
(LHLH) phase appears. We describe the conditions for each phase to occur below assuming a
rightward-oriented (R) filament, as in fig. 2 in the main text.

The motor density profile is determined by the phase space flow (fig. S3, S4). For low switching
rate (fig. S4, left), there is only one fixed point, the Langmuir isotherm. However, once the switching
rate becomes sufficiently high, a pair of transition points (TP) appear (fig. S4, right). The transition
points are the intersections of the nullclines and the σ = 0 lines. We call the line which connects
the two TP the transition line.

For a fixed overlap length, the total number of lattice sites is constant. Therefore the density
profile must connect the starting and ending points with a number of steps equal to the number of
sites. If this is not possible, one or both boundary conditions cannot be satisfied.
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Symbol Parameter Large-S value Notes

v Motor speed 0.5 µm s−1 Same as reference parameters

kon Binding rate constant 2.7×10−6 nM−1 s−1 Reduced by 102 for large-S parameters

c Bulk motor concentration 1–200 nM Same as reference parameters

koff Unbinding frequency 1.69 × 10−3 s−1 Reduced by 102 for large-S parameters

s Switching rate 0.44 s−1 Same as reference parameters

α Motor flux constant into overlap
from MT minus end

0 Same as reference parameters

β Motor unbinding rate constant
from MT plus end

0 Same as reference parameters

N Number of sites 120-2500 Same as reference parameters

δ Length of a single site 8 nm Same as reference parameters

TABLE S1. Model parameters for large-S parameter set. We reduced the binding and unbinding rates by a
factor of 102 relative to the reference parameters (table 1 in the main text).

1. Low density

The low-density phase occurs when α < 0.5 and the right boundary condition cannot be satisfied.
If α < ρ0, the motor density profile has a local maximum at the center. If α > ρ0, the motor density
profile has a local minimum at the center.

2. Low density-high density

The domain wall occurs where the density changes from L to H. This means the profile crosses
the σ = 0 (ρ = 1/2) line. The matching condition between L and H phases is continuity in the
current [5] ρ(xl) = 1− ρ(xr) or σ(xl) = −σ(xr). We determine the domain wall position using the
symmetry of the total motor density in the overlap, which means that the center density must lie
on the α = 1 − β line. By computing the density profile from x = 0 to x = −0.5 or 0.5, we can
identify when the domain walls occur at xw = −0.5 or 0.5 lines. If the domain wall position is
greater than 0, the overall microtubule overlap shows higher density at the center rather than at
the boundaries.

3. High density

The high-density phase occurs when α > 0.5 and the left boundary condition cannot be satis-
fied. The transition density ρt separates the center-maximum and center-minimum density profiles,
determined by the value of ρL when the transition line intercepts the xw = 0.5 line. If 1− β < ρt,
density profile has a local maximum at the center; while 1− β > ρt, the motor density profile has
a local minimum at the center.

4. Meissner

The Meissner phase occurs when α > 0.5 and 1−β < 0.5. Both boundary conditions cannot be
fulfilled, so the density profile is independent of the boundary conditions.
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FIG. S6. Motor density profiles for the large-S parameter set. Left: motor density ρR(x) on MT with
rightward-moving motors. Right: total motor density ρR(x) + ρL(x) on both MTs in the overlap.

5. Low density-high density-low density-high density

The LHLH phase with multiple domain walls occurs when α < 0.5 and the switching rate is
sufficiently high (fig. 2). The transition points occur where the C = 0 analytic solution (equation
S18) intersects the transition lines. This makes the flows (fig. S5, blue curve) bounded if the profile
is closer to the σR = 0 curve. Thus, the region between the domain wall curves and σR = 0 line is
the place where the profiles are bounded which need not only one domain wall but three domain
walls in order to connect to the end point.

IV. LARGE SWITCHING RATE PARAMETER SET RESULTS

In fig. S6 we show the motor density profiles for the large-S parameter set.

V. EFFECTS OF THE TOTAL BINDING CONSTRAINT

A. Linear solution near overlap ends

Near the ends of the overlap, the variation of density becomes approximately linear. Consider
the left end of the overlap near x = −1/2, where ρR ≈ 0 and ρL ≈ 1. This implies that σR ≈ −1/2
and σL ≈ 1/2, so σR ≈ −σL. Then equations S9 and S10 become approximately

dσR
dx

= Konc+ S (S19)

dσL
dx

= −(Koff + S). (S20)

Therefore, near the overlap ends the motor density varies linearly. We can achieve a better ap-
proximation to the motor density near the overlap ends by including the density dependence of the
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FIG. S7. Comparison of simulation results with approximate solutions valid near overlap ends. Left: exper-
imental parameter set; right: large-S parameter set; both use a bulk motor concentration of 200 nM. Red
curves are simulation results, blue curves are approximate solutions valid near the ends of the overlap.

term inversely proportional to density. Then the approximate equations are

dσR
dx

=
k + S

2
− γ

2σR
(S21)

dσL
dx

= −k + S

2
+

γ

2σL
. (S22)

An implicit solution for the densities as a function of x is

x− x0 =
2σR(k + S) + γ log(γ − 2(k + S)σR)

(k + S)2
(S23)

x− x0 = −2σL(k + S) + γ log(γ − 2(k + S)σL)

(k + S)2
. (S24)

We plot these approximate solutions on the phase plane in fig. S2 and superimposed on the density
profiles in fig. S7. As expected, the approximations agree well with simulation results near the
overlap ends.

B. Total binding constraint

Motor density profiles must satisfy the total binding constraint of Eqn. 11. We verified that the
total binding constraint is satisfied in our simulations by determining the integrated motor density
and comparing it to ρ0 (fig. S8). Whether we vary the bulk motor concentration or the motor
speed, we find good agreement between simulations and theory, verifying that Eqn. 11 is satisfied
in our model.

To derive an analytic approximation for the motor density, overlap central density, and boundary
layer length, we assume the motor densities vary linearly near the filament ends (equations S19
and S20), and that the domain walls are infinitely thin so that we can neglect them in integrating
the density. A filament can be divided it into three regions separated by the symmetric boundary
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FIG. S8. Total binding constraint. Points show the integral of the motor density on a single filament as
described by Eqn. 11. The dashed line is ρ0. For all simulations performed, the total binding constraint is
satisfied.

layer ends are ±xbl (fig. S9). The density is approximately

ρR(x) =


(Konc+ S)(x+ 1

2) −1
2 ≤ x ≤ −xbl

ρ0 +A coshλx+B sinhλx −xbl ≤ x ≤ xbl

(Koff + S)(x− 1
2) + 1 xbl ≤ x ≤ 1

2

(S25)

The middle formula in equation S25 is the solution of equations 9 and 10 if we neglect the nonlinear
terms, which is a good approximation since the the density profile doesn’t change much with position
in the central region. The constant λ is defined by λ2 = (Konc+Koff + 2S)(Konc+Koff) and ρ0 is
the Langmuir density. The coefficients A and B are derived by using continuity in the density at left
end, (Konc+S)(1

2 −xbl), and continuity in the flux at the right end, 1− ((Koff +S)(xbl− 1
2) + 1) =

(Koff + S)(1
2 − xbl). Then we find

A =
(1

2 − xbl)(Konc+Koff + 2S)− 2ρ0

2 cosh(λxbl)
(S26)

B =
(1

2 − xbl)(Koff −Konc)

2 sinh(λxbl)
(S27)

For the reference parameter set that we study here, the motor speed is large compared to the
other rates, making the dimensionless rates small and therefore λx� 1. We can then approximate
cosh(λx) ≈ 1 and sinh(λx) ≈ λx.

We then find the approximate form of the density profile

ρR(x) =


(Konc+ S)

(
x+ 1

2

)
−1

2 ≤ x ≤ −xbl

x
2xbl

(
1
2 − xbl

)
(Koff −Konc) + 1

2

(
1
2 − xbl

)
(Konc+Koff + 2S) −xbl ≤ x ≤ xbl

(Koff + S)
(
x− 1

2

)
+ 1 xbl ≤ x ≤ 1

2

(S28)

Plugging this approximation to the density into the total binding constraint (Eqn. 11), we find

− 1

8
(2xbl − 1)(4 +Koff(6xbl − 1) +Konc(2xbl + 1) + 8Sxbl) = ρ0, (S29)
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FIG. S9. Motor occupancy and boundary layer ends. Motor density profile ρR(x) for rightward-moving
motors. Red: kMC simulation results; blue: the linear approximation of Eqn. S28. The ends of the boundary
layers are labeled ±xbl. This simulation used the reference parameter set with bulk concentration c = 200
nM.

or

xbl =
2(S +Koff − 1)±

√
4(1−Koff − S)2 + (3Koff +Konc+ 4S)(4− 8ρ0 −Koff +Konc)

2(3Koff +Konc+ 4S)
. (S30)

The motor density in the center of the overlap is then

ρc =
(1− 2xbl)(Konc+Koff + 2S)

4
(S31)

This result shows that the motor density at the center of the overlap is not simply ρ0, even when the
overlap is long. Instead the center density depends on the motor speed and filament switching rate
in addition to binding parameters. In fig. S9 we show the comparison of the approximate density
profile and positions of the ends of the boundary layers. In fig. S10 we compare the analytic
predictions for the boundary layer length to results from simulations.

FIG. S10. Length of boundary layer overlap ends where motors accumulate, as a fraction of the total overlap
length. Left: variation with bulk motor concentration; right: variation with motor speed. Points indicate
simulation results and dashed lines predictions from Eqn. S30.
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