
Review of Piccolo and Frampton manuscript

Stephen Eglen

Summary

This review provides an overview of the main tools and techniques used to ensure computational
reproducibility of results. This review is a good fit to the readership of the Gigascience journal.
Overall I found the manuscript to be clearly written and would recommend it for publication,
although I would like the authors to consider the following issues in a potential revision. In
particular, I am most critical about the current set of figures.

As a general comment, where possible, the material in the figures should be supported by online
files (e.g. knitr, Docker) so that the reader can immediately get workable examples to examine, run
and amend.

Detailed comments

p4, l2 (page 4, line 2): an extra citation might be (Gronenschild et al. 2012) which showed that even
the choice of operating system or neuroimaging software version affects results.

p4, l18-20: as far as I am awared, journals do not encourage direct use of repositories like github
or bitbucket because they offer no long-term storage. It is regarded much more appropriate to use
permanent URLS (e.g. DOIs) to point to archived versions of software, such as zenodo. We have
written elsewhere on this topic (Eglen et al. 2016).

p6, l10: in addition to the other topics of reproducibility and education, it would be worth
mentionining education/training to encourage users to adopt reproducible practices (Wilson 2016).

p6, l15: minor point, but perhaps worth numbering the seven sections that describe the seven
approaches reviewed, starting here.

p8, l17: “Make can be configured”; if you are referring to the “-j N” switch, then it is simpler to say
that “Make can automatically identify. . . ” as there is no extra configuration needed.

p11 l9: reference 53 at the end of the sentence is not needed, as you refer to it at the start of the
sentence.

p13, l3-9: you should probably mention http://mybinder.org in this section. It provides a transpar-
ent method for interacting with Jupyter documents over the web (Rosenberg and Horn 2016).

p14, l2: I disagree slightly here with the view re: long-running jobs. knitr at least can cache
intermediate computations transparently which helps enormously.

p14, l8: Do you have examples of Dexy in use within this field? Asking this also in a more general
way, it might be worth making a table listing examples explicitly of each of the seven approaches,
so that they are easy to find.

p18, l18: I do not see why the VMs are “black boxes”. Surely to create the VM all the relevant
code must be provided, so that you can at least examine what is done, or extend the analysis (as
mentioned on l20). Can you clarify what you mean here.

1

p22, l1: as well as capturing software in Docker, we have used it recently to capture the entire
environment to write our research papers in knitr (https://hub.docker.com/r/sje30/eglen2015/
and https://hub.docker.com/r/sje30/waverepo/).

p22, l14-19: I found the section about other operating systems (Windows/mac) rather clumsy.
From the user’s perspective, the modern docker toolbox seems to work smoothly enough (at least
on macs) that the details at the end of p22 seem irrelevant. It might instead be worth mentioning
that docker builds can be automatically triggered, e.g. upon new commits to github.

p 23, l6: “Scientific advancement requires trust.” I think trust is the wrong word here.
e.g. The Royal Society’s motto ‘Nullius in verba’ is taken to mean ‘take nobody’s word for it’
(https://royalsociety.org/about-us/history/). Rather, what these tools do is promote transparency
to reduce the barriers for others to repeat prior work. With this in mind, I’d suggest the authors
re-read this first paragraph of the discussion to see whether they think “trust” is what they are
promoting here.

Figures

Figure 1: is this really needed in such a review? I don’t think it adds anything.

Figure 2: I think should be provided as a text file so that people can run it for themselves.

Figure 3: Text file definitely needed so people can run it for themselves. But also I’d consider
making the targets a bit more specific. All of the targets in this example Makefile are PHONY and
perhaps it could be rewritten in the more canonical Makefile style? The way it is currently written,
it is hard to see how this differs from a shell script. (Each time make all is run, won’t the files be
downloaded again?)

Figure 4: can you show something that is a bit more bio-relevant, e.g. some genomic analysis?

Figure 5: as figure 4. Can you design Figure 4 and 5 carefully to highlight the differences between
knitr and jupyter?

Figure 6-8: I would suggest you drop these. They show the notion of stacks and containers, but
most bioscientists won’t get much value from them.

References

Eglen, Stephen, Ben Marwick, Yaroslav Halchenko, Michael Hanke, Shoaib Sufi, Padraig Gleeson,
R Angus Silver, et al. 2016. “Towards Standard Practices for Sharing Computer Code and Programs
in Neuroscience.” BioRxiv. doi:10.1101/045104.

Gronenschild, Ed H B M, Petra Habets, Heidi I L Jacobs, Ron Mengelers, Nico Rozendaal, Jim van
Os, and Machteld Marcelis. 2012. “The Effects of FreeSurfer Version, Workstation Type, and Mac-
intosh Operating System Version on Anatomical Volume and Cortical Thickness Measurements.”
PLoS One 7 (6): e38234. doi:10.1371/journal.pone.0038234.

Rosenberg, David M, and Charles C Horn. 2016. “Neurophysiological Analytics for All! Free Open-
Source Software Tools for Documenting, Analyzing, Visualizing, and Sharing Using Electronic
Notebooks.” J. Neurophysiol., 20~apr, jn.00137.2016. doi:10.1152/jn.00137.2016.

Wilson, Greg. 2016. “Software Carpentry: Lessons Learned.” F1000Res. 3 (28~jan).
doi:10.12688/f1000research.3-62.v2.

2

http://dx.doi.org/10.1101/045104
http://dx.doi.org/10.1371/journal.pone.0038234
http://dx.doi.org/10.1152/jn.00137.2016
http://dx.doi.org/10.12688/f1000research.3-62.v2

GigaScience

Tools and techniques for computational reproducibility
--Manuscript Draft--

Manuscript Number:

Full Title: Tools and techniques for computational reproducibility

Article Type: Review

Funding Information:

Abstract: When reporting research findings, scientists document the steps they followed so that
others can verify and build upon the research. When those steps have been described
in sufficient detail that others can retrace the steps and obtain similar results, the
research is said to be reproducible. Computers play a vital role in many research
disciplines and present both opportunities and challenges for reproducibility.
Computers can be programmed to execute analysis tasks, and those programs can be
repeated and shared with others. Due to the deterministic nature of most computer
programs, the same analysis tasks, applied to the same data, will often produce the
same outputs. However, in practice, computational findings often cannot be
reproduced due to complexities in how software is packaged, installed, and
executed—and due to limitations in how scientists document analysis steps. Many
tools and techniques are available to help overcome these challenges. Here we
describe seven such strategies. With a broad scientific audience in mind, we describe
strengths and limitations of each approach, as well as circumstances under which each
might be applied. No single strategy is sufficient for every scenario; thus we emphasize
that it is often useful to combine approaches.

Corresponding Author: Stephen R Piccolo, Ph.D.
Brigham Young University
Provo, UT UNITED STATES

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Brigham Young University

Corresponding Author's Secondary
Institution:

First Author: Stephen R Piccolo, Ph.D.

First Author Secondary Information:

Order of Authors: Stephen R Piccolo, Ph.D.

Michael B Frampton

Order of Authors Secondary Information:

Opposed Reviewers:

Additional Information:

Question Response

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

No

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

http://gigasciencejournal.com/authors/instructions/minimum_standards_reporting

Have you included all the information
requested in your manuscript?

If not, please give reasons for any
omissions below.

 as follow-up to "Experimental design
and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

"

It is a review article.

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

No

If not, please give reasons for any
omissions below.

 as follow-up to "Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

It is a review article.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

http://gigasciencejournal.com/authors/instructions/minimum_standards_reporting
https://scicrunch.org/resources
https://scicrunch.org/resources
http://gigasciencejournal.com/authors/instructions/minimum_standards_reporting
http://gigasciencejournal.com/authors/instructions/minimum_standards_reporting
https://scicrunch.org/resources
https://scicrunch.org/resources

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

"

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

No

If not, please give reasons for any
omissions below.

 as follow-up to "Availability of data and
materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

"

It is a review article.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

http://gigasciencejournal.com/authors/instructions/minimum_standards_reporting
http://gigasciencejournal.com/authors/instructions/minimum_standards_reporting
http://www.biomedcentral.com/about/editorialpolicies#DataandMaterialRelease
http://gigasciencejournal.com/authors/instructions/minimum_standards_reporting
http://gigasciencejournal.com/authors/instructions/minimum_standards_reporting
http://www.biomedcentral.com/about/editorialpolicies#DataandMaterialRelease
http://gigasciencejournal.com/authors/instructions/minimum_standards_reporting
http://gigasciencejournal.com/authors/instructions/minimum_standards_reporting

1

Tools and techniques for computational reproducibility 1

Stephen R. Piccolo1*, Michael B. Frampton2 2

 3

1 - Department of Biology, Brigham Young University, Provo, UT, USA 4

2 - Department of Computer Science, Brigham Young University, Provo, UT, 5

USA 6

 7

* Corresponding author: 4102 LSB, Brigham Young University, Provo, UT, 8

84602; 801-422-7116; stephen_piccolo@byu.edu 9

 10

Keywords 11

Computational reproducibility; practice of science; literate programming; virtualization; 12

software containers; software frameworks. 13

Competing Interests 14

None of the authors of this manuscript have any competing interests to declare. 15

Manuscript Click here to download Manuscript
Piccolo_Manuscript_Gigascience.docx

Click here to view linked References
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://www.editorialmanager.com/giga/download.aspx?id=1992&guid=83679d68-e13c-4aea-8544-d814b404c8c8&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=1992&guid=83679d68-e13c-4aea-8544-d814b404c8c8&scheme=1
http://www.editorialmanager.com/giga/viewRCResults.aspx?pdf=1&docID=150&rev=0&fileID=1992&msid={2F617EEE-1D83-4C06-AEE2-4D1989383A35}

2

 1

Abstract 2

When reporting research findings, scientists document the steps they followed so that 3

others can verify and build upon the research. When those steps have been described in 4

sufficient detail that others can retrace the steps and obtain similar results, the research is 5

said to be reproducible. Computers play a vital role in many research disciplines and 6

present both opportunities and challenges for reproducibility. Computers can be 7

programmed to execute analysis tasks, and those programs can be repeated and shared 8

with others. Due to the deterministic nature of most computer programs, the same analysis 9

tasks, applied to the same data, will often produce the same outputs. However, in practice, 10

computational findings often cannot be reproduced due to complexities in how software is 11

packaged, installed, and executed—and due to limitations in how scientists document 12

analysis steps. Many tools and techniques are available to help overcome these challenges. 13

Here we describe seven such strategies. With a broad scientific audience in mind, we 14

describe strengths and limitations of each approach, as well as circumstances under which 15

each might be applied. No single strategy is sufficient for every scenario; thus we 16

emphasize that it is often useful to combine approaches. 17

 18

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

3

Introduction 1

When reporting research, scientists document the steps they followed to obtain their 2

results. If the description is comprehensive enough that they and others can repeat the 3

procedures and obtain semantically consistent results, the findings are considered to be 4

"reproducible”[1–6]. Reproducible research forms the basic building blocks of science, 5

insofar as it allows researchers to verify and build on each other's work with confidence. 6

Computers play an increasingly important role in many scientific disciplines[7–10]. For 7

example, in the United Kingdom, 92% of academic scientists use some type of software in 8

their research, and 69% of scientists say their research is feasible only with software 9

tools[11]. Thus efforts to increase scientific reproducibility should consider the ubiquity of 10

computers in research. 11

Computers present both opportunities and challenges for scientific reproducibility. On one 12

hand, due to the deterministic nature of most computer programs, many computational 13

analyses can be performed such that others can obtain exactly identical results when 14

applied to the same input data[12]. Accordingly, computational research can be held to a 15

high reproducibility standard. On the other hand, even when no technical barrier prevents 16

reproducibility, scientists often cannot reproduce computational findings due to 17

complexities in how software is packaged, installed, and executed—and due to limitations 18

in how scientists document these steps[13]. This problem is acute in many disciplines, 19

including genomics, signal processing, and ecological modeling[14–16], where data sets are 20

large and computational tools are evolving rapidly. However, the same problem can affect 21

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/fMuq+769f+4yT3+FZIl+guxx+PV3y
https://paperpile.com/c/o8ANTm/s2Yw+1XjS+FbU6+6Tvu
https://paperpile.com/c/o8ANTm/S75W
https://paperpile.com/c/o8ANTm/OcDb
https://paperpile.com/c/o8ANTm/Crmz
https://paperpile.com/c/o8ANTm/pPaq+rUWE+kX1r

4

any scientific discipline that requires computers for research. Seemingly minor differences 1

in computational approaches can have major influences on analytical outputs[12,17–21], 2

and the effects of these differences may exceed those that result from experimental 3

factors[22]. 4

Journal editors, funding agencies, governmental institutions, and individual scientists have 5

increasingly made calls for the scientific community to embrace practices that support 6

computational reproducibility[23–30]. This movement has been motivated, in part, by 7

scientists' failed efforts to reproduce previously published analyses. For example, 8

Ioannidis, et al. evaluated 18 published research studies that used computational methods 9

to evaluate gene-expression data but were able to reproduce only 2 of those studies[31]. In 10

many cases, a failure to share the study's data was the culprit; however, incomplete 11

descriptions of software-based analyses were also common. Nekrutenko and Taylor 12

examined 50 papers that analyzed next-generation sequencing data and observed that 13

fewer than half provided any details about software versions or parameters[32]. 14

Recreating analyses that lack such details can require hundreds of hours of effort[33] and 15

may be impossible, even after consulting the original authors. Failure to reproduce 16

research may also lead to careerist effects, including retractions[34]. 17

Noting such concerns, some journals have emphasized the value of placing computer 18

source code in open-access repositories, such as GitHub (https://github.com) or BitBucket 19

(https://bitbucket.org). In addition, journals have extended requirements for "Methods" 20

sections, now asking researchers to provide detailed descriptions of 1) how to install 21

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/OcDb+MdsL+7Uhe+Oj8J+VBL0+VN7F
https://paperpile.com/c/o8ANTm/3JwD
https://paperpile.com/c/o8ANTm/VqOb+CoLN+MT7f+HswK+aRzQ+OQpF+dt7d+vwr8
https://paperpile.com/c/o8ANTm/WAFW
https://paperpile.com/c/o8ANTm/M0G0
https://paperpile.com/c/o8ANTm/Q9BC
https://paperpile.com/c/o8ANTm/vnMu
http://www.github.com/
http://bitbucket.org/

5

software and its dependencies and 2) what parameters and data-preprocessing steps are 1

used in analyses[10,23]. A recent Institute of Medicine report emphasized that, in addition 2

to computer code and research data, "fully specified computational procedures" should be 3

made available to the scientific community[24]. They elaborated that such procedures 4

should include "all of the steps of computational analysis" and that "all aspects of the 5

analysis need to be transparently reported”[24]. Such policies represent important 6

progress. However, it is ultimately the responsibility of individual scientists to ensure that 7

others can verify and build upon their analyses. 8

Describing a computational analysis sufficiently—such that others can reexecute it, 9

validate it, and refine it—requires more than simply stating what software was used, what 10

commands were executed, and where to find the source code[13,26,35–37]. Software is 11

executed within the context of an operating system (for example, Windows, Mac OS, or 12

Linux), which enables the software to interface with computer hardware (Figure 1). In 13

addition, most software relies on a hierarchy of software dependencies, which perform 14

complementary functions and must be installed alongside the main software tool. One 15

version of a given software tool or dependency may behave differently or have a different 16

interface than another version of the same software. In addition, most analytical software 17

offers a range of parameters (or settings) that the user can specify. If any of these variables 18

differs from what the original experimenter used, the software may not execute properly or 19

analytical outputs may differ considerably from what the original experimenter observed. 20

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/6Tvu+VqOb
https://paperpile.com/c/o8ANTm/CoLN
https://paperpile.com/c/o8ANTm/CoLN
https://paperpile.com/c/o8ANTm/Crmz+HswK+Espr+RNY8+oAuw

6

Scientists can use various tools and techniques to overcome these challenges and to 1

increase the likelihood that their computational analyses will be reproducible. These 2

techniques range in complexity from simple (e.g., providing written documentation) to 3

advanced (e.g., providing a "virtual" environment that includes an operating system and all 4

software necessary to execute the analysis). This review describes seven strategies across 5

this spectrum. We describe strengths and limitations of each approach, as well as 6

circumstances under which each might be applied. No single strategy will be sufficient for 7

every scenario; therefore, in many cases, it will be most practical to combine multiple 8

approaches. This review focuses primarily on the computational aspects of reproducibility. 9

The related topics of empirical reproducibility, statistical reproducibility, and data sharing 10

have been described elsewhere[38–44]. We believe that with greater awareness and 11

understanding of computational-reproducibility techniques, scientists—including those 12

with limited computational experience—will be more apt to perform computational 13

research in a reproducible manner. 14

Narrative descriptions are a simple but valuable way to support 15

computational reproducibility 16

The most fundamental strategy for enabling others to reproduce a computational analysis 17

is to provide a detailed, written description of the process. For example, when reporting 18

computational results in a research article, authors customarily provide a narrative that 19

describes the software they used and the analytical steps they followed. Such narratives 20

can be invaluable in enabling others to evaluate the scientific approach and to reproduce 21

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/RLQS+0Kzb+MMll+Awlf+Hm55+ySva+thVl

7

the findings. In many situations—for example, when software execution requires user 1

interaction or when proprietary software is used—narratives are the only feasible option 2

for documenting such steps. However, even when a computational analysis uses open-3

source software and can be fully automated, narratives help others understand how to 4

reexecute an analysis. 5

Although most research articles that use computational methods provide some type of 6

narrative, these descriptions often lack sufficient detail to enable others to retrace those 7

steps [31,32]. Narrative descriptions should indicate the operating system(s), software 8

dependencies, and analytical software that were used and how to obtain them. In addition, 9

narratives should indicate the exact software versions used, the order in which they were 10

executed, and all non-default parameters that were specified. Such descriptions should 11

account for the fact that computer configurations differ vastly, even for computers that use 12

the same operating system. Because it can be difficult for scientists to remember such 13

details after the fact, it is best to record this information throughout the research process, 14

rather than at the time of manuscript preparation[8]. 15

The following sections describe techniques for automating computational analyses. These 16

techniques can diminish the need for scientists to write narratives. However, because it is 17

often impractical to automate all computational steps, we expect that, for the foreseeable 18

future, narratives will play a vital role in enabling computational reproducibility. 19

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/WAFW+M0G0
https://paperpile.com/c/o8ANTm/1XjS

8

Custom scripts and code can automate a research analysis 1

Scientific software can often be executed in an automated manner via text-based 2

commands. Using such commands—via a command-line interface—scientists can indicate 3

which software program(s) should be executed and which parameter(s) should be used. 4

When multiple commands must be executed, they can be compiled into scripts, which 5

specify the order in which the commands should be executed (Figure 2). In many cases, 6

scripts also include commands for installing and configuring software. Such scripts serve as 7

valuable documentation not only for individuals who wish to reexecute the analysis but 8

also for the researcher who performed the original analysis[45]. In these cases, no amount 9

of narrative is an adequate substitute for providing the actual commands that were used. 10

When writing command-line scripts, it is essential to explicitly document any software 11

dependencies and input data that are required for each step in the analysis. The Make 12

utility (https://www.gnu.org/software/make) provides one way to specify such 13

requirements[35]. Before any command is executed, Make verifies that each documented 14

dependency is available. Accordingly, researchers can use Make files (scripts) to specify a 15

full hierarchy of operating-system components and dependent software that must be 16

present to perform the analysis (Figure 3). In addition, Make can be configured to 17

automatically identify any commands that can be executed in parallel, potentially reducing 18

the amount of time required to execute the analysis. Although Make was designed 19

originally for UNIX-based operating systems (such as Mac OS or Linux), similar utilities 20

have since been developed for Windows operating systems 21

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/GIVf
https://paperpile.com/c/o8ANTm/Espr

9

(http://gnuwin32.sourceforge.net/packages/make.htm). Box 1 lists various utilities that 1

can be used to automate software execution. 2

Box 1: Utilities that can be used to automate software execution.

● GNU Make and Make for Windows: Tools for building software from source files
and for ensuring that the software's dependencies are met.

● Snakemake[46] = An extension of Make that provides a more flexible syntax and
makes it easier to execute tasks in parallel.

● BPipe[47] = A tool that provides a flexible syntax for users to specify commands
to be executed; it maintains an audit trail of all commands that have been
executed.

● GNU Parallel[48] = A tool for executing commands in parallel across one or more
computers.

● Makeflow[49] = A tool that can execute commands simultaneously on various
types of computer architectures, including computer clusters and cloud
environments.

● SCONS[50] = An alternative to GNU Make that enables users to customize the
process of building and executing software using scripts written in the Python
programming language.

● CMAKE (https://cmake.org) = A tool that enables users to execute Make scripts
more easily on multiple operating systems.

 3

In addition to creating scripts that execute existing software, many researchers also create 4

new software by writing computer code in a programming language such as Python, C++, 5

Java, or R. Such code may perform relatively simple tasks, such as reformatting data files or 6

invoking third-party software. In other cases, computer code may constitute a manuscript's 7

key intellectual contribution. 8

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/PNzo
https://paperpile.com/c/o8ANTm/m42U
https://paperpile.com/c/o8ANTm/MAX5
https://paperpile.com/c/o8ANTm/G9vT
https://paperpile.com/c/o8ANTm/iaom

10

Whether analysis steps are encoded in scripts or as computer code, scientists can support 1

reproducibility by publishing these artefacts alongside research papers. By doing so, the 2

authors enable readers to evaluate the analytical approach in full detail and to extend the 3

analysis more readily[51]. Although scripts and code may be included alongside a 4

manuscript as supplementary material, a better alternative is to store them in a version-5

control system (VCS)[8,9,45] and to share these repositories via Web-based services like 6

GitHub (https://github.com) or Bitbucket (https://bitbucket.org). With such a VCS 7

repository, scientists can track different versions of scripts and code that have been 8

developed as the research project evolved. In addition, outside observers can see the full 9

version history, contribute revisions to the code, and reuse the code for their own 10

purposes[52]. When submitting a manuscript, the authors may “tag” a specific version of 11

the repository that was used for the final analysis described in the manuscript. 12

Software frameworks enable easier handling of software dependencies 13

Virtually all computer scripts and code rely on external software dependencies and 14

operating-system components. For example, suppose that a research study required a 15

scientist to apply Student’s t-test. Rather than write code that implements this statistical 16

test, the scientist would likely find an existing software library that implements the test and 17

then invoke that library from her code. A considerable amount of time can be saved with 18

this approach, and a wide range of software libraries are freely available. However, 19

software libraries change frequently—invoking the wrong version of a library may result in 20

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/MVy3
https://paperpile.com/c/o8ANTm/FbU6+1XjS+GIVf
https://github.com/
https://bitbucket.org/
https://paperpile.com/c/o8ANTm/BGKk

11

an error or an unexpected output. Thus to enable others to reproduce an analysis, it is 1

critical to indicate which dependencies (and versions thereof) must be installed. 2

One way to address this challenge is to build on a preexisting software framework. Such 3

frameworks make it easier to access software libraries that are commonly used to perform 4

specific types of analysis task. Typically, such frameworks also make it easier to download 5

and install software dependencies and ensure that the versions of software libraries and 6

their dependencies are compatible with each other. For example, Bioconductor[53], created 7

for the R statistical programming language[54], is a popular framework that contains 8

hundreds of software packages for analyzing biological data[53]. The Bioconductor 9

framework facilitates versioning, documenting, and distributing code. Once a software 10

library has been incorporated into Bioconductor, other researchers can find, download, 11

install, and configure it on most operating systems with relative ease. In addition, 12

Bioconductor installs software dependencies automatically. These features ease the process 13

of performing an analysis and can help with reproducibility. Various software frameworks 14

exist for other scientific disciplines[55–60]. General-purpose tools for managing software 15

dependencies also exist—for example, Apache Ivy (http://ant.apache.org/ivy) and Puppet 16

(https://puppetlabs.com). 17

To best support reproducibility, software frameworks should make it easy for scientists to 18

download and install previous versions of a software tool as well as previous versions of 19

dependencies. Such a design would enable other scientists to reproduce analyses that were 20

conducted with previous versions of a software framework. In the case of Bioconductor, 21

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/Wlzo
https://paperpile.com/c/o8ANTm/Dxef
https://paperpile.com/c/o8ANTm/Wlzo
https://paperpile.com/c/o8ANTm/TLyn+EH7K+gLzl+MJ0J+76D6+iK3Z

12

considerable extra work may be required to install specific versions of Bioconductor 1

software and their dependencies. To overcome such limitations, scientists may use a 2

software container or virtual machine (see below) to package the specific versions they 3

used in an analysis. Alternatively, they might use third-party solutions such as the aRchive 4

project (http://bioarchive.github.io). 5

Literate programming combines narratives directly with code 6

Although narratives, scripts, and computer code support reproducibility individually, 7

additional value can be gained from combining these entities. Even though a researcher 8

may provide computer code alongside a research paper, other scientists may have difficulty 9

interpreting how the code accomplishes specific tasks. A longstanding way to address this 10

problem is via code comments, which are human-readable annotations interspersed 11

throughout computer code. However, code comments and other types of documentation 12

often become outdated as code evolves throughout the analysis process[61]. One way to 13

overcome this problem is to use a technique called literate programming[62]. With this 14

approach, the scientist writes a narrative of the scientific analysis and intermingles code 15

directly within the narrative. As the code is executed, a document is generated that includes 16

the code, narratives, and any outputs (e.g., figures, tables) that the code produces. 17

Accordingly, literate programming helps ensure that readers understand exactly how a 18

particular research result was obtained. In addition, this approach motivates the scientist 19

to keep the target audience in mind when performing a computational analysis, rather than 20

simply to write code that a computer can parse[62]. Consequently, by reducing barriers of 21

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://bioarchive.github.io/
https://paperpile.com/c/o8ANTm/lJN5
https://paperpile.com/c/o8ANTm/XgiF
https://paperpile.com/c/o8ANTm/XgiF

13

understanding among scientists, literate programming can help to engender greater trust 1

in computational findings. 2

One popular literate-programming tool is Jupyter[63]. Using its Web-based interface, 3

scientists can create interactive "notebooks" that combine code, data, mathematical 4

equations, plots, and rich media[64]. Originally known as IPython and previously designed 5

exclusively for the Python programming language, Jupyter (http://jupyter.org) now makes 6

it possible to execute code in many different programming languages. Such functionality 7

may be important to scientists who prefer to combine the strengths of different 8

programming languages. 9

knitr[65] has also gained considerable popularity as a literate-programming tool. It is 10

written in the R programming language and thus can be integrated seamlessly with the 11

array of statistical and plotting tools available in that environment. However, like Jupyter, 12

knitr can execute code written in multiple programming languages. Commonly, knitr is 13

applied to documents that have been authored using RStudio[66], an open-source tool with 14

advanced editing and package-management features. 15

Jupyter notebooks and knitr reports can be saved in various output formats, including 16

HTML and PDF (see examples in Figures 4-5). Increasingly, scientists include such 17

documents with journal manuscripts as supplementary material, enabling others to repeat 18

analysis steps and recreate manuscript figures[67–70]. 19

Scientists typically use literate-programming tools for data analysis tasks that can be 20

executed in a modest amount of time (e.g., minutes or hours). It is possible to execute 21

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/RShH
https://paperpile.com/c/o8ANTm/BBfB
https://paperpile.com/c/o8ANTm/jkFM
https://paperpile.com/c/o8ANTm/PnOW
https://paperpile.com/c/o8ANTm/QjlF+9URt+WFGg+Ickb

14

Jupyter or knitr at the command line; thus longer-running tasks can be executed on high-1

performance computers. However, this approach runs counter to the interactive nature of 2

notebooks and require additional technical expertise to configure and execute the 3

notebooks. 4

Literate-programming notebooks are suitable for research analyses that require a modest 5

amount of computer code. For analyses that require larger amounts of code, more 6

advanced programming environments may be more suitable—perhaps in combination 7

with a “literate documentation” tool such as Dexy (http://www.dexy.it). 8

Workflow-management systems enable software execution via a 9

graphical user interface 10

Writing computer scripts and code may seem daunting to many researchers. Although 11

various courses and tutorials are helping to make this task less formidable[71–74], many 12

scientists use "workflow management systems" to facilitate the process of executing 13

scientific software[75]. Typically managed via a graphical user interface, workflow 14

management systems enable scientists to upload data and process it using existing tools. 15

For multistep analyses, the output from one tool can be used as input to additional tools, 16

potentially resulting in a series of commands known as a workflow. 17

Galaxy[76,77] has gained considerable popularity within the bioinformatics community—18

especially for performing next-generation sequencing analysis. As users construct 19

workflows, Galaxy provides descriptions of how software parameters should be used, 20

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://www.dexy.it/
https://paperpile.com/c/o8ANTm/YBDz+ZzE1+pCdH+Rklv
https://paperpile.com/c/o8ANTm/m2CK
https://paperpile.com/c/o8ANTm/qjzv+fyQT

15

examples of how input files should be formatted, and links to relevant discussion forums. 1

To help with processing large data sets and computationally complex algorithms, Galaxy 2

also provides an option to execute workflows on cloud-computing services[78]. In addition, 3

researchers can share workflows with each other (https://usegalaxy.org); this feature has 4

enabled the Galaxy team to build a community that helps to encourage reproducibility, 5

define best practices, and reduce the time required for novices to get started. 6

Various other workflow systems are freely available to the research community (see Box 7

2). For example, VisTrails is used by researchers from many disciplines, including climate 8

science, microbial ecology, and quantum mechanics[79]. It enables scientists to design 9

workflows visually, connecting data inputs with analytical modules and the resulting 10

outputs. In addition, VisTrails tracks a full history of how each workflow was created. This 11

capability, referred to as "retrospective provenance", makes it possible for others not only 12

to reproduce the final version of an analysis but also to examine previous incarnations of 13

the workflow and examine how each change influenced the analytical outputs[80]. 14

Box 2: Workflow management tools freely available to the research community.

● Galaxy[76,77] - https://usegalaxy.org

● VisTrails[79] - http://www.vistrails.org

● Kepler[81] - https://kepler-project.org

● iPlant Collaborative[82] - http://www.iplantcollaborative.org

● GenePattern[83,84] -
http://www.broadinstitute.org/cancer/software/genepattern

● Taverna[85] - http://www.taverna.org.uk

● LONI Pipeline[86] - http://pipeline.bmap.ucla.edu

 15

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/FgIP
https://paperpile.com/c/o8ANTm/SiRU
https://paperpile.com/c/o8ANTm/8e9D
https://paperpile.com/c/o8ANTm/qjzv+fyQT
https://usegalaxy.org/
https://paperpile.com/c/o8ANTm/SiRU
http://www.vistrails.org/
https://paperpile.com/c/o8ANTm/KfQh
https://kepler-project.org/
https://paperpile.com/c/o8ANTm/V6Bm
http://www.iplantcollaborative.org/
https://paperpile.com/c/o8ANTm/EsWp+gZPd
http://www.broadinstitute.org/cancer/software/genepattern
https://paperpile.com/c/o8ANTm/Pvtw
http://www.taverna.org.uk/
https://paperpile.com/c/o8ANTm/0xpK
http://pipeline.bmap.ucla.edu/

16

Although workflow-management systems offer many advantages, users must accept 1

tradeoffs. For example, although the teams that develop these tools often provide public 2

servers where users can execute workflows, many scientists share these limited resources, 3

so the public servers may not have adequate computational power or storage space to 4

execute large-scale analyses in a timely manner. As an alternative, many scientists install 5

these systems on their own computers; however, configuring and supporting them 6

requires time and expertise. In addition, if a workflow tool does not yet provide a module 7

to support a given analysis, the scientist must create a new module to support it. This task 8

constitutes additional overhead; however, utilities such as the Galaxy Tool Shed[87] are 9

helping to facilitate this process. 10

Virtual machines encapsulate an entire operating system and software 11

dependencies 12

Whether an analysis is executed at the command line, within a literate-programming 13

notebook, or via a workflow-management system, an operating system and relevant 14

software dependencies must be installed before the analysis can be performed. The process 15

of identifying, installing, and configuring such dependencies consumes a considerable 16

amount of scientists' time. Different operating systems (and versions thereof) may require 17

different installation and configuration steps. Furthermore, earlier versions of software 18

dependencies, which may currently be installed on a given computer, may be incompatible 19

with—or produce different outputs than—newer versions. 20

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/i7gc

17

One solution is to use virtual machines, which can encapsulate an entire operating system 1

and all software, scripts, code, and data necessary to execute a computational 2

analysis[88,89] (Figure 6). Using virtualization software—such as VirtualBox or VMWare 3

(see Box 3)—a virtual machine can be executed on practically any desktop, laptop, or 4

server, irrespective of the main ("host") operating system on the computer. For example, 5

even though a scientist's computer may be running a Windows operating system, the 6

scientist may perform an analysis on a Linux operating system that is running 7

concurrently—within a virtual machine—on the same computer. The scientist has full 8

control over the virtual ("guest") operating system and thus can install software and 9

modify configuration settings as necessary. In addition, a virtual machine can be 10

constrained to use specific amounts of computational resources (e.g., computer memory, 11

processing power), thus enabling system administrators to ensure that multiple virtual 12

machines can be executed simultaneously on the same computer without impacting each 13

other's performance. After executing an analysis, the scientist can export the entire virtual 14

machine to a single, binary file. Other scientists can then use this file to reconstitute the 15

same computational environment that was used for the original analysis. With a few 16

exceptions (see Discussion), these scientists will obtain exactly the same results that the 17

original scientist obtained. This process provides the added benefits that 1) the scientist 18

must only document the installation and configuration steps for a single operating system, 19

2) other scientists need only install the virtualization software and not individual software 20

components, and 3) analyses can be reexecuted indefinitely, so long as the virtualization 21

software remains compatible with current computer systems[90]. Also useful, a team of 22

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/AFAK+Fotg
https://paperpile.com/c/o8ANTm/sRz2

18

scientists can employ virtual machines to ensure that each team member has the same 1

computational environment, even though the team members may have different 2

configurations on their host operating systems. 3

One criticism of using virtual machines to support computational reproducibility is that 4

virtual-machine files are large (typically multiple gigabytes), especially if they include raw 5

data files. This imposes a barrier for researchers to share virtual machines with the 6

research community. One option is to use cloud-computing services (see Box 4). Scientists 7

can execute an analysis in the cloud, take a "snapshot" of their virtual machine, and share it 8

with others in that environment[88,91]. Cloud-based services typically provide 9

repositories where virtual-machine files can be stored and shared easily among users. 10

Despite these advantages, some researchers may prefer that their data reside on local 11

computers, rather than in the cloud—at least while the research is being performed. In 12

addition, cloud-based services may use proprietary software, so virtual machines may only 13

be executable within each provider's infrastructure. Furthermore, to use a cloud-service 14

provider, scientists may need to activate a fee-based account. 15

Another criticism of using virtual machines to support computational reproducibility is 16

that the software and scripts used in the analysis will be less easily accessible to other 17

scientists—details of the analysis are effectively concealed behind a “black box”[92]. 18

Although other researchers may be able to reexecute the analysis within the virtual 19

machine, it may be more difficult for them to understand and extend the analysis[92]. This 20

problem can be ameliorated when all narratives, scripts, and code are stored in public 21

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/AFAK+wM2W
https://paperpile.com/c/o8ANTm/CPxL
https://paperpile.com/c/o8ANTm/CPxL

19

repositories—separately from the virtual machine—and then imported when the analysis 1

is executed[93]. Another solution is to use a prepackaged virtual machine, such as Cloud 2

BioLinux, that contains a variety of software tools commonly used within a given research 3

community[94]. 4

Scientists can automate the process of building and configuring virtual machines using 5

tools such as Vagrant or Vortex (see Box 3). For either tool, users can write text-based 6

configuration files that provide instructions for building virtual machines and allocating 7

computational resources to them. In addition, these configuration files can be used to 8

specify analysis steps[93]. Because these files are text based and relatively small (usually a 9

few kilobytes), scientists can share them easily and track different versions of the files via 10

source-control repositories. This approach also mitigates problems that might arise during 11

the analysis stage. For example, even when a computer's host operating system must be 12

reinstalled due to a computer hardware failure, the virtual machine can be recreated with 13

relative ease. 14

Box 3: Virtual-machine software.

Virtualization hypervisors:

● VirtualBox (open source) - https://www.virtualbox.org

● Xen (open source) - http://www.xenproject.org

● VMWare (partially open source) - http://www.vmware.com

Virtual-machine management tools:

● Vagrant (open source) - https://www.vagrantup.com

● Vortex (open source) - https://github.com/websecurify/node-vortex

 15

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/dZOk
https://paperpile.com/c/o8ANTm/6CaC
https://paperpile.com/c/o8ANTm/dZOk

20

Box 4: Commercial cloud-service providers.

● Amazon Web Services - http://aws.amazon.com

● Rackspace Cloud - http://www.rackspace.com/cloud

● Google Cloud Platform - https://cloud.google.com/compute

● Windows Azure - https://azure.microsoft.com

 1

Software containers ease the process of installing and configuring 2

dependencies 3

Software containers are a lighter-weight alternative to virtual machines. Like virtual 4

machines, containers can encapsulate operating-system components, scripts, code, and 5

data into a single package that can be shared with others. Thus, as with virtual machines, 6

analyses executed within a software container should produce identical outputs, 7

irrespective of the underlying operating system or whatever software may be installed 8

outside the container (see Discussion for caveats). As is true for virtual machines, multiple 9

containers can be executed simultaneously on a single computer, and each container may 10

contain different software versions and configurations. However, whereas virtual machines 11

include an entire operating system, software containers interface directly with the 12

computer's main operating system and extend it as needed (Figure 3). This design provides 13

less flexibility than virtual machines because containers are specific to a given type of 14

operating system; however, containers require considerably less computational overhead 15

than virtual machines and can be initialized much more quickly[95]. 16

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/Rz3P

21

The open-source Docker utility (https://www.docker.com)—which has gained popularity 1

among informaticians since its release in 2013—provides the ability to build, execute, and 2

share software containers for Linux-based operating systems. Users specify a Docker 3

container's contents using text-based commands. These instructions can be placed in a 4

"Dockerfile," which other scientists can use to rebuild the container. As with virtual-5

machine configuration files, Dockerfiles are text based, so they can be shared easily and can 6

be tracked and versioned in source-control repositories. Once a Docker container has been 7

built, its contents can be exported to a binary file; these files are generally smaller than 8

virtual-machine files, so they can be shared more easily—for example, via DockerHub 9

(https://hub.docker.com). 10

A key feature of Docker containers is that their contents can be stacked in distinct layers (or 11

"images"). Each image includes software component(s) that address a particular need (see 12

Figure 7 for an example). Within a given research lab, scientists might create general-13

purpose images that support functionality for multiple projects, and they might create 14

specialized images that address the needs of specific projects. Docker's modular design 15

provides the advantage that when images within a container are updated, Docker only 16

needs to track the specific components that have changed; users who wish to update to a 17

newer version must download a relatively small update. In contrast, even a minor change 18

to a virtual machine would require users to export and reshare the entire virtual machine. 19

Scientists have begun to share Docker images with others who are working in the same 20

subdiscipline. For example, nucleotid.es is a catalog of genome-assembly tools that have 21

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

22

been encapsulated in Docker images[96,97]. Genome-assembly tools differ considerably in 1

the dependencies that they require and in the parameters that they support. This project 2

provides a means to standardize these assemblers, to circumvent the need to install 3

dependencies for each tool, and to perform benchmarks across the tools. Such projects may 4

help to reduce the reproducibility burden on individual scientists. 5

The use of Docker containers for reproducible research comes with caveats. Individual 6

containers are stored and executed in isolation from other containers on the same 7

computer; however, because all containers on a given machine share the same operating 8

system, this isolation is not as complete as it is with virtual machines. This means, for 9

example, that a given container is not guaranteed to have access to a specific amount of 10

computer memory or processing power—multiple containers may have to compete for 11

these resources[95]. In addition, containers may be more vulnerable to security 12

breaches[95]. Another caveat is that Docker containers can only be executed on Linux-13

based operating systems. For other operating systems, Docker containers must be executed 14

within a virtual machine (for example, see http://boot2docker.io). Although this 15

configuration offsets some benefits of using containers, combining virtual machines with 16

containers may provide a happy medium for many scientists, allowing them to use a non-17

Linux host operating system, while receiving the benefits of containers within the guest 18

operating system. 19

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/qQ7i+g1e2
https://paperpile.com/c/o8ANTm/Rz3P
https://paperpile.com/c/o8ANTm/Rz3P

23

Efforts are ongoing to develop and refine software-container technologies. Box 5 lists 1

various tools that are currently available. In coming years, these technologies promise to 2

play an influential role within the scientific community. 3

Box 5: Open-source containerization software.

● Docker - https://www.docker.com

● Linux Containers - https://linuxcontainers.org

● lmctfy - https://github.com/google/lmctfy

● OpenVZ - http://openvz.org

● Warden - http://docs.cloudfoundry.org/concepts/architecture/warden.html

 4

Discussion 5

Scientific advancement requires trust. This review provides a comprehensive, though 6

inexhaustive, list of techniques that can help to engender such trust. Principally, scientists 7

must perform research in such ways that they can trust their own findings[3,45]. Science 8

philosopher Karl Popper contended that "[w]e do not take even our own observations 9

quite seriously, or accept them as scientific observations, until we have repeated and tested 10

them"[2]. Indeed, in many cases, the individuals who benefit most from computational 11

reproducibility are those who performed the original analysis. But reproducible practices 12

can also help scientists garner each other's trust[45,98]. When other scientists can 13

reproduce an analysis and determine exactly how its conclusions were drawn, they may be 14

more apt to cite the work and build upon it. In contrast, when others fail to reproduce 15

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://www.docker.com/
https://linuxcontainers.org/
https://github.com/google/lmctfy
http://openvz.org/
http://docs.cloudfoundry.org/concepts/architecture/warden.html
https://paperpile.com/c/o8ANTm/GIVf+4yT3
https://paperpile.com/c/o8ANTm/769f
https://paperpile.com/c/o8ANTm/GIVf+CTWZ

24

research findings, it can derail scientific progress and lead to embarrassment, accusations, 1

and retractions. 2

We have described seven tools and techniques for computational reproducibility. None of 3

these approaches is sufficient for every scenario in isolation. Rather scientists will often 4

find value in combining approaches. For example, a researcher who uses a literate-5

programming notebook (which combines narratives with code) might incorporate the 6

notebook into a software container so that others can execute it without needing to install 7

specific software dependencies. The container might also include a workflow-management 8

system to ease the process of integrating multiple tools and incorporating best practices for 9

the analysis. This container could be packaged within a virtual machine to ensure that it 10

can be executed on many operating systems (see Figure 8). In determining a 11

reproducibility strategy, scientists must evaluate the tradeoff between robustness and 12

practicality. 13

The call for computational reproducibility relies on the premise that reproducible science 14

will bolster the efficiency of the overall scientific enterprise[99]. Although reproducible 15

practices may require additional time and effort, these practices provide ancillary benefits 16

that help offset those expenditures[45]. Primarily, the scientists who perform a study may 17

experience increased efficiency[45]. For example, before and after a manuscript is 18

submitted for publication, it faces scrutiny from co-authors and peer reviewers who may 19

suggest alterations to the analysis. Having a complete record of all analysis steps and being 20

able to retrace those steps precisely, makes it faster and easier to implement the requested 21

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/3O0J
https://paperpile.com/c/o8ANTm/GIVf
https://paperpile.com/c/o8ANTm/GIVf

25

alterations[45,100]. Reproducible practices can also improve the efficiency of team science 1

because colleagues can more easily communicate their research protocols and inspect each 2

other's work; one type of relationship where this is critical is that between academic 3

advisors and mentees[100]. Finally, when research protocols are shared transparently with 4

the broader community, scientific advancement increases because scientists can learn 5

more easily from each other's work and duplicate each other's efforts less frequently[100]. 6

Reproducible practices do not necessarily ensure that others can obtain results that are 7

perfectly identical to what the original scientists obtained. Indeed, this objective may be 8

infeasible for some types of computational analysis, including those that use randomization 9

procedures, floating-point operations, or specialized computer hardware[89,101]. In such 10

cases, the goal may shift to ensuring that others can obtain results that are semantically 11

consistent with the original findings[5,6]. In addition, in studies where vast computational 12

resources are needed to perform an analysis or where data sets are distributed 13

geographically[102–104], full reproducibility may be infeasible. Alternatively, it may be 14

infeasible to reallocate computational resources for analyses that are highly 15

computationally intensive[8]. In these cases, researchers can provide relatively simple 16

examples that demonstrate the methodology[8]. When legal restrictions prevent 17

researchers from sharing software or data publicly, or when software is available only via a 18

Web interface, researchers should document the analysis steps as well as possible and 19

describe why such components cannot be shared[24]. 20

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/GIVf+nxFQ
https://paperpile.com/c/o8ANTm/nxFQ
https://paperpile.com/c/o8ANTm/nxFQ
https://paperpile.com/c/o8ANTm/Fotg+oIOq
https://paperpile.com/c/o8ANTm/guxx+PV3y
https://paperpile.com/c/o8ANTm/KBH9+KrW5+5wJ6
https://paperpile.com/c/o8ANTm/1XjS
https://paperpile.com/c/o8ANTm/1XjS
https://paperpile.com/c/o8ANTm/CoLN

26

Computational reproducibility does not guarantee against analytical biases or ensure that 1

software produces scientifically valid results[105]. As with any research, a poor study 2

design, confounding effects, or improper use of analytical software may plague even the 3

most reproducible analyses[105,106]. On one hand, increased transparency puts scientists 4

at a greater risk that such problems will be exposed. On the other hand, scientists who are 5

fully transparent about their scientific approach may be more likely to avoid such pitfalls, 6

knowing that they will be more vulnerable to such criticisms. Either way, the scientific 7

community benefits. 8

Lastly, we emphasize that some reproducibility is better than none. As Voltaire said, the 9
perfect should not be the enemy of the good[107]. Although some of the practices 10
described in this review require more technical expertise than others, these practices are 11
freely accessible to all scientists and provide long-term benefits to the researcher and to 12
the scientific community. Indeed, as scientists act in good faith to perform these practices, 13
where feasible, the pace of scientific progress will surely increase. 14

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/gb0y
https://paperpile.com/c/o8ANTm/gb0y+sjkW
https://paperpile.com/c/o8ANTm/JE4R

27

 1

Figure Legends 2

Figure 1: Basic computer architecture. Computer hardware consists of hardware 3

devices, including central processing units, hard drives, random access memory, keyboard, 4

mouse, etc. Operating systems enable software to interface with hardware; popular 5

operating-system families are Windows, Mac OS, and Linux. Users interact with computers 6

via software interfaces. In scientific computing, software enables users to execute 7

algorithms, analyze data, generate graphics, etc. To execute properly, most software tools 8

depend on specific versions of software dependencies, which must be installed on the same 9

operating system. 10

Figure 2: Example of a command-line script. This script can be used to align DNA 11

sequence data to a reference genome. First it downloads software and data files necessary 12

for the analysis. Then it extracts (“unzips”) these files, aligns the data to a reference 13

genome for Ebolavirus. Finally, it converts, sorts, and indexes the aligned data. 14

Figure 3: Example of a Make file. This file performs the same function as the command-15

line script shown in Figure 2, except that it is formatted for the Make utility. Accordingly, it 16

is structured so that specific tasks must be executed before other tasks, in a hierarchical 17

structure. For example, the “download” target must be completed before the downloaded 18

files can be prepared (“prepare” target). The “all” target specifies all of the targets that 19

must be executed, in order. 20

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

28

Figure 4: Example of a Jupyter notebook. This example contains code (in the Python 1

programming language) for generating random numbers and plotting them in a graph 2

within a Jupyter notebook. Importantly, the code and output object (graph) are contained 3

within the same document. 4

Figure 5: Example of a document that has been created using knitr. This example 5

contains code (in the R language) for generating random numbers and plotting them in a 6

graph. The knitr tool was used to generate the document, which combines the code and the 7

output object (figure). 8

Figure 6: Architecture of virtual machines. Virtual machines encapsulate analytical 9

software and dependencies within a "guest" operating system, which may be different than 10

the main ("host") operating system. A virtual machine executes in the context of 11

virtualization software, which executes alongside whatever other software is installed on 12

the computer. 13

Figure 7: Architecture of software containers. Software containers encapsulate 14

analytical software and dependencies. In contrast to virtual machines, containers execute 15

within the context of the computer's main operating system. 16

Figure 8: Example of a Docker container that could be used for genomics research. 17

This container would enable researchers to preprocess various types of molecular data, 18

using tools from Bioconductor and Galaxy, and to analyze the resulting data within an 19

IPython notebook. Each box within the container represents a distinct Docker image. These 20

images are layered such that some images depend on others (for example, the Bioconductor 21

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

29

image depends on R). At its base, the container includes operating-system libraries, which 1

may not be present (or may be configured differently) on the computer's main operating 2

system. 3

 4

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

30

 1

References 2

1. Fisher RA. The Design of Experiments. New York: Hafner Press; 1935. 3

2. Popper KR. 2002. The logic of scientific discovery. London Routledge; 1959. 4

3. Peng RD. Reproducible research in computational science. Science. 2011;334:1226–7. 5

4. Russell JF. If a job is worth doing, it is worth doing twice. Nature. 2013;496:7. 6

5. Feynman RP, Leighton RB, Sands M. Six Easy Pieces: Essentials of Physics Explained by Its Most 7
Brilliant Teacher. Perseus Books; 1994. p. 34–5. 8

6. Murray-Rust P, Murray-Rust D. Reproducible Physical Science and the Declaratron. In: Stodden 9
VC, Leisch F, Peng RD, editors. Implementing Reproducible Research. CRC Press; 2014. p. 113. 10

7. Hey AJG, Tansley S, Tolle KM, Others. The fourth paradigm: data-intensive scientific discovery. 11
Microsoft Research Redmond, WA; 2009. 12

8. Millman KJ, Pérez F. Developing Open-Source Scientific Practice. Implementing Reproducible 13
Research. CRC Press; 2014;149. 14

9. Wilson G, Aruliah DA, Brown CT, Chue Hong NP, Davis M, Guy RT, et al. Best practices for 15
scientific computing. PLoS Biol. 2014;12:e1001745. 16

10. Software with impact. Nat. Methods. 2014;11:211. 17

11. Hong NC. We are the 92% [Internet]. Figshare; 2014. Available from: 18
http://dx.doi.org/10.6084/M9.FIGSHARE.1243288 19

12. Sacks J, Welch WJ, Mitchell TJ, Wynn HP. Design and Analysis of Computer Experiments. Stat. Sci. 20
Institute of Mathematical Statistics; 1989;4:409–23. 21

13. Garijo D, Kinnings S, Xie L, Xie L, Zhang Y, Bourne PE, et al. Quantifying reproducibility in 22
computational biology: the case of the tuberculosis drugome. PLoS One. 2013;8:e80278. 23

14. Error prone. Nature. 2012;487:406. 24

15. Vandewalle P, Barrenetxea G, Jovanovic I, Ridolfi A, Vetterli M. Experiences with Reproducible 25
Research in Various Facets of Signal Processing Research. 2007 IEEE International Conference on 26
Acoustics, Speech and Signal Processing - ICASSP ’07. IEEE; 2007. p. IV – 1253 – IV – 1256. 27

16. Cassey P, Cassey P, Blackburn T, Blackburn T. Reproducibility and Repeatability in Ecology. 28
Bioscience. 2006;56:958–9. 29

17. Murphy JM, Sexton DMH, Barnett DN, Jones GS, Webb MJ, Collins M, et al. Quantification of 30
modelling uncertainties in a large ensemble of climate change simulations. Nature. 2004;430:768–31

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://paperpile.com/b/o8ANTm/fMuq
http://paperpile.com/b/o8ANTm/769f
http://paperpile.com/b/o8ANTm/4yT3
http://paperpile.com/b/o8ANTm/FZIl
http://paperpile.com/b/o8ANTm/guxx
http://paperpile.com/b/o8ANTm/guxx
http://paperpile.com/b/o8ANTm/PV3y
http://paperpile.com/b/o8ANTm/PV3y
http://paperpile.com/b/o8ANTm/s2Yw
http://paperpile.com/b/o8ANTm/s2Yw
http://paperpile.com/b/o8ANTm/1XjS
http://paperpile.com/b/o8ANTm/1XjS
http://paperpile.com/b/o8ANTm/FbU6
http://paperpile.com/b/o8ANTm/FbU6
http://paperpile.com/b/o8ANTm/6Tvu
http://paperpile.com/b/o8ANTm/S75W
http://paperpile.com/b/o8ANTm/S75W
http://dx.doi.org/10.6084/M9.FIGSHARE.1243288
http://paperpile.com/b/o8ANTm/OcDb
http://paperpile.com/b/o8ANTm/OcDb
http://paperpile.com/b/o8ANTm/Crmz
http://paperpile.com/b/o8ANTm/Crmz
http://paperpile.com/b/o8ANTm/pPaq
http://paperpile.com/b/o8ANTm/rUWE
http://paperpile.com/b/o8ANTm/rUWE
http://paperpile.com/b/o8ANTm/rUWE
http://paperpile.com/b/o8ANTm/kX1r
http://paperpile.com/b/o8ANTm/kX1r
http://paperpile.com/b/o8ANTm/MdsL
http://paperpile.com/b/o8ANTm/MdsL

31

72. 1

18. McCarthy DJ, Humburg P, Kanapin A, Rivas MA, Gaulton K, Cazier J-B, et al. Choice of transcripts 2
and software has a large effect on variant annotation. Genome Med. 2014;6:26. 3

19. Neuman JA, Isakov O, Shomron N. Analysis of insertion-deletion from deep-sequencing data: 4
Software evaluation for optimal detection. Brief. Bioinform. 2013;14:46–55. 5

20. Bradnam KR, Fass JN, Alexandrov A, Baranay P, Bechner M, Birol I, et al. Assemblathon 2: 6
evaluating de novo methods of genome assembly in three vertebrate species. Gigascience. 7
2013;2:10. 8

21. Bilal E, Dutkowski J, Guinney J, Jang IS, Logsdon BA, Pandey G, et al. Improving Breast Cancer 9
Survival Analysis through Competition-Based Multidimensional Modeling. PLoS Comput. Biol. 10
2013;9:e1003047. 11

22. Moskvin OV, McIlwain S, Ong IM. CAMDA 2014: Making sense of RNA-Seq data: From low-level 12
processing to functional analysis. Systems Biomedicine. 2014;2:31–40. 13

23. Reducing our irreproducibility. Nature. 2013;496:398–398. 14

24. Michael CM, Nass SJ, Omenn GS, editors. Evolution of Translational Omics: Lessons Learned and 15
the Path Forward. Washington, D.C.: The National Academies Press; 2012. 16

25. Collins FS, Tabak L a. Policy: NIH plans to enhance reproducibility. Nature. 2014;505:612–3. 17

26. Chambers JM. S as a Programming Environment for Data Analysis and Graphics. Problem 18
Solving Environments for Scientific Computing, Proc. 17th Symp. on the Interface of Stat. and Comp. 19
North Holland; 1985. p. 211–4. 20

27. LeVeque RJ, Mitchell IM, Stodden V. Reproducible research for scientific computing: Tools and 21
strategies for changing the culture. Computing in Science and Engineering. 2012;14:13. 22

28. Stodden V, Guo P, Ma Z. Toward Reproducible Computational Research: An Empirical Analysis 23
of Data and Code Policy Adoption by Journals. PLoS One. 2013;8:2–9. 24

29. Morin A, Urban J, Adams PD, Foster I, Sali A, Baker D, et al. Research priorities. Shining light into 25
black boxes. Science. 2012;336:159–60. 26

30. Rebooting review. Nat. Biotechnol. 2015;33:319. 27

31. Ioannidis JP a., Allison DB, Ball C a., Coulibaly I, Cui X, Culhane AC, et al. Repeatability of 28
published microarray gene expression analyses. Nat. Genet. 2009;41:149–55. 29

32. Nekrutenko A, Taylor J. Next-generation sequencing data interpretation: enhancing 30
reproducibility and accessibility. Nat. Rev. Genet. Nature Publishing Group; 2012;13:667–72. 31

33. Baggerly K a., Coombes KR. Deriving chemosensitivity from cell lines: Forensic bioinformatics 32
and reproducible research in high-throughput biology. Ann. Appl. Stat. 2009;3:1309–34. 33

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://paperpile.com/b/o8ANTm/MdsL
http://paperpile.com/b/o8ANTm/7Uhe
http://paperpile.com/b/o8ANTm/7Uhe
http://paperpile.com/b/o8ANTm/Oj8J
http://paperpile.com/b/o8ANTm/Oj8J
http://paperpile.com/b/o8ANTm/VBL0
http://paperpile.com/b/o8ANTm/VBL0
http://paperpile.com/b/o8ANTm/VBL0
http://paperpile.com/b/o8ANTm/VN7F
http://paperpile.com/b/o8ANTm/VN7F
http://paperpile.com/b/o8ANTm/VN7F
http://paperpile.com/b/o8ANTm/3JwD
http://paperpile.com/b/o8ANTm/3JwD
http://paperpile.com/b/o8ANTm/VqOb
http://paperpile.com/b/o8ANTm/CoLN
http://paperpile.com/b/o8ANTm/CoLN
http://paperpile.com/b/o8ANTm/MT7f
http://paperpile.com/b/o8ANTm/HswK
http://paperpile.com/b/o8ANTm/HswK
http://paperpile.com/b/o8ANTm/HswK
http://paperpile.com/b/o8ANTm/aRzQ
http://paperpile.com/b/o8ANTm/aRzQ
http://paperpile.com/b/o8ANTm/OQpF
http://paperpile.com/b/o8ANTm/OQpF
http://paperpile.com/b/o8ANTm/dt7d
http://paperpile.com/b/o8ANTm/dt7d
http://paperpile.com/b/o8ANTm/vwr8
http://paperpile.com/b/o8ANTm/WAFW
http://paperpile.com/b/o8ANTm/WAFW
http://paperpile.com/b/o8ANTm/M0G0
http://paperpile.com/b/o8ANTm/M0G0
http://paperpile.com/b/o8ANTm/Q9BC
http://paperpile.com/b/o8ANTm/Q9BC

32

34. Decullier E, Huot L, Samson G, Maisonneuve H. Visibility of retractions: a cross-sectional one-1
year study. BMC Res. Notes. 2013;6:238. 2

35. Claerbout JF, Karrenbach M. Electronic Documents Give Reproducible Research a New Meaning. 3
Meeting of the Society of Exploration Geophysics. New Orleans, LA; 1992. 4

36. Stodden V, Miguez S. Best Practices for Computational Science: Software Infrastructure and 5
Environments for Reproducible and Extensible Research. Journal of Open Research Software. 6
2014;2:21. 7

37. Ravel J, Wommack KE. All hail reproducibility in microbiome research. Microbiome. 2014;2:8. 8

38. Stodden V. 2014: What scientific idea is ready for retirement? [Internet]. 9
http://edge.org/response-detail/25340. 2014. Available from: http://edge.org/response-10
detail/25340 11

39. Birney E, Hudson TJ, Green ED, Gunter C, Eddy S, Rogers J, et al. Prepublication data sharing. 12
Nature. 2009;461:168–70. 13

40. Hothorn T, Leisch F. Case studies in reproducibility. Brief. Bioinform. 2011;12:288–300. 14

41. Schofield PN, Bubela T, Weaver T, Portilla L, Brown SD, Hancock JM, et al. Post-publication 15
sharing of data and tools. Nature. 2009;461:171–3. 16

42. Piwowar H a., Day RS, Fridsma DB. Sharing detailed research data is associated with increased 17
citation rate. PLoS One [Internet]. 2007;2. Available from: 18
http://dx.doi.org/10.1371/journal.pone.0000308 19

43. Johnson VE. Revised standards for statistical evidence. Proc. Natl. Acad. Sci. U. S. A. 20
2013;110:19313–7. 21

44. Halsey LG, Curran-everett D, Vowler SL, Drummond GB. The fickle P value generates 22
irreproducible results. Nat. Methods. 2015;12:179–85. 23

45. Sandve GK, Nekrutenko A, Taylor J, Hovig E. Ten Simple Rules for Reproducible Computational 24
Research. PLoS Comput. Biol. 2013;9:1–4. 25

46. Köster J, Rahmann S. Snakemake--a scalable bioinformatics workflow engine. Bioinformatics. 26
2012;28:2520–2. 27

47. Sadedin SP, Pope B, Oshlack A. Bpipe : A Tool for Running and Managing Bioinformatics 28
Pipelines. Bioinformatics. 2012;28:1525–6. 29

48. Tange O. GNU Parallel - The Command-Line Power Tool. ;login: The USENIX Magazine. 30
Frederiksberg, Denmark; 2011;36:42–7. 31

49. Albrecht M, Donnelly P, Bui P, Thain D. Makeflow: A portable abstraction for data intensive 32
computing on clusters, clouds, and grids. Proceedings of the 1st ACM SIGMOD Workshop on 33
Scalable Workflow Execution Engines and Technologies. 2012. 34

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://paperpile.com/b/o8ANTm/vnMu
http://paperpile.com/b/o8ANTm/vnMu
http://paperpile.com/b/o8ANTm/Espr
http://paperpile.com/b/o8ANTm/Espr
http://paperpile.com/b/o8ANTm/RNY8
http://paperpile.com/b/o8ANTm/RNY8
http://paperpile.com/b/o8ANTm/RNY8
http://paperpile.com/b/o8ANTm/oAuw
http://paperpile.com/b/o8ANTm/RLQS
http://paperpile.com/b/o8ANTm/RLQS
http://edge.org/response-detail/25340
http://edge.org/response-detail/25340
http://paperpile.com/b/o8ANTm/0Kzb
http://paperpile.com/b/o8ANTm/0Kzb
http://paperpile.com/b/o8ANTm/MMll
http://paperpile.com/b/o8ANTm/Awlf
http://paperpile.com/b/o8ANTm/Awlf
http://paperpile.com/b/o8ANTm/Hm55
http://paperpile.com/b/o8ANTm/Hm55
http://dx.doi.org/10.1371/journal.pone.0000308
http://paperpile.com/b/o8ANTm/ySva
http://paperpile.com/b/o8ANTm/ySva
http://paperpile.com/b/o8ANTm/thVl
http://paperpile.com/b/o8ANTm/thVl
http://paperpile.com/b/o8ANTm/GIVf
http://paperpile.com/b/o8ANTm/GIVf
http://paperpile.com/b/o8ANTm/PNzo
http://paperpile.com/b/o8ANTm/PNzo
http://paperpile.com/b/o8ANTm/m42U
http://paperpile.com/b/o8ANTm/m42U
http://paperpile.com/b/o8ANTm/MAX5
http://paperpile.com/b/o8ANTm/MAX5
http://paperpile.com/b/o8ANTm/G9vT
http://paperpile.com/b/o8ANTm/G9vT
http://paperpile.com/b/o8ANTm/G9vT

33

50. Knight S, Austin C, Crain C, Leblanc S, Roach A. Scons software construction tool [Internet]. 1
2011. Available from: http://www.scons.org 2

51. Code share. Nature. 2014;514:536. 3

52. Loeliger J, McCullough M. Version Control with Git: Powerful Tools and Techniques for 4
Collaborative Software Development. “O’Reilly Media, Inc.”; 2012. p. 456. 5

53. Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, et al. Orchestrating high-6
throughput genomic analysis with Bioconductor. Nat. Methods. Nature Publishing Group; 7
2015;12:115–21. 8

54. R Core Team. R: A Language and Environment for Statistical Computing [Internet]. Vienna, 9
Austria: R Foundation for Statistical Computing; 2014. Available from: http://www.r-project.org 10

55. Tóth G, Sokolov IV, Gombosi TI, Chesney DR, Clauer CR, De Zeeuw DL, et al. Space Weather 11
Modeling Framework: A new tool for the space science community. J. Geophys. Res. 12
2005;110:A12226. 13

56. Tan E, Choi E, Thoutireddy P, Gurnis M, Aivazis M. GeoFramework: Coupling multiple models of 14
mantle convection within a computational framework. Geochem. Geophys. Geosyst. [Internet]. 15
2006;7. Available from: http://doi.wiley.com/10.1029/2005GC001155 16

57. Heisen B, Boukhelef D, Esenov S, Hauf S, Kozlova I, Maia L, et al. Karabo: An Integrated Software 17
Framework Combining Control, Data Management, and Scientific Computing Tasks. 14th 18
International Conference on Accelerator & Large Experimental Physics Control Systems, 19
ICALEPCS2013. San Francisco, CA; 2013. 20

58. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat. 21
Methods. Nature Publishing Group; 2012;9:671–5. 22

59. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-23
source platform for biological-image analysis. Nat. Methods. Nature Publishing Group, a division of 24
Macmillan Publishers Limited. All Rights Reserved.; 2012;9:676–82. 25

60. Biasini M, Schmidt T, Bienert S, Mariani V, Studer G, Haas J, et al. OpenStructure: an integrated 26
software framework for computational structural biology. Acta Crystallogr. D Biol. Crystallogr. 27
2013;69:701–9. 28

61. Martin RC. Clean code: a handbook of agile software craftsmanship. Pearson Education; 2009. 29

62. Knuth DE. Literate Programming. Comput. J. 1984;27:97–111. 30

63. Pérez F, Granger BE. IPython: a System for Interactive Scientific Computing. Computing in 31
Science and Engineering. IEEE Computer Society; 2007;9:21–9. 32

64. Shen H. Interactive notebooks: Sharing the code. Nature. 2014;515:151–2. 33

65. Xie Y. Dynamic Documents with R and knitr. CRC Press; 2013. p. 216. 34

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://paperpile.com/b/o8ANTm/iaom
http://paperpile.com/b/o8ANTm/iaom
http://www.scons.org/
http://paperpile.com/b/o8ANTm/MVy3
http://paperpile.com/b/o8ANTm/BGKk
http://paperpile.com/b/o8ANTm/BGKk
http://paperpile.com/b/o8ANTm/Wlzo
http://paperpile.com/b/o8ANTm/Wlzo
http://paperpile.com/b/o8ANTm/Wlzo
http://paperpile.com/b/o8ANTm/Dxef
http://paperpile.com/b/o8ANTm/Dxef
http://www.r-project.org/
http://paperpile.com/b/o8ANTm/TLyn
http://paperpile.com/b/o8ANTm/TLyn
http://paperpile.com/b/o8ANTm/TLyn
http://paperpile.com/b/o8ANTm/EH7K
http://paperpile.com/b/o8ANTm/EH7K
http://paperpile.com/b/o8ANTm/EH7K
http://paperpile.com/b/o8ANTm/EH7K
http://paperpile.com/b/o8ANTm/gLzl
http://paperpile.com/b/o8ANTm/gLzl
http://paperpile.com/b/o8ANTm/gLzl
http://paperpile.com/b/o8ANTm/gLzl
http://paperpile.com/b/o8ANTm/MJ0J
http://paperpile.com/b/o8ANTm/MJ0J
http://paperpile.com/b/o8ANTm/76D6
http://paperpile.com/b/o8ANTm/76D6
http://paperpile.com/b/o8ANTm/76D6
http://paperpile.com/b/o8ANTm/iK3Z
http://paperpile.com/b/o8ANTm/iK3Z
http://paperpile.com/b/o8ANTm/iK3Z
http://paperpile.com/b/o8ANTm/lJN5
http://paperpile.com/b/o8ANTm/XgiF
http://paperpile.com/b/o8ANTm/RShH
http://paperpile.com/b/o8ANTm/RShH
http://paperpile.com/b/o8ANTm/BBfB
http://paperpile.com/b/o8ANTm/jkFM

34

66. RStudio Team. RStudio: Integrated Development for R [Internet]. [cited 2015 Nov 20]. Available 1
from: http://www.rstudio.com 2

67. Gross AM, Orosco RK, Shen JP, Egloff AM, Carter H, Hofree M, et al. Multi-tiered genomic analysis 3
of head and neck cancer ties TP53 mutation to 3p loss. Nat. Genet. Nature Publishing Group; 4
2014;46:1–7. 5

68. Ding T, Schloss PD. Dynamics and associations of microbial community types across the human 6
body. Nature. Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights 7
Reserved.; 2014;509:357–60. 8

69. Ram Y, Hadany L. The probability of improvement in Fisher’s geometric model: A probabilistic 9
approach. Theor. Popul. Biol. 2015;99:1–6. 10

70. Meadow JF, Altrichter AE, Kembel SW, Moriyama M, O’Connor TK, Womack AM, et al. Bacterial 11
communities on classroom surfaces vary with human contact. Microbiome. 2014;2:7. 12

71. White E. Programming for Biologists [Internet]. Available from: 13
http://www.programmingforbiologists.org 14

72. Wilson G. Software Carpentry: lessons learned. F1000Res. 2014;3:62. 15

73. Peng RD. Coursera course: Computing for Data Analysis [Internet]. Available from: 16
https://www.coursera.org/course/compdata 17

74. Bioconductor - Courses and Conferences [Internet]. [cited 2015 Nov 20]. Available from: 18
http://master.bioconductor.org/help/course-materials 19

75. Gil Y, Deelman E, Ellisman M, Fahringer T, Fox G, Gannon D, et al. Examining the challenges of 20
scientific workflows. Computer . 2007;40:24–32. 21

76. Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, et al. Galaxy: a platform for 22
interactive large-scale genome analysis. Genome Res. 2005;15:1451–5. 23

77. Goecks J, Nekrutenko A, Taylor J. Galaxy: a comprehensive approach for supporting accessible, 24
reproducible, and transparent computational research in the life sciences. Genome Biol. 25
2010;11:R86. 26

78. Afgan E, Baker D, Coraor N, Goto H, Paul IM, Makova KD, et al. Harnessing cloud computing with 27
Galaxy Cloud. Nat. Biotechnol. 2011;29:972–4. 28

79. Callahan SP, Freire J, Santos E, Scheidegger CE, Silva CT, Vo HT. VisTrails: Visualization Meets 29
Data Management. Proceedings of the 2006 ACM SIGMOD International Conference on Management 30
of Data. New York, NY, USA: ACM; 2006. p. 745–7. 31

80. Davidson SB, Freire J. Provenance and scientific workflows. Proceedings of the 2008 ACM 32
SIGMOD international conference on Management of data - SIGMOD ’08. 2008. p. 1345. 33

81. Altintas I, Berkley C, Jaeger E, Jones M, Ludascher B, Mock S. Kepler: an extensible system for 34
design and execution of scientific workflows. Proceedings. 16th International Conference on 35

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://paperpile.com/b/o8ANTm/PnOW
http://paperpile.com/b/o8ANTm/PnOW
http://www.rstudio.com/
http://paperpile.com/b/o8ANTm/QjlF
http://paperpile.com/b/o8ANTm/QjlF
http://paperpile.com/b/o8ANTm/QjlF
http://paperpile.com/b/o8ANTm/9URt
http://paperpile.com/b/o8ANTm/9URt
http://paperpile.com/b/o8ANTm/9URt
http://paperpile.com/b/o8ANTm/WFGg
http://paperpile.com/b/o8ANTm/WFGg
http://paperpile.com/b/o8ANTm/Ickb
http://paperpile.com/b/o8ANTm/Ickb
http://paperpile.com/b/o8ANTm/YBDz
http://paperpile.com/b/o8ANTm/YBDz
http://www.programmingforbiologists.org/
http://paperpile.com/b/o8ANTm/ZzE1
http://paperpile.com/b/o8ANTm/pCdH
http://paperpile.com/b/o8ANTm/pCdH
https://www.coursera.org/course/compdata
http://paperpile.com/b/o8ANTm/Rklv
http://paperpile.com/b/o8ANTm/Rklv
http://master.bioconductor.org/help/course-materials
http://paperpile.com/b/o8ANTm/m2CK
http://paperpile.com/b/o8ANTm/m2CK
http://paperpile.com/b/o8ANTm/qjzv
http://paperpile.com/b/o8ANTm/qjzv
http://paperpile.com/b/o8ANTm/fyQT
http://paperpile.com/b/o8ANTm/fyQT
http://paperpile.com/b/o8ANTm/fyQT
http://paperpile.com/b/o8ANTm/FgIP
http://paperpile.com/b/o8ANTm/FgIP
http://paperpile.com/b/o8ANTm/SiRU
http://paperpile.com/b/o8ANTm/SiRU
http://paperpile.com/b/o8ANTm/SiRU
http://paperpile.com/b/o8ANTm/8e9D
http://paperpile.com/b/o8ANTm/8e9D
http://paperpile.com/b/o8ANTm/KfQh
http://paperpile.com/b/o8ANTm/KfQh

35

Scientific and Statistical Database Management, 2004. IEEE; 2004. p. 423–4. 1

82. Goff SA, Vaughn M, McKay S, Lyons E, Stapleton AE, Gessler D, et al. The iPlant Collaborative: 2
Cyberinfrastructure for Plant Biology. Front. Plant Sci. Frontiers; 2011;2:34. 3

83. Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP. GenePattern 2.0. Nat. Genet. 4
2006;38:500–1. 5

84. Reich M, Liefeld J, Thorvaldsdottir H, Ocana M, Polk E, Jang D, et al. GenomeSpace: An 6
environment for frictionless bioinformatics. Cancer Res. 2012;72:3966–3966. 7

85. Wolstencroft K, Haines R, Fellows D, Williams A, Withers D, Owen S, et al. The Taverna workflow 8
suite: designing and executing workflows of Web Services on the desktop, web or in the cloud. 9
Nucleic Acids Res. 2013;41:557–61. 10

86. Rex DE, Ma JQ, Toga AW. The LONI Pipeline Processing Environment. Neuroimage. 11
2003;19:1033–48. 12

87. Lazarus R, Kaspi A, Ziemann M. Creating re-usable tools from scripts: The Galaxy Tool Factory. 13
Bioinformatics. 2012;28:3139–40. 14

88. Dudley JT, Butte AJ. In silico research in the era of cloud computing. Nat. Biotechnol. Nature 15
Publishing Group; 2010;28:1181–5. 16

89. Hurley DG, Budden DM, Crampin EJ. Virtual Reference Environments: a simple way to make 17
research reproducible. Brief. Bioinform. 2014;1–3. 18

90. Gent IP. The Recomputation Manifesto. arXiv [Internet]. 2013; Available from: 19
http://arxiv.org/abs/1304.3674 20

91. Howe B. Virtual Appliances, Cloud Computing, and Reproducible Research. Comput. Sci. Eng. 21
IEEE Computer Society; 2012;14:36–41. 22

92. Brown CT. Virtual machines considered harmful for reproducibility [Internet]. 2012. Available 23
from: http://ivory.idyll.org/blog/vms-considered-harmful.html 24

93. Piccolo SR. Building portable analytical environments to improve sustainability of 25
computational-analysis pipelines in the sciences [Internet]. 2014. Available from: 26
http://dx.doi.org/10.6084/m9.figshare.1112571 27

94. Krampis K, Booth T, Chapman B, Tiwari B, Bicak M, Field D, et al. Cloud BioLinux: pre-configured 28
and on-demand bioinformatics computing for the genomics community. BMC Bioinformatics. 29
BioMed Central Ltd; 2012;13:42. 30

95. Felter W, Ferreira A, Rajamony R, Rubio J. An Updated Performance Comparison of Virtual 31
Machines and Linux Containers [Internet]. IBM Research Division; 2014. Available from: 32
http://domino.research.ibm.com/library/CyberDig.nsf/papers/0929052195DD819C85257D230033
681E7B/$File/rc25482.pdf 34

96. Belmann P, Dröge J, Bremges A, McHardy AC, Sczyrba A, Barton MD. Bioboxes: standardised 35

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://paperpile.com/b/o8ANTm/KfQh
http://paperpile.com/b/o8ANTm/V6Bm
http://paperpile.com/b/o8ANTm/V6Bm
http://paperpile.com/b/o8ANTm/EsWp
http://paperpile.com/b/o8ANTm/EsWp
http://paperpile.com/b/o8ANTm/gZPd
http://paperpile.com/b/o8ANTm/gZPd
http://paperpile.com/b/o8ANTm/Pvtw
http://paperpile.com/b/o8ANTm/Pvtw
http://paperpile.com/b/o8ANTm/Pvtw
http://paperpile.com/b/o8ANTm/0xpK
http://paperpile.com/b/o8ANTm/0xpK
http://paperpile.com/b/o8ANTm/i7gc
http://paperpile.com/b/o8ANTm/i7gc
http://paperpile.com/b/o8ANTm/AFAK
http://paperpile.com/b/o8ANTm/AFAK
http://paperpile.com/b/o8ANTm/Fotg
http://paperpile.com/b/o8ANTm/Fotg
http://paperpile.com/b/o8ANTm/sRz2
http://paperpile.com/b/o8ANTm/sRz2
http://arxiv.org/abs/1304.3674
http://paperpile.com/b/o8ANTm/wM2W
http://paperpile.com/b/o8ANTm/wM2W
http://paperpile.com/b/o8ANTm/CPxL
http://paperpile.com/b/o8ANTm/CPxL
http://ivory.idyll.org/blog/vms-considered-harmful.html
http://paperpile.com/b/o8ANTm/dZOk
http://paperpile.com/b/o8ANTm/dZOk
http://dx.doi.org/10.6084/m9.figshare.1112571
http://paperpile.com/b/o8ANTm/6CaC
http://paperpile.com/b/o8ANTm/6CaC
http://paperpile.com/b/o8ANTm/6CaC
http://paperpile.com/b/o8ANTm/Rz3P
http://paperpile.com/b/o8ANTm/Rz3P
http://domino.research.ibm.com/library/CyberDig.nsf/papers/0929052195DD819C85257D2300681E7B/$File/rc25482.pdf
http://domino.research.ibm.com/library/CyberDig.nsf/papers/0929052195DD819C85257D2300681E7B/$File/rc25482.pdf
http://paperpile.com/b/o8ANTm/qQ7i

36

containers for interchangeable bioinformatics software. Gigascience. 2015;4:47. 1

97. Barton M. nucleotides · genome assembler benchmarking [Internet]. [cited 2015 Nov 20]. 2
Available from: http://nucleotid.es 3

98. Hones MJ. Reproducibility as a Methodological Imperative in Experimental Research. PSA: 4
Proceedings of the Biennial Meeting of the Philosophy of Science Association. Philosophy of Science 5
Association; 1990. p. 585–99. 6

99. Crick T. “ Share and Enjoy ”: Publishing Useful and Usable Scientific Models. Available from: 7
http://arxiv.org/abs/1409.0367v2 8

100. Donoho DL. An invitation to reproducible computational research. Biostatistics. 2010;11:385–9
8. 10

101. Goldberg D. What Every Computer Scientist Should Know About Floating-point Arithmetic. 11
ACM Comput. Surv. New York, NY, USA: ACM; 1991;23:5–48. 12

102. Shirts M, Pande VS. COMPUTING: Screen Savers of the World Unite! Science. 2000;290:1903–4. 13

103. Bird I. Computing for the Large Hadron Collider. Annu. Rev. Nucl. Part. Sci. 2011;61:99–118. 14

104. Anderson DP. BOINC: A System for Public Resource Computing and Storage. Proceedings of the 15
Fifth IEEE/ACM International Workshop on Grid Computing (GRID’04). 2004. 16

105. Ransohoff DF. Bias as a threat to the validity of cancer molecular-marker research. Nat. Rev. 17
Cancer. 2005;5:142–9. 18

106. Bild AH, Chang JT, Johnson WE, Piccolo SR. A field guide to genomics research. PLoS Biol. 19
2014;12:e1001744. 20

107. Ratcliffe S. Concise Oxford Dictionary of Quotations. Oxford University Press; 2011. p. 389. 21

 22

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://paperpile.com/b/o8ANTm/qQ7i
http://paperpile.com/b/o8ANTm/g1e2
http://paperpile.com/b/o8ANTm/g1e2
http://nucleotid.es/
http://paperpile.com/b/o8ANTm/CTWZ
http://paperpile.com/b/o8ANTm/CTWZ
http://paperpile.com/b/o8ANTm/CTWZ
http://paperpile.com/b/o8ANTm/3O0J
http://paperpile.com/b/o8ANTm/3O0J
http://arxiv.org/abs/1409.0367v2
http://paperpile.com/b/o8ANTm/nxFQ
http://paperpile.com/b/o8ANTm/nxFQ
http://paperpile.com/b/o8ANTm/oIOq
http://paperpile.com/b/o8ANTm/oIOq
http://paperpile.com/b/o8ANTm/KBH9
http://paperpile.com/b/o8ANTm/KrW5
http://paperpile.com/b/o8ANTm/5wJ6
http://paperpile.com/b/o8ANTm/5wJ6
http://paperpile.com/b/o8ANTm/gb0y
http://paperpile.com/b/o8ANTm/gb0y
http://paperpile.com/b/o8ANTm/sjkW
http://paperpile.com/b/o8ANTm/sjkW
http://paperpile.com/b/o8ANTm/JE4R

Figure 1 Click here to download Figure Figure_1.jpg

http://www.editorialmanager.com/giga/download.aspx?id=2000&guid=6ebff355-b7ad-41b7-87d3-4f4fc35c5bfc&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=2000&guid=6ebff355-b7ad-41b7-87d3-4f4fc35c5bfc&scheme=1

Figure 2 Click here to download Figure Figure_2.jpg

http://www.editorialmanager.com/giga/download.aspx?id=1999&guid=2b1d950e-ff9a-4416-8ef5-4a9853539712&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=1999&guid=2b1d950e-ff9a-4416-8ef5-4a9853539712&scheme=1

Figure 3 Click here to download Figure Figure_3.jpg

http://www.editorialmanager.com/giga/download.aspx?id=1998&guid=13f85ee5-6d0f-4c40-8af6-7c6e3df17570&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=1998&guid=13f85ee5-6d0f-4c40-8af6-7c6e3df17570&scheme=1

Figure 4 Click here to download Figure Figure_4.jpg

http://www.editorialmanager.com/giga/download.aspx?id=1997&guid=7848bef4-0625-4e45-ac83-225b5faf7c7c&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=1997&guid=7848bef4-0625-4e45-ac83-225b5faf7c7c&scheme=1

Figure 5 Click here to download Figure Figure_5.jpg

http://www.editorialmanager.com/giga/download.aspx?id=1996&guid=532e4231-6bee-46f1-924a-fbe5933247a7&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=1996&guid=532e4231-6bee-46f1-924a-fbe5933247a7&scheme=1

Figure 6 Click here to download Figure Figure_6.jpg

http://www.editorialmanager.com/giga/download.aspx?id=1995&guid=41559ade-ff52-49fc-a2ec-3b1a1802e9b6&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=1995&guid=41559ade-ff52-49fc-a2ec-3b1a1802e9b6&scheme=1

Figure 7 Click here to download Figure Figure_7.jpg

http://www.editorialmanager.com/giga/download.aspx?id=1994&guid=110564e0-0cd2-4b0c-8468-f2d8654a037b&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=1994&guid=110564e0-0cd2-4b0c-8468-f2d8654a037b&scheme=1

Figure 8 Click here to download Figure Figure_8.jpg

http://www.editorialmanager.com/giga/download.aspx?id=1993&guid=31fa7548-95df-434d-9aae-f635d304e642&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=1993&guid=31fa7548-95df-434d-9aae-f635d304e642&scheme=1

GigaScience

Tools and techniques for computational reproducibility
--Manuscript Draft--

Manuscript Number: GIGA-D-16-00020R1

Full Title: Tools and techniques for computational reproducibility

Article Type: Review

Funding Information:

Abstract: When reporting research findings, scientists document the steps they followed so that
others can verify and build upon the research. When those steps have been described
in sufficient detail that others can retrace the steps and obtain similar results, the
research is said to be reproducible. Computers play a vital role in many research
disciplines and present both opportunities and challenges for reproducibility.
Computers can be programmed to execute analysis tasks, and those programs can be
repeated and shared with others. The deterministic nature of most computer programs
means that the same analysis tasks, applied to the same data, will often produce the
same outputs. However, in practice, computational findings often cannot be
reproduced because of complexities in how software is packaged, installed, and
executed—and because of limitations associated with how scientists document
analysis steps. Many tools and techniques are available to help overcome these
challenges; here we describe seven such strategies. With a broad scientific audience
in mind, we describe the strengths and limitations of each approach, as well as the
circumstances under which each might be applied. No single strategy is sufficient for
every scenario; thus we emphasize that it is often useful to combine approaches.

Corresponding Author: Stephen R Piccolo, Ph.D.
Brigham Young University
Provo, UT UNITED STATES

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Brigham Young University

Corresponding Author's Secondary
Institution:

First Author: Stephen R Piccolo, Ph.D.

First Author Secondary Information:

Order of Authors: Stephen R Piccolo, Ph.D.

Michael B Frampton

Order of Authors Secondary Information:

Response to Reviewers: Dear Dr. Edmunds:

We thank you and the reviewers for providing helpful comments on our review article,
“Tools and techniques for computational reproducibility” (GIGA-D-16-00020). We have
edited the manuscript according to the reviewers’ suggestions. We have also added a
reference to several papers that have used a Docker container for their analysis, and
to Eglen, et al., which used knitr. These changes have improved our manuscript.

Below is a point-by-point response to the reviewers’ comments.

Thank you for considering our article. Please let me know if we can answer any
questions you may have.

Warm regards,

Stephen R. Piccolo, PhD
Assistant Professor

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Department of Biology
Brigham Young University
(801) 422-7116
Stephen_Piccolo@byu.edu

** In the point-by-point replies below, the reviewer’s comments are shown first. Our
responses are prefixed by >> characters. **

Reviewer #1 (Titus Brown)

In this paper, Piccolo et al. do a nice (and I think comprehensive?) job of outlining
strategies for computational reproducibility. The point is well made that science is
increasingly dependent on computational reproducibility (and that in theory we should
be able to do computational reproducibility easily and well) and hence we should
explore effective approaches that are actually being used.

I know of no other paper that covers this array of material, and this is a quite nice
exposition that I would recommend to many. I can't evaluate how broadly it will appeal
to a diverse audience but it seems very readable to me.

>> We thank the reviewer for taking time to review our manuscript and for these
positive comments!

This paper is a nice complement to Ten Simple Rules...,
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003285, in that it
is longer, more in depth, and provides more explicit recommendations. It is also more
up to date.

>> Thanks for this comment. Our goal, in part, was to extend beyond what the Ten
Simple Rules… article covers. We cite that article multiple times within our manuscript.

I reviewed this paper previously, and it has been updated in light of my (and other)
reviewers' comments. I was positive about it then, and the revisions are good ;). One
note is that the 'binder' service (http://mybinder.org) should be mentioned as a
harbinger of the future. I have a blog post summary of it here: ivory.idyll.org/blog/2016-
mybinder.html

Signed,
C. Titus Brown
ctbrown@ucdavis.edu

>> Thanks for this suggestion. We have updated the second sentence of the
Discussion section. We mention Binder (and Everware) and describe them as potential
“harbingers of the future.” (I hope it’s OK that we borrowed this phrase from Titus.)

Reviewer #2 (Stephen Eglen)

Summary

This review provides an overview of the main tools and techniques used to ensure
computational reproducibility of results. This review is a good fit to the readership of the
Gigascience journal.

>> We thank the reviewer for taking time to review this manuscript and for these
positive comments!

Overall I found the manuscript to be clearly written and would recommend it for
publication, although I would like the authors to consider the following issues in a
potential revision. In particular, I am most critical about the current set of figures. As a
general comment, where possible, the material in the figures should be supported by

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

online files (e.g. knitr, Docker) so that the reader can immediately get workable
examples to examine, run and amend.

>> We have addressed these comments below. We now provide executable files to
complement Figures 1-4. We have included these in the supplementary material. We
have also improved these materials based on the reviewer’s comments.

Detailed comments

p4, l2 (page 4, line 2): an extra citation might be (Gronenschild et al. 2012) which
showed that even the choice of operating system or neuroimaging software version
affects results.

>> We have added this citation at the suggested location.

p4, l18-20: as far as I am aware, journals do not encourage direct use of repositories
like github or bitbucket because they offer no long-term storage. It is regarded much
more appropriate to use permanent URLS (e.g. DOIs) to point to archived versions of
software, such as zenodo. We have written elsewhere on this topic (Eglen et al. 2016).

>> We have updated this text so that it no longer mentions GitHub and Bitbucket as
examples of storage locations for archived versions of code. Now we mention Zenodo
and figshare as services that provide permanent DOIs.

p6, l10: in addition to the other topics of reproducibility and education, it would be worth
mentioning education/training to encourage users to adopt reproducible practices
(Wilson 2016).

>> We have added a reference to Wilson 2016 and have mentioned “education about
reproducibility” as a topic that is covered elsewhere.

p6, l15: minor point, but perhaps worth numbering the seven sections that describe the
seven
approaches reviewed, starting here.

>> We have numbered these sections as an aid to the reader.

p8, l17: “Make can be configured”; if you are referring to the “-j N” switch, then it is
simpler to say that “Make can automatically identify. . . ” as there is no extra
configuration needed.

>> We have made this change to the text. Thanks for pointing it out.

p11 l9: reference 53 at the end of the sentence is not needed, as you refer to it at the
start of the
sentence.

>> We have removed this citation at the end of the sentence.

p13, l3-9: you should probably mention http://mybinder.org in this section. It provides a
transparent method for interacting with Jupyter documents over the web (Rosenberg
and Horn 2016).

>> Thanks for this suggestion. We have updated the second sentence of the
Discussion section. We mention Binder (and Everware, a similar service) and cite the
paper by Rosenberg and Horn.

p14, l2: I disagree slightly here with the view re: long-running jobs. knitr at least can
cache
intermediate computations transparently which helps enormously.

>> We have modified this paragraph to indicate that long-running notebooks can be
executed at the command line.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

p14, l8: Do you have examples of Dexy in use within this field? Asking this also in a
more general way, it might be worth making a table listing examples explicitly of each
of the seven approaches, so that they are easy to find.

>> We haven’t found any substantive examples where Dexy is used in a biology-
focused study. We have included it more as an indicator that alternative literate
programming environments may be useful in cases where Juptyer and knitr are not
suitable.

>> Although it may be useful to add a table that lists examples where each of the
seven methods is used, we have cited various such studies throughout the text. We
hope these references will provide useful examples, but we wish to avoid putting too
much emphasis on any individual study.

p18, l18: I do not see why the VMs are “black boxes”. Surely to create the VM all the
relevant
code must be provided, so that you can at least examine what is done, or extend the
analysis (as mentioned on l20). Can you clarify what you mean here.

>> We have rewritten this paragraph to clarify our points. Our goal was to emphasize
the importance of providing easy access to scripts and code that are used within a
virtual machine for an analysis. Although it would be possible for other scientists to
examine the full contents of a virtual machine, it is less convenient (and perhaps less
transparent). So we encourage the idea of storing these scripts and code in a public
repository, separate from the virtual machine. C. Titus Brown (reviewer #1) has also
emphasized this point on his blog, which we cite: http://ivory.idyll.org/blog/vms-
considered-harmful.html.

p22, l1: as well as capturing software in Docker, we have used it recently to capture the
entire
environment to write our research papers in knitr
(https://hub.docker.com/r/sje30/eglen2015/
and https://hub.docker.com/r/sje30/waverepo/).

>> Thanks for pointing to these. We now cite these papers as examples of enabling
others to execute analyses described in research papers.

p22, l14-19: I found the section about other operating systems (Windows/mac) rather
clumsy.
From the user’s perspective, the modern docker toolbox seems to work smoothly
enough (at least on macs) that the details at the end of p22 seem irrelevant. It might
instead be worth mentioning that docker builds can be automatically triggered, e.g.
upon new commits to github.

>> Thanks for this suggestion. Indeed, the Docker toolbox has been updated recently
so that it is much more convenient to install and execute Docker on non-Linux
machines. We have simplified the text accordingly. We have also clarified that the
overhead of using a virtual machine to execute Docker containers on Windows or Mac
operating systems offsets some of the performance benefits of containers.

p 23, l6: “Scientific advancement requires trust.” I think trust is the wrong word here.
e.g. The Royal Society’s motto ‘Nullius in verba’ is taken to mean ‘take nobody’s word
for it’
(https://royalsociety.org/about-us/history/). Rather, what these tools do is promote
transparency
to reduce the barriers for others to repeat prior work. With this in mind, I’d suggest the
authors
re-read this first paragraph of the discussion to see whether they think “trust” is what
they are
promoting here.

>> Thanks for this insight. We have revised the first paragraph of the Discussion
section. It no longer uses the word “trust” but instead focuses on the ideas of explicitly
documenting research steps and being transparent about the way those steps are

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

shared.

Figures

Figure 1: is this really needed in such a review? I don’t think it adds anything.

>> After considering this feedback, we agree that this figure is not needed, and we
have removed it from the manuscript.

Figure 2: I think should be provided as a text file so that people can run it for
themselves.

>> We now provide a text version of this script as a supplementary file.

Figure 3: Text file definitely needed so people can run it for themselves. But also I’d
consider
making the targets a bit more specific. All of the targets in this example Makefile are
PHONY and perhaps it could be rewritten in the more canonical Makefile style? The
way it is currently written, it is hard to see how this differs from a shell script. (Each
time make all is run, won’t the files be downloaded again?)

>> Thanks for pointing this out. We have modified the example Makefile so that it
follows a more conventional style. Now it will only download the files (and execute the
other steps) one time (if the steps executed successfully). In addition, we now provide
a text version as a supplementary file.

Figure 4: can you show something that is a bit more bio-relevant, e.g. some genomic
analysis?

>> We have updated this figure so that it shows a plot of simulated gene-expression
data.

Figure 5: as figure 4. Can you design Figure 4 and 5 carefully to highlight the
differences between knitr and jupyter?

>> We have updated this figure so it also shows a plot simulated-gene expression
data. We are unsure which differences between knitr and Jupyter that the reviewer
would like us to point out. However, we believe the updated figures show a more
distinct difference between the two.

Figure 6-8: I would suggest you drop these. They show the notion of stacks and
containers, but
most bioscientists won’t get much value from them.

>> We respect the reviewer’s point of view; however, given feedback from scientists
who have read our preprint, we feel that some scientists will benefit from these figures.
Thus we prefer to retain them.

References

Eglen, Stephen, Ben Marwick, Yaroslav Halchenko, Michael Hanke, Shoaib Sufi,
Padraig Gleeson, R Angus Silver, et al. 2016. “Towards Standard Practices for Sharing
Computer Code and Programs in Neuroscience.” BioRxiv. doi:10.1101/045104.

Gronenschild, Ed H B M, Petra Habets, Heidi I L Jacobs, Ron Mengelers, Nico
Rozendaal, Jim van Os, and Machteld Marcelis. 2012. “The Effects of FreeSurfer
Version, Workstation Type, and Macintosh Operating System Version on Anatomical
Volume and Cortical Thickness Measurements.” PLoS One 7 (6): e38234.
doi:10.1371/journal.pone.0038234.

Rosenberg, David M, and Charles C Horn. 2016. “Neurophysiological Analytics for All!
Free OpenSource Software Tools for Documenting, Analyzing, Visualizing, and
Sharing Using Electronic Notebooks.” J. Neurophysiol., 20~apr, jn.00137.2016.
doi:10.1152/jn.00137.2016.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Wilson, Greg. 2016. “Software Carpentry: Lessons Learned.” F1000Res. 3 (28~jan).
doi:10.12688/f1000research.3-62.v2.

Additional Information:

Question Response

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

No

If not, please give reasons for any
omissions below.

 as follow-up to "Experimental design
and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

"

It is a review article.

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

No

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

http://gigasciencejournal.com/authors/instructions/minimum_standards_reporting
http://gigasciencejournal.com/authors/instructions/minimum_standards_reporting
https://scicrunch.org/resources
https://scicrunch.org/resources
http://gigasciencejournal.com/authors/instructions/minimum_standards_reporting
http://gigasciencejournal.com/authors/instructions/minimum_standards_reporting

If not, please give reasons for any
omissions below.

 as follow-up to "Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

"

It is a review article.

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

No

If not, please give reasons for any
omissions below.

 as follow-up to "Availability of data and
materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum

It is a review article.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://scicrunch.org/resources
https://scicrunch.org/resources
http://gigasciencejournal.com/authors/instructions/minimum_standards_reporting
http://gigasciencejournal.com/authors/instructions/minimum_standards_reporting
http://www.biomedcentral.com/about/editorialpolicies#DataandMaterialRelease
http://gigasciencejournal.com/authors/instructions/minimum_standards_reporting
http://gigasciencejournal.com/authors/instructions/minimum_standards_reporting
http://www.biomedcentral.com/about/editorialpolicies#DataandMaterialRelease
http://gigasciencejournal.com/authors/instructions/minimum_standards_reporting

Standards Reporting Checklist?

"

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

http://gigasciencejournal.com/authors/instructions/minimum_standards_reporting

1

Tools and techniques for computational reproducibility

Stephen R. Piccolo1*, Michael B. Frampton2

1Department of Biology, Brigham Young University, Provo, UT, USA

2Department of Computer Science, Brigham Young University, Provo, UT, USA

* Corresponding author

4102 LSB

Brigham Young University

Provo

UT 84602

USA

Telephone: +1 801-422-7116

Email: stephen_piccolo@byu.edu

Twitter: @stevepiccolo

ORCID: 0000-0003-2001-5640

Revised Manuscript Click here to download Manuscript
Piccolo_Manuscript_Gigascience_v2_edit_sp.docx

Click here to view linked References
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

mailto:stephen_piccolo@byu.edu
http://www.editorialmanager.com/giga/download.aspx?id=2657&guid=cd6a7872-c629-496d-846f-1c699eb9099a&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=2657&guid=cd6a7872-c629-496d-846f-1c699eb9099a&scheme=1
http://www.editorialmanager.com/giga/viewRCResults.aspx?pdf=1&docID=150&rev=1&fileID=2657&msid={E2D25FAF-3A51-49E0-AA23-C8A1CB374AF8}

2

Abstract

When reporting research findings, scientists document the steps they followed so that

others can verify and build upon the research. When those steps have been described in

sufficient detail that others can retrace the steps and obtain similar results, the research is

said to be reproducible. Computers play a vital role in many research disciplines and

present both opportunities and challenges for reproducibility. Computers can be

programmed to execute analysis tasks, and those programs can be repeated and shared

with others. The deterministic nature of most computer programs means that the same

analysis tasks, applied to the same data, will often produce the same outputs. However, in

practice, computational findings often cannot be reproduced because of complexities in

how software is packaged, installed, and executed—and because of limitations associated

with how scientists document analysis steps. Many tools and techniques are available to

help overcome these challenges; here we describe seven such strategies. With a broad

scientific audience in mind, we describe the strengths and limitations of each approach, as

well as the circumstances under which each might be applied. No single strategy is

sufficient for every scenario; thus we emphasize that it is often useful to combine

approaches.

Keywords: Computational reproducibility; Practice of science; Literate programming;

Virtualization; Software containers; Software frameworks

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

3

Introduction

When reporting research, scientists document the steps they followed to obtain their

results. If the description is comprehensive enough that they and others can repeat the

procedures and obtain semantically consistent results, the findings are considered to be

“reproducible” [1–6]. Reproducible research forms the basic building blocks of science,

insofar as it allows researchers to verify and build on each other's work with confidence.

Computers play an increasingly important role in many scientific disciplines [7–10]. For

example, in the United Kingdom, 92% of academic scientists use some type of software in

their research, and 69% of scientists say their research is feasible only with software tools

[11]. Thus efforts to increase scientific reproducibility should consider the ubiquity of

computers in research.

Computers present both opportunities and challenges for scientific reproducibility. On one

hand, the deterministic nature of most computer programs means that identical results can

be obtained from many computational analyses applied to the same input data [12].

Accordingly, computational research can be held to a high reproducibility standard. On the

other hand, even when no technical barrier prevents reproducibility, scientists often

cannot reproduce computational findings because of complexities in how software is

packaged, installed, and executed—and because of limitations associated with how

scientists document these steps [13]. This problem is acute in many disciplines, including

genomics, signal processing, and ecological modeling [14–16], which have large data sets

and rapidly evolving computational tools. However, the same problem can affect any

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/fMuq+769f+4yT3+FZIl+guxx+PV3y
https://paperpile.com/c/o8ANTm/s2Yw+1XjS+FbU6+6Tvu
https://paperpile.com/c/o8ANTm/S75W
https://paperpile.com/c/o8ANTm/S75W
https://paperpile.com/c/o8ANTm/OcDb
https://paperpile.com/c/o8ANTm/Crmz
https://paperpile.com/c/o8ANTm/pPaq+rUWE+kX1r

4

scientific discipline requiring computers for research. Seemingly minor differences in

computational approaches can have major influences on analytical outputs [12, 17–22],

and the effects of these differences may exceed those resulting from experimental factors

[23].

Journal editors, funding agencies, governmental institutions, and individual scientists have

increasingly made calls for the scientific community to embrace practices to support

computational reproducibility [24–31]. This movement has been motivated, in part, by

scientists’ failed efforts to reproduce previously published analyses. For example, Ioannidis

et al. evaluated 18 published research studies that used computational methods to evaluate

gene expression data, but they were able to reproduce only two of those studies [32]. In

many cases, the culprit was a failure to share the study’s data; however, incomplete

descriptions of software-based analyses were also common. Nekrutenko and Taylor

examined 50 papers that analyzed next-generation sequencing data and observed that

fewer than half provided any details about software versions or parameters [33].

Recreating analyses that lack such details can require hundreds of hours of effort [34] and

may be impossible, even after consulting the original authors. Failure to reproduce

research may also lead to careerist effects, including retractions [35].

Noting such concerns, some journals have emphasized the value of placing computer code

in open access repositories. It is most useful when scientists provide direct access to an

archived version of the code via a uniform resource locator (URL). For example, Zenodo.org

and figshare.com provide permanent digital object identifiers (DOI) that can link to

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/OcDb+MdsL+7Uhe+Oj8J+VBL0+VN7F+N9kJ
https://paperpile.com/c/o8ANTm/3JwD
https://paperpile.com/c/o8ANTm/3JwD
https://paperpile.com/c/o8ANTm/VqOb+CoLN+MT7f+HswK+aRzQ+OQpF+dt7d+vwr8
https://paperpile.com/c/o8ANTm/WAFW
https://paperpile.com/c/o8ANTm/M0G0
https://paperpile.com/c/o8ANTm/Q9BC
https://paperpile.com/c/o8ANTm/vnMu

5

software code (and other digital objects) used in publications. In addition, some journals

have extended requirements for “Methods” sections, now asking researchers to provide

detailed descriptions of 1) how to install software and its dependencies, and 2) what

parameters and data preprocessing steps are used in analyses [10, 24]. A 2012 Institute of

Medicine report emphasized that, in addition to computer code and research data, “fully

specified computational procedures” should be made available to the scientific community

[25]. The report’s authors elaborated that such procedures should include “all of the steps

of computational analysis”, and that “all aspects of the analysis need to be transparently

reported” [25]. Such policies represent important progress. However, it is ultimately the

responsibility of individual scientists to ensure that others can verify and build upon their

analyses.

Describing a computational analysis sufficiently—such that others can re-execute, validate,

and refine it—requires more than simply stating what software was used, what commands

were executed, and where to find the source code [13, 27, 36–38]. Software is executed

within the context of an operating system (for example, Windows, Mac OS, or Linux), which

enables the software to interface with computer hardware. In addition, most software

relies on a hierarchy of software dependencies, which perform complementary functions

and must be installed alongside the main software tool. One version of a given software

tool or dependency may behave differently or have a different interface than another

version of the same software. In addition, most analytical software offers a range of

parameters (or settings) that the user can specify. If any of these variables differs from

those used by the original experimenter, the software may not execute properly or

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/6Tvu+VqOb
https://paperpile.com/c/o8ANTm/CoLN
https://paperpile.com/c/o8ANTm/CoLN
https://paperpile.com/c/o8ANTm/CoLN
https://paperpile.com/c/o8ANTm/Crmz+HswK+Espr+RNY8+oAuw

6

analytical outputs may differ considerably from those observed by the original

experimenter.

Scientists can use various tools and techniques to overcome these challenges and to

increase the likelihood that their computational analyses will be reproducible. These

techniques range in complexity from simple (e.g., providing written documentation) to

advanced (e.g., providing a virtual environment that includes an operating system and all

the software necessary to execute the analysis). This review describes seven strategies

across this spectrum. We describe many of the strengths and limitations of each approach,

as well as the circumstances under which each might be applied. No single strategy will be

sufficient for every scenario; therefore, in many cases, it will be most practical to combine

multiple approaches. This review focuses primarily on the computational aspects of

reproducibility. The related topics of empirical reproducibility, statistical reproducibility,

data sharing, and education about reproducibility have been described elsewhere [39–46].

We believe that with greater awareness and understanding of computational

reproducibility techniques, scientists—including those with limited computational

experience—will be more apt to perform computational research in a reproducible

manner.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/RLQS+0Kzb+MMll+Awlf+Hm55+ySva+thVl+ZzE1

7

1. Narrative descriptions are a simple but valuable way to support

computational reproducibility

The most fundamental strategy for enabling others to reproduce a computational analysis

is to provide a detailed, written description of the process. For example, when reporting

computational results in a research article, authors customarily provide a narrative that

describes the software they used and the analytical steps they followed. Such narratives

can be invaluable in enabling others to evaluate the scientific approach and to reproduce

the findings. In many situations—for example, when software execution requires user

interaction or when proprietary software is used—narratives are the only feasible option

for documenting such steps. However, even when a computational analysis uses open-

source software and can be fully automated, narratives help others understand how to re-

execute an analysis.

Although most articles about research that uses computational methods provide some type

of narrative, these descriptions often lack sufficient detail to enable others to retrace those

steps [32, 33]. Narrative descriptions should indicate the operating system(s), software

dependencies, and analytical software that were used, and how to obtain them. In addition,

narratives should indicate the exact software versions used, the order in which they were

executed, and all non-default parameters that were specified. Such descriptions should

account for the fact that computer configurations can differ vastly, even for computers with

the same operating system. Because it can be difficult for scientists to remember such

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/WAFW+M0G0

8

details after the fact, it is best to record this information throughout the research process,

rather than at the time of manuscript preparation [8].

The following sections describe techniques for automating computational analyses. These

techniques can diminish the need for scientists to write narratives. However, because it is

often impractical to automate all computational steps, we expect that, for the foreseeable

future, narratives will play a vital role in enabling computational reproducibility.

2. Custom scripts and code can automate research analysis

Scientific software can often be executed in an automated manner via text-based

commands. Using such commands—via a command-line interface—scientists can indicate

the software program(s) to be executed and which parameter(s) should be used. When

multiple commands must be executed, they can be compiled into scripts specifying the

order in which the commands should be executed (Figure 1; Additional file 1). In many

cases, scripts also include commands for installing and configuring software. Such scripts

serve as valuable documentation not only for individuals who wish to re-execute the

analysis, but also for the researcher who performed the original analysis [47]. In these

cases, no amount of narrative is an adequate substitute for providing the actual commands

that were used.

When writing command-line scripts, it is essential to explicitly document any software

dependencies and input data that are required for each step in the analysis. The Make

utility [114] provides one way to specify such requirements [36]. Before any command is

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/1XjS
https://paperpile.com/c/o8ANTm/GIVf
https://paperpile.com/c/o8ANTm/Espr

9

executed, Make verifies that each documented dependency is available. Accordingly,

researchers can use Make files (scripts) to specify a full hierarchy of operating system

components and dependent software that must be present to perform the analysis (Figure

2; Additional file 2). In addition, Make can automatically identify any commands that can be

executed in parallel, potentially reducing the amount of time required for the analysis.

Although Make was originally designed for UNIX-based operating systems (such as Mac OS

or Linux), similar utilities have since been developed for Windows operating systems

[116]. Box 1 lists various utilities that can be used to automate software execution.

Box 1. Utilities that can be used to automate software execution

● GNU Make and Make for Windows: tools for building software from source files

and for ensuring that the software’s dependencies are met.

● Snakemake [48]: an extension of Make that provides a more flexible syntax and

makes it easier to execute tasks in parallel.

● BPipe [49]: a tool that provides a flexible syntax for users to specify commands to

be executed; it maintains an audit trail of all commands that have been executed.

● GNU Parallel [50]: a tool for executing commands in parallel across one or more

computers.

● Makeflow [51]: a tool that can execute commands simultaneously on various

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/PNzo
https://paperpile.com/c/o8ANTm/m42U
https://paperpile.com/c/o8ANTm/MAX5
https://paperpile.com/c/o8ANTm/G9vT

10

types of computer architectures, including computer clusters and cloud

environments.

● SCONS [52]: an alternative to GNU Make that enables users to customize the

process of building and executing software using scripts written in the Python

programming language.

● CMAKE.org: a tool that enables users to execute Make scripts more easily on

multiple operating systems.

As well as creating scripts to execute existing software, many researchers also create new

software by writing computer code in a programming language such as Python, C++, Java,

or R. Such code may perform relatively simple tasks, such as reformatting data files or

invoking third-party software. In other cases, computer code may constitute a manuscript’s

key intellectual contribution.

Whether analysis steps are encoded in scripts or as computer code, scientists can support

reproducibility by publishing these artifacts alongside research papers. By doing so,

authors enable readers to evaluate the analytical approach in full detail and to extend the

analysis more readily [53]. Although scripts and code may be included alongside a

manuscript as supplementary material, a better alternative is to store them in a public

repository with a permanent URL. It is often also useful to store code in a version control

system (VCS) [8, 9, 47], and to share it via Web-based services like GitHub.com or

Bitbucket.org [54]. With such a VCS repository, scientists can track the different versions of

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/iaom
https://paperpile.com/c/o8ANTm/MVy3
%20%5b8,%209,%2047%5d
https://paperpile.com/c/o8ANTm/U5fg

11

scripts and code that have been developed throughout the evolution of the research

project. In addition, outside observers can see the full version history, contribute revisions

to the code, and reuse the code for their own purposes [55]. When submitting a

manuscript, the authors may “tag” a specific version of the repository that was used for the

final analysis described in the manuscript.

3. Software frameworks enable easier handling of software

dependencies

Virtually all computer scripts and code relies on external software dependencies and

operating system components. For example, suppose a research study required a scientist

to apply Student’s t-test. Rather than write code to implement this statistical test, the

scientist would likely find an existing software library that implements the test and then

invoke that library from their code. Much time can be saved with this approach, and a wide

range of software libraries are freely available. However, software libraries change

frequently; invoking the wrong version of a library may result in an error or an unexpected

output. Thus, to enable others to reproduce an analysis, it is critical to indicate which

dependencies (and versions thereof) must be installed.

One way to address this challenge is to build on a pre-existing software framework, which

makes it easier to access software libraries that are commonly used to perform specific

types of analysis task. Typically, such frameworks also make it easier to download and

install software dependencies, and to ensure that the versions of software libraries and

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/BGKk

12

their dependencies are compatible with each other. For example, Bioconductor [56],

created for the R statistical programming language [57], is a popular framework that

contains hundreds of software packages for analyzing biological data. The Bioconductor

framework facilitates versioning, documenting, and distributing code. Once a software

library has been incorporated into Bioconductor, other researchers can find, download,

install, and configure it on most operating systems with relative ease. In addition,

Bioconductor installs software dependencies automatically. These features ease the

process of performing an analysis, and can help with reproducibility. Various software

frameworks exist for other scientific disciplines [58–63]. General purpose tools for

managing software dependencies also exist, for example, Apache Ivy [116] and Puppet

[117].

To best support reproducibility, software frameworks should make it easy for scientists to

download and install previous versions of a software tool, as well as previous versions of

dependencies. Such a design enables other scientists to reproduce analyses that were

conducted with previous versions of a software framework. In the case of Bioconductor,

considerable extra work may be required to install specific versions of Bioconductor

software and their dependencies. To overcome these limitations, scientists may use a

software container or virtual machine to package together the specific versions they used

in an analysis. Alternatively, they might use third-party solutions such as the aRchive

project [118].

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/Wlzo
https://paperpile.com/c/o8ANTm/Dxef
https://paperpile.com/c/o8ANTm/TLyn+EH7K+gLzl+MJ0J+76D6+iK3Z

13

4. Literate programming combines narratives with code

Although narratives, scripts, and computer code individually support reproducibility, there

is additional value in combining these entities. Even though a researcher may provide

computer code alongside a research paper, other scientists may have difficulty interpreting

how the code accomplishes specific tasks. A longstanding way to address this problem is

via code comments: human-readable annotations interspersed throughout computer code.

However, code comments and other types of documentation often become outdated as

code evolves throughout the analysis process [64]. One way to overcome this problem is to

use a technique called literate programming [65]. In this approach, the scientist writes a

narrative of the scientific analysis and intermingles code directly within the narrative. As

the code is executed, a document is generated that includes the code, narratives, and any

outputs (e.g., figures, tables) of the code. Accordingly, literate programming helps ensure

that readers understand exactly how a particular research result was obtained. In addition,

this approach motivates the scientist to keep the target audience in mind when performing

a computational analysis, rather than simply to write code that a computer can parse [65].

Consequently, by reducing barriers of understanding among scientists, literate

programming can help to engender greater trust in computational findings.

One popular literate programming tool is Jupyter [66]. Using Jupyter.org’s Web-based

interface, scientists can create interactive “notebooks” that combine code, data,

mathematical equations, plots, and rich media [67]. Originally known as IPython, and

previously designed exclusively for the Python programming language, Jupyter now makes

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/lJN5
https://paperpile.com/c/o8ANTm/XgiF
https://paperpile.com/c/o8ANTm/XgiF
https://paperpile.com/c/o8ANTm/RShH
https://paperpile.com/c/o8ANTm/BBfB

14

it possible to execute code in many different programming languages. Such functionality

may be important to scientists who prefer to combine the strengths of different

programming languages.

knitr [68] has also gained considerable popularity as a literate programming tool. It is

written in the R programming language, and thus can be integrated seamlessly with the

array of statistical and plotting tools available in that environment. However, like Jupyter,

knitr can execute code written in multiple programming languages. Commonly, knitr is

applied to documents that have been authored using RStudio [69], an open-source tool

with advanced editing and package management features.

Jupyter notebooks and knitr reports can be saved in various output formats, including

hypertext markup language (HTML) and portable document format (PDF; see examples in

Figures 3 and 4; Additional files 3 and 4). Increasingly, scientists include such documents

as supplementary materials to journal manuscripts, enabling others to repeat analysis

steps and recreate manuscript figures [70–73].

Scientists typically use literate programming tools for data analysis tasks that can be

executed interactively, in a modest amount of time (e.g., minutes or hours). However, it is

possible to execute Jupyter or knitr at the command line; thus longer running tasks can be

executed on high-performance computers.

Literate programming notebooks are suitable for research analyses that require a modest

amount of computer code. For analyses needing larger amounts of code, more advanced

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/jkFM
https://paperpile.com/c/o8ANTm/PnOW
https://paperpile.com/c/o8ANTm/QjlF+9URt+WFGg+Ickb

15

programming environments may be more suitable, perhaps in combination with a “literate

documentation” tool such as Dexy.it.

5. Workflow management systems enable software to be executed via a

graphical user interface

Writing computer scripts and code seems daunting to many researchers. Although various

courses and tutorials are helping to make this task less formidable [46, 74–76], many

scientists use “workflow management systems” to facilitate the execution of scientific

software [77]. Typically managed via a graphical user interface, workflow management

systems enable scientists to upload data and process them using existing tools. For

multistep analyses, the output from one tool can be used as input to additional tools,

resulting in a series of commands known as a workflow.

Galaxy [78, 79] has gained considerable popularity within the bioinformatics community,

especially for performing next-generation sequencing analysis. As users construct

workflows, Galaxy provides descriptions of how software parameters should be used,

examples of how input files should be formatted, and links to relevant discussion forums.

To help with processing large data sets and computationally complex algorithms, Galaxy

also provides an option to execute workflows on cloud-computing services [80]. In

addition, researchers can share workflows with each other at UseGalaxy.org; this feature

has enabled the Galaxy team to build a community that encourages reproducibility, helps

define best practices, and reduce the time required for novices to get started.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/YBDz+ZzE1+pCdH+Rklv
https://paperpile.com/c/o8ANTm/m2CK
https://paperpile.com/c/o8ANTm/qjzv+fyQT
https://paperpile.com/c/o8ANTm/FgIP

16

Various other workflow systems are freely available to the research community (see Box

2). For example, VisTrails.org is used by researchers from many disciplines, including

climate science, microbial ecology, and quantum mechanics [81]. It enables scientists to

design visual workflows, and connect data inputs with analytical modules and the resulting

outputs. In addition, VisTrails tracks a full history of how each workflow was created. This

capability, referred to as “retrospective provenance”, makes it possible for others to not

only reproduce the final version of an analysis, but also to examine previous incarnations of

the workflow and how each change influenced the analytical outputs [82].

Box 2: Workflow management tools freely available to the research community.

● Galaxy [78, 79]

● VisTrails [81]

● Kepler-project.org [83]

● CyVerse.org (formerly known as The iPlant Collaborative) [84]

● GenePattern [85, 86, 119]

● Taverna.org.uk [87]

● LONI Pipeline [88, 120]

Although workflow management systems offer many advantages, users must accept

tradeoffs. For example, although the teams that develop these tools often provide public

servers where users can execute workflows, many scientists share these resources, limiting

the computational power or storage space available to execute large-scale analyses in a

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/SiRU
https://paperpile.com/c/o8ANTm/8e9D
https://paperpile.com/c/o8ANTm/qjzv+fyQT
https://paperpile.com/c/o8ANTm/SiRU
https://paperpile.com/c/o8ANTm/KfQh
https://paperpile.com/c/o8ANTm/V6Bm
https://paperpile.com/c/o8ANTm/EsWp+gZPd
https://paperpile.com/c/o8ANTm/Pvtw
https://paperpile.com/c/o8ANTm/0xpK

17

timely manner. As an alternative, many scientists install these systems on their own

computers; however, configuring and supporting them requires time and expertise. In

addition, if a workflow tool does not yet provide a module to support a given analysis, the

scientist must create one. This task constitutes additional overheads; however, utilities

such as the Galaxy Tool Shed [89] are helping to facilitate this process.

6. Virtual machines encapsulate an entire operating system and software

dependencies

Whether within a literate programming notebook, or via a workflow management system,

an operating system and relevant software dependencies must be installed before an

analysis is executed. The process of identifying, installing, and configuring such

dependencies consumes a considerable amount of scientists’ time. Different operating

systems (and versions thereof) may require different installation and configuration steps.

Furthermore, earlier versions of software dependencies, which may currently be installed

on a given computer, may be incompatible with—or produce different outputs than—

newer versions.

One solution is to use virtual machines, which can encapsulate an entire operating system

and all software, scripts, code, and data necessary to execute a computational analysis [90,

91] (Figure 5). Using virtualization software such as VirtualBox or VMWare (see Box 3), a

virtual machine can be executed on practically any desktop, laptop, or server, irrespective

of the main (“host”) operating system on the computer. For example, even though a

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/i7gc
https://paperpile.com/c/o8ANTm/AFAK+Fotg
https://paperpile.com/c/o8ANTm/AFAK+Fotg

18

scientist’s computer may be running a Windows operating system, they may perform an

analysis on a Linux operating system that is running concurrently—within a virtual

machine—on the same computer. The scientist has full control over the virtual (“guest”)

operating system, and thus can install software and modify configuration settings as

necessary. In addition, a virtual machine can be constrained to use specific amounts of

computational resources (e.g., computer memory, processing power), thus enabling system

administrators to ensure that multiple virtual machines can be executed simultaneously on

the same computer without impacting each other’s performance. After executing an

analysis, the scientist can export the entire virtual machine to a single, binary file. Other

scientists can then use this file to reconstitute the same computational environment that

was used for the original analysis. With a few exceptions (see Discussion), these scientists

will obtain exactly the same results as the original scientist. This process provides the

added benefits that 1) the scientist must only document the installation and configuration

steps for a single operating system, 2) other scientists need only install the virtualization

software and not individual software components, and 3) analyses can be re-executed

indefinitely, so long as the virtualization software remains compatible with current

computer systems [92]. The fact that a team of scientists can employ virtual machines to

ensure that each team member has the same computational environment is also useful

because team members may have different configurations on their host operating systems.

One criticism of using virtual machines to support computational reproducibility is that

virtual machine files are large (typically multiple gigabytes), especially if they include raw

data files. This imposes a barrier for researchers to share virtual machines with the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/sRz2

19

research community. One option is to use cloud-computing services (see Box 4). Scientists

can execute an analysis in the cloud, take a “snapshot” of their virtual machine, and share it

with others in that environment [90, 93]. Cloud-based services typically provide

repositories where virtual machine files can easily be stored and shared among users.

Despite these advantages, some researchers may prefer their data to reside on local

computers, rather than in the cloud—at least while the research is being performed. In

addition, cloud-based services may use proprietary software, so virtual machines may only

be executable within each provider’s infrastructure. Furthermore, to use a cloud service

provider, scientists may need to activate a fee-based account.

When using virtual machines to support reproducibility, it is important that other scientists

can not only re-execute the analysis, but also examine the scripts and code used within the

virtual machine [94]. Although it is possible for others to examine the contents of a virtual

machine directly, it is preferable to store the scripts and code in public repositories—

separately from the virtual machine—so others can examine and extend the analysis more

easily [95]. In addition, scientists can use a virtual machine that has been prepackaged for a

particular research discipline. For example, CloudBioLinux contains a variety of

bioinformatics tools commonly used by genomics researchers [96]. The scripts for building

this virtual machine are stored in a public repository [121].

Scientists can automate the process of building and configuring virtual machines using

tools such as Vagrant or Vortex (see Box 3). For either tool, users can write text-based

configuration files that provide instructions for building virtual machines and allocating

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/AFAK+wM2W
https://paperpile.com/c/o8ANTm/CPxL
https://paperpile.com/c/o8ANTm/dZOk
https://paperpile.com/c/o8ANTm/6CaC

20

computational resources to them. In addition, these configuration files can be used to

specify analysis steps [95]. Because these files are text based and relatively small (usually a

few kilobytes), scientists can share them easily and track different versions of the files via

source control repositories. This approach also mitigates problems that might arise during

the analysis stage. For example, even when a computer’s host operating system must be

reinstalled because of a computer hardware failure, the virtual machine can be recreated

with relative ease.

Box 3: Virtual machine software.

Virtualization hypervisors:

● VirtualBox.org (open source)

● XenProject.org (open source)

● VMWare.com (partially open source)

Virtual machine management tools:

● VagrantUP.com (open source)

● Vortex (open source) [122]

Box 4: Commercial cloud-service providers.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/dZOk

21

● Amazon Web Services [123]

● Rackspace.com/Cloud

● Google Cloud Platform [124]

● Windows Azure [125]

7. Software containers ease the process of installing and configuring

dependencies

Software containers are a lighter weight alternative to virtual machines. Like virtual

machines, containers encapsulate operating system components, scripts, code, and data

into a single package that can be shared with others. Thus, as with virtual machines,

analyses executed within a software container should produce identical outputs,

irrespective of the underlying operating system or the software that may be installed

outside the container (see Discussion for caveats). As is true for virtual machines, multiple

containers can be executed simultaneously on a single computer, and each container may

contain different software versions and configurations. However, whereas virtual machines

include an entire operating system, software containers interface directly with the

computer's main operating system and extend it as needed (Figure 6). This design provides

less flexibility than virtual machines because containers are specific to a given type of

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

22

operating system; however, containers require considerably less computational overhead

than virtual machines, and can be initialized much more quickly [97].

The open source Docker.com utility, which has gained popularity among informaticians

since its release in 2013, provides the ability to build, execute, and share software

containers for Linux-based operating systems. Users specify a Docker container’s contents

using text-based commands. These instructions can be placed in a “Dockerfile”, which other

scientists can use to rebuild the container. As with virtual machine configuration files,

Dockerfiles are text based, so they can be shared easily, and can be tracked and versioned

in source control repositories. Once a Docker container has been built, its contents can be

exported to a binary file; these files are generally smaller than virtual machine files, so they

can be shared more easily—for example, via hub.Docker.com.

A key feature of Docker containers is that their contents can be stacked in distinct layers

(or “images”). Each image includes software components to address a particular need.

Within a given research lab, scientists might create general purpose images to support

functionality for multiple projects, and specialized images to address the needs of specific

projects. An advantage of Docker’s modular design is that when images within a container

are updated, Docker only needs to track the specific components that have changed; users

who wish to update to a newer version must download a relatively small update. In

contrast, even a minor change to a virtual machine would require users to export and

reshare the entire virtual machine.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/Rz3P

23

Scientists have begun to share Docker images that enable others to execute analyses

described in research papers [98–100], and to facilitate benchmarking efforts among

researchers in a given subdiscipline. For example, nucleotid.es is a catalog of genome-

assembly tools that have been encapsulated in Docker images [101, 102]. Genome

assembly tools differ considerably in the dependencies they require, and in the parameters

they support. This project provides a means to standardize these assemblers, circumvent

the need to install dependencies for each tool, and perform benchmarks across the tools.

Such projects may help to reduce the reproducibility burden on individual scientists.

The use of Docker containers for reproducible research comes with caveats. Individual

containers are stored and executed in isolation from other containers on the same

computer; however, because all containers on a given machine share the same operating

system, this isolation is not as complete as it is with virtual machines. This means, for

example, that a given container is not guaranteed to have access to a specific amount of

computer memory or processing power—multiple containers may have to compete for

these resources [97]. In addition, containers may be more vulnerable to security breaches

[97]. Because Docker containers can only be executed on Linux-based operating systems,

they must be executed within a virtual machine on Windows and Mac operating systems.

Docker provides installation packages to facilitate this integration; however, the overhead

of using a virtual machine offsets some of the performance benefits of using containers.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/5y3w+BtKy+xqA4
https://paperpile.com/c/o8ANTm/qQ7i+g1e2
https://paperpile.com/c/o8ANTm/Rz3P
https://paperpile.com/c/o8ANTm/Rz3P
https://paperpile.com/c/o8ANTm/Rz3P

24

Efforts are ongoing to develop and refine software container technologies. Box 5 lists

various tools that are currently available. In the coming years, these technologies promise

to play an influential role within the scientific community.

Box 5: Open-source containerization software.

● Docker.com

● LinuxContainers.org

● lmctfy [126]

● OpenVZ.org

● Warden [127]

Conclusions

Scientific advancement requires researchers to explicitly document the research steps they

performed and to transparently share those steps with other researchers. This review

provides a comprehensive, though not exhaustive, list of techniques that can help meet

these requirements for computational analyses. Science philosopher Karl Popper

contended that, “[w]e do not take even our own observations quite seriously, or accept

them as scientific observations, until we have repeated and tested them” [2]. Indeed, in

many cases, the individuals who benefit most from computational reproducibility are those

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/769f

25

who performed the original analysis, but reproducible and transparent practices can also

increase the level at which a scientist’s work is accepted by other scientists [47, 103]. When

other scientists can reproduce an analysis and determine exactly how its conclusions were

drawn, they may be more apt to cite and build upon the work. In contrast, when others fail

to reproduce research findings, it can derail scientific progress and may lead to

embarrassment, accusations, and retractions.

We have described seven tools and techniques for facilitating computational

reproducibility. None of these approaches is sufficient for every scenario in isolation;

rather, scientists will often find value in combining approaches. For example, a researcher

who uses a literate programming notebook (that combines narratives with code) might

incorporate the notebook into a software container so that others can execute it without

needing to install specific software dependencies. The container might also include a

workflow management system to ease the process of integrating multiple tools and

incorporating best practices for the analysis. This container could be packaged within a

virtual machine or cloud-computing environment to ensure that it can be executed

consistently (see Figure 7). Binder [104] and Everware [128] are two services that allow

researchers to execute Jupyter notebooks within a Web browser, using a Docker container

to package the underlying software, and a cloud-computing environment to execute it.

Although still under active development, such services may be harbingers of the future for

computationally reproducible science.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/GIVf+CTWZ
https://paperpile.com/c/o8ANTm/wQRq
https://github.com/everware/everware

26

The call for computational reproducibility relies on the premise that reproducible science

will bolster the efficiency of the overall scientific enterprise [105]. Although reproducible

practices may require additional time and effort, these practices provide ancillary benefits

that help offset those expenditures [47]. Primarily, scientists may experience increased

efficiency in their research [47]. For example, before and after a manuscript is submitted

for publication, it faces scrutiny from co-authors and peer reviewers who may suggest

alterations to the analysis. Having a complete record of all the analysis steps, and being

able to retrace those steps precisely, makes it faster and easier to implement the requested

alterations [47,106]. Reproducible practices can also improve the efficiency of team science

because colleagues can more easily communicate their research protocols and inspect each

other’s work; one type of relationship where this is critical is that between academic

advisors and mentees [106]. Finally, when research protocols are shared transparently

with the broader community, scientific advancement increases because scientists can learn

more easily from each other’s work and there is less duplication of effort [106].

Reproducible practices do not necessarily ensure that others can obtain identical results to

those obtained by the original scientists. Indeed, this objective may be infeasible for some

types of computational analysis, including those that use randomization procedures,

floating-point operations, or specialized computer hardware [91, 107]. In such cases, the

goal may shift to ensuring that others can obtain results that are semantically consistent

with the original findings [5,6]. In addition, in studies where vast computational resources

are needed to perform an analysis, or where data sets are distributed geographically [108–

110], full reproducibility may be infeasible. Alternatively, it may be infeasible to reallocate

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/3O0J
https://paperpile.com/c/o8ANTm/GIVf
https://paperpile.com/c/o8ANTm/GIVf
https://paperpile.com/c/o8ANTm/GIVf+nxFQ
https://paperpile.com/c/o8ANTm/nxFQ
https://paperpile.com/c/o8ANTm/nxFQ
https://paperpile.com/c/o8ANTm/Fotg+oIOq
https://paperpile.com/c/o8ANTm/guxx+PV3y
https://paperpile.com/c/o8ANTm/KBH9+KrW5+5wJ6
https://paperpile.com/c/o8ANTm/KBH9+KrW5+5wJ6

27

computational resources for highly computationally intensive analyses [8]. In these cases,

researchers can provide relatively simple examples to demonstrate the methodology [8].

When legal restrictions prevent researchers from publicly sharing software or data, or

when software is available only via a Web interface, researchers should document the

analysis steps as well as possible and describe why such components cannot be shared

[25].

Computational reproducibility does not guarantee against analytical biases, or ensure that

software produces scientifically valid results [111]. As with any research, a poor study

design, confounding effects, or improper use of analytical software may plague even the

most reproducible analyses [111, 112]. On one hand, increased transparency puts

scientists at a greater risk that such problems will be exposed. On the other hand, scientists

who are fully transparent about their scientific approach may be more likely to avoid such

pitfalls, knowing that they will be more vulnerable to such criticisms. Either way, the

scientific community benefits.

Lastly, we emphasize that some reproducibility is better than none. Although some of the

practices described in this review require more technical expertise than others, they are

freely accessible to all scientists, and provide long-term benefits to the researcher and to

the scientific community. Indeed, as scientists act in good faith to perform these practices,

where feasible, the pace of scientific progress will surely increase.

List of abbreviations

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://paperpile.com/c/o8ANTm/1XjS
https://paperpile.com/c/o8ANTm/1XjS
https://paperpile.com/c/o8ANTm/CoLN
https://paperpile.com/c/o8ANTm/CoLN
https://paperpile.com/c/o8ANTm/gb0y
https://paperpile.com/c/o8ANTm/gb0y+sjkW

28

DOI: Digital object identifier

HTML: Hypertext markup language

PDF: Portable document format

URL: Uniform resource locator

VCS: Version control system

Acknowledgements

SRP acknowledges startup funds provided by Brigham Young University. We thank

research-community members and reviewers who provided valuable feedback on this

manuscript.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

29

Additional files

Additional file 1: This script is supporting material for Figure 1. It can be used to align

DNA sequence data to a reference genome. First, it downloads the software and data files

necessary for the analysis. Then, it extracts (“unzips”) these files, and aligns the data to a

reference genome for Ebola virus. Finally, it converts, sorts, and indexes the aligned data.

Additional file 2: This Make file is supporting material for Figure 2. It performs the same

function as Additional file 1, except that it is formatted for the Make utility. Accordingly, it

is structured so that specific tasks must be executed before other tasks, in a hierarchical

manner.

Additional file 3: This Jupyter notebook is supporting material for Figure 3. It contains

code (in the Python programming language) for generating random numbers and plotting

them in a graph.

Additional file 4: This document contains code (in the R language) for generating random

numbers and plotting them on a graph. This document is in R Markdown format and can be

compiled using knitr.

Competing Interests

Neither of the authors of this manuscript have any competing interests to declare.

Authors’ contributions

SRP wrote the manuscript and created figures. MBF created figures and helped to revise the

manuscript.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

30

References

1. Fisher RA. The Design of Experiments. New York: Hafner Press; 1935.

2. Popper KR. 2002. The logic of scientific discovery. London Routledge; 1959.

3. Peng RD. Reproducible research in computational science. Science. 2011;334:1226–7.

4. Russell JF. If a job is worth doing, it is worth doing twice. Nature. 2013;496:7.

5. Feynman RP, Leighton RB, Sands M. Six Easy Pieces: Essentials of Physics Explained by

Its Most Brilliant Teacher. Perseus Books; 1994. p. 34–5.

6. Murray-Rust P, Murray-Rust D. Reproducible Physical Science and the Declaratron. In:

Stodden VC, Leisch F, Peng RD, editors. Implementing Reproducible Research. CRC Press;

2014. p. 113.

7. Hey AJG, Tansley S, Tolle KM, Others. The fourth paradigm: data-intensive scientific

discovery. Microsoft Research Redmond, WA; 2009.

8. Millman KJ, Pérez F. Developing Open-Source Scientific Practice. Implementing

Reproducible Research. CRC Press; 2014;149.

9. Wilson G, Aruliah DA, Brown CT, Chue Hong NP, Davis M, Guy RT, et al. Best practices for

scientific computing. PLoS Biol. 2014;12:e1001745.

10. Software with impact. Nat. Methods. 2014;11:211.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://paperpile.com/b/o8ANTm/fMuq
http://paperpile.com/b/o8ANTm/769f
http://paperpile.com/b/o8ANTm/4yT3
http://paperpile.com/b/o8ANTm/FZIl
http://paperpile.com/b/o8ANTm/guxx
http://paperpile.com/b/o8ANTm/guxx
http://paperpile.com/b/o8ANTm/PV3y
http://paperpile.com/b/o8ANTm/PV3y
http://paperpile.com/b/o8ANTm/PV3y
http://paperpile.com/b/o8ANTm/s2Yw
http://paperpile.com/b/o8ANTm/s2Yw
http://paperpile.com/b/o8ANTm/1XjS
http://paperpile.com/b/o8ANTm/1XjS
http://paperpile.com/b/o8ANTm/FbU6
http://paperpile.com/b/o8ANTm/FbU6
http://paperpile.com/b/o8ANTm/6Tvu

31

11. Hong NC. We are the 92% [Internet]. Figshare; 2014. Available from:

http://dx.doi.org/10.6084/M9.FIGSHARE.1243288

12. Sacks J, Welch WJ, Mitchell TJ, Wynn HP. Design and Analysis of Computer Experiments.

Stat. Sci. Institute of Mathematical Statistics; 1989;4:409–23.

13. Garijo D, Kinnings S, Xie L, Xie L, Zhang Y, Bourne PE, et al. Quantifying reproducibility

in computational biology: the case of the tuberculosis drugome. PLoS One. 2013;8:e80278.

14. Error prone. Nature. 2012;487:406.

15. Vandewalle P, Barrenetxea G, Jovanovic I, Ridolfi A, Vetterli M. Experiences with

Reproducible Research in Various Facets of Signal Processing Research. 2007 IEEE

International Conference on Acoustics, Speech and Signal Processing - ICASSP ’07. IEEE;

2007. p. IV – 1253 – IV – 1256.

16. Cassey P, Cassey P, Blackburn T, Blackburn T. Reproducibility and Repeatability in

Ecology. Bioscience. 2006;56:958–9.

17. Murphy JM, Sexton DMH, Barnett DN, Jones GS, Webb MJ, Collins M, et al. Quantification

of modelling uncertainties in a large ensemble of climate change simulations. Nature.

2004;430:768–72.

18. McCarthy DJ, Humburg P, Kanapin A, Rivas MA, Gaulton K, Cazier J-B, et al. Choice of

transcripts and software has a large effect on variant annotation. Genome Med. 2014;6:26.

19. Neuman JA, Isakov O, Shomron N. Analysis of insertion-deletion from deep-sequencing

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://paperpile.com/b/o8ANTm/S75W
http://paperpile.com/b/o8ANTm/S75W
http://dx.doi.org/10.6084/M9.FIGSHARE.1243288
http://paperpile.com/b/o8ANTm/OcDb
http://paperpile.com/b/o8ANTm/OcDb
http://paperpile.com/b/o8ANTm/Crmz
http://paperpile.com/b/o8ANTm/Crmz
http://paperpile.com/b/o8ANTm/pPaq
http://paperpile.com/b/o8ANTm/rUWE
http://paperpile.com/b/o8ANTm/rUWE
http://paperpile.com/b/o8ANTm/rUWE
http://paperpile.com/b/o8ANTm/rUWE
http://paperpile.com/b/o8ANTm/kX1r
http://paperpile.com/b/o8ANTm/kX1r
http://paperpile.com/b/o8ANTm/MdsL
http://paperpile.com/b/o8ANTm/MdsL
http://paperpile.com/b/o8ANTm/MdsL
http://paperpile.com/b/o8ANTm/7Uhe
http://paperpile.com/b/o8ANTm/7Uhe
http://paperpile.com/b/o8ANTm/Oj8J

32

data: Software evaluation for optimal detection. Brief. Bioinform. 2013;14:46–55.

20. Bradnam KR, Fass JN, Alexandrov A, Baranay P, Bechner M, Birol I, et al. Assemblathon

2: evaluating de novo methods of genome assembly in three vertebrate species.

Gigascience. 2013;2:10.

21. Bilal E, Dutkowski J, Guinney J, Jang IS, Logsdon BA, Pandey G, et al. Improving Breast

Cancer Survival Analysis through Competition-Based Multidimensional Modeling. PLoS

Comput. Biol. 2013;9:e1003047.

22. Gronenschild EHBM, Habets P, Jacobs HIL, Mengelers R, Rozendaal N, van Os J, et al. The

effects of FreeSurfer version, workstation type, and Macintosh operating system version on

anatomical volume and cortical thickness measurements. PLoS One. 2012;7:e38234.

23. Moskvin OV, McIlwain S, Ong IM. CAMDA 2014: Making sense of RNA-Seq data: From

low-level processing to functional analysis. Systems Biomedicine. 2014;2:31–40.

24. Reducing our irreproducibility. Nature. 2013;496:398–398.

25. Michael CM, Nass SJ, Omenn GS, editors. Evolution of Translational Omics: Lessons

Learned and the Path Forward. Washington, D.C.: The National Academies Press; 2012.

26. Collins FS, Tabak L a. Policy: NIH plans to enhance reproducibility. Nature.

2014;505:612–3.

27. Chambers JM. S as a Programming Environment for Data Analysis and Graphics.

Problem Solving Environments for Scientific Computing, Proc. 17th Symp. on the Interface

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://paperpile.com/b/o8ANTm/Oj8J
http://paperpile.com/b/o8ANTm/VBL0
http://paperpile.com/b/o8ANTm/VBL0
http://paperpile.com/b/o8ANTm/VBL0
http://paperpile.com/b/o8ANTm/VN7F
http://paperpile.com/b/o8ANTm/VN7F
http://paperpile.com/b/o8ANTm/VN7F
http://paperpile.com/b/o8ANTm/N9kJ
http://paperpile.com/b/o8ANTm/N9kJ
http://paperpile.com/b/o8ANTm/N9kJ
http://paperpile.com/b/o8ANTm/3JwD
http://paperpile.com/b/o8ANTm/3JwD
http://paperpile.com/b/o8ANTm/VqOb
http://paperpile.com/b/o8ANTm/CoLN
http://paperpile.com/b/o8ANTm/CoLN
http://paperpile.com/b/o8ANTm/MT7f
http://paperpile.com/b/o8ANTm/MT7f
http://paperpile.com/b/o8ANTm/HswK
http://paperpile.com/b/o8ANTm/HswK

33

of Stat. and Comp. North Holland; 1985. p. 211–4.

28. LeVeque RJ, Mitchell IM, Stodden V. Reproducible research for scientific computing:

Tools and strategies for changing the culture. Computing in Science and Engineering.

2012;14:13.

29. Stodden V, Guo P, Ma Z. Toward Reproducible Computational Research: An Empirical

Analysis of Data and Code Policy Adoption by Journals. PLoS One. 2013;8:2–9.

30. Morin A, Urban J, Adams PD, Foster I, Sali A, Baker D, et al. Research priorities. Shining

light into black boxes. Science. 2012;336:159–60.

31. Rebooting review. Nat. Biotechnol. 2015;33:319.

32. Ioannidis JP a., Allison DB, Ball C a., Coulibaly I, Cui X, Culhane AC, et al. Repeatability of

published microarray gene expression analyses. Nat. Genet. 2009;41:149–55.

33. Nekrutenko A, Taylor J. Next-generation sequencing data interpretation: enhancing

reproducibility and accessibility. Nat. Rev. Genet. Nature Publishing Group; 2012;13:667–

72.

34. Baggerly K a., Coombes KR. Deriving chemosensitivity from cell lines: Forensic

bioinformatics and reproducible research in high-throughput biology. Ann. Appl. Stat.

2009;3:1309–34.

35. Decullier E, Huot L, Samson G, Maisonneuve H. Visibility of retractions: a cross-sectional

one-year study. BMC Res. Notes. 2013;6:238.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://paperpile.com/b/o8ANTm/HswK
http://paperpile.com/b/o8ANTm/aRzQ
http://paperpile.com/b/o8ANTm/aRzQ
http://paperpile.com/b/o8ANTm/aRzQ
http://paperpile.com/b/o8ANTm/OQpF
http://paperpile.com/b/o8ANTm/OQpF
http://paperpile.com/b/o8ANTm/dt7d
http://paperpile.com/b/o8ANTm/dt7d
http://paperpile.com/b/o8ANTm/vwr8
http://paperpile.com/b/o8ANTm/WAFW
http://paperpile.com/b/o8ANTm/WAFW
http://paperpile.com/b/o8ANTm/M0G0
http://paperpile.com/b/o8ANTm/M0G0
http://paperpile.com/b/o8ANTm/M0G0
http://paperpile.com/b/o8ANTm/Q9BC
http://paperpile.com/b/o8ANTm/Q9BC
http://paperpile.com/b/o8ANTm/Q9BC
http://paperpile.com/b/o8ANTm/vnMu
http://paperpile.com/b/o8ANTm/vnMu

34

36. Claerbout JF, Karrenbach M. Electronic Documents Give Reproducible Research a New

Meaning. Meeting of the Society of Exploration Geophysics. New Orleans, LA; 1992.

37. Stodden V, Miguez S. Best Practices for Computational Science: Software Infrastructure

and Environments for Reproducible and Extensible Research. Journal of Open Research

Software. 2014;2:21.

38. Ravel J, Wommack KE. All hail reproducibility in microbiome research. Microbiome.

2014;2:8.

39. Stodden V. 2014: What scientific idea is ready for retirement? [Internet].

http://edge.org/response-detail/25340. 2014. Available from: http://edge.org/response-

detail/25340

40. Birney E, Hudson TJ, Green ED, Gunter C, Eddy S, Rogers J, et al. Prepublication data

sharing. Nature. 2009;461:168–70.

41. Hothorn T, Leisch F. Case studies in reproducibility. Brief. Bioinform. 2011;12:288–300.

42. Schofield PN, Bubela T, Weaver T, Portilla L, Brown SD, Hancock JM, et al. Post-

publication sharing of data and tools. Nature. 2009;461:171–3.

43. Piwowar H a., Day RS, Fridsma DB. Sharing detailed research data is associated with

increased citation rate. PLoS One. 2007;2.

http://dx.doi.org/10.1371/journal.pone.0000308

44. Johnson VE. Revised standards for statistical evidence. Proc. Natl. Acad. Sci. U. S. A.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://paperpile.com/b/o8ANTm/Espr
http://paperpile.com/b/o8ANTm/Espr
http://paperpile.com/b/o8ANTm/RNY8
http://paperpile.com/b/o8ANTm/RNY8
http://paperpile.com/b/o8ANTm/RNY8
http://paperpile.com/b/o8ANTm/oAuw
http://paperpile.com/b/o8ANTm/oAuw
http://paperpile.com/b/o8ANTm/RLQS
http://paperpile.com/b/o8ANTm/RLQS
http://edge.org/response-detail/25340
http://edge.org/response-detail/25340
http://paperpile.com/b/o8ANTm/0Kzb
http://paperpile.com/b/o8ANTm/0Kzb
http://paperpile.com/b/o8ANTm/MMll
http://paperpile.com/b/o8ANTm/Awlf
http://paperpile.com/b/o8ANTm/Awlf
http://paperpile.com/b/o8ANTm/Hm55
http://paperpile.com/b/o8ANTm/Hm55
http://dx.doi.org/10.1371/journal.pone.0000308
http://paperpile.com/b/o8ANTm/ySva

35

2013;110:19313–7.

45. Halsey LG, Curran-everett D, Vowler SL, Drummond GB. The fickle P value generates

irreproducible results. Nat. Methods. 2015;12:179–85.

46. Wilson G. Software Carpentry: lessons learned. F1000Res. 2016;3:62.

47. Sandve GK, Nekrutenko A, Taylor J, Hovig E. Ten Simple Rules for Reproducible

Computational Research. PLoS Comput. Biol. 2013;9:1–4.

48. Köster J, Rahmann S. Snakemake--a scalable bioinformatics workflow engine.

Bioinformatics. 2012;28:2520–2.

49. Sadedin SP, Pope B, Oshlack A. Bpipe : A Tool for Running and Managing Bioinformatics

Pipelines. Bioinformatics. 2012;28:1525–6.

50. Tange O. GNU Parallel - The Command-Line Power Tool. ;login: The USENIX Magazine.

Frederiksberg, Denmark; 2011;36:42–7.

51. Albrecht M, Donnelly P, Bui P, Thain D. Makeflow: A portable abstraction for data

intensive computing on clusters, clouds, and grids. Proceedings of the 1st ACM SIGMOD

Workshop on Scalable Workflow Execution Engines and Technologies. 2012.

52. Knight S, Austin C, Crain C, Leblanc S, Roach A. Scons software construction tool

[Internet]. 2011. Available from: http://www.scons.org

53. Code share. Nature. 2014;514:536.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://paperpile.com/b/o8ANTm/ySva
http://paperpile.com/b/o8ANTm/thVl
http://paperpile.com/b/o8ANTm/thVl
http://paperpile.com/b/o8ANTm/ZzE1
http://paperpile.com/b/o8ANTm/GIVf
http://paperpile.com/b/o8ANTm/GIVf
http://paperpile.com/b/o8ANTm/PNzo
http://paperpile.com/b/o8ANTm/PNzo
http://paperpile.com/b/o8ANTm/m42U
http://paperpile.com/b/o8ANTm/m42U
http://paperpile.com/b/o8ANTm/MAX5
http://paperpile.com/b/o8ANTm/MAX5
http://paperpile.com/b/o8ANTm/G9vT
http://paperpile.com/b/o8ANTm/G9vT
http://paperpile.com/b/o8ANTm/G9vT
http://paperpile.com/b/o8ANTm/iaom
http://paperpile.com/b/o8ANTm/iaom
http://www.scons.org/
http://paperpile.com/b/o8ANTm/MVy3

36

54. Blischak JD, Davenport ER, Wilson G. A Quick Introduction to Version Control with Git

and GitHub. PLoS Comput. Biol. 2016;12:e1004668.

55. Loeliger J, McCullough M. Version Control with Git: Powerful Tools and Techniques for

Collaborative Software Development. “O’Reilly Media, Inc.”; 2012. p. 456.

56. Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, et al. Orchestrating

high-throughput genomic analysis with Bioconductor. Nat. Methods. Nature Publishing

Group; 2015;12:115–21.

57. R Core Team. R: A Language and Environment for Statistical Computing [Internet].

Vienna, Austria: R Foundation for Statistical Computing; 2014. Available from:

http://www.r-project.org

58. Tóth G, Sokolov IV, Gombosi TI, Chesney DR, Clauer CR, De Zeeuw DL, et al. Space

Weather Modeling Framework: A new tool for the space science community. J. Geophys.

Res. 2005;110:A12226.

59. Tan E, Choi E, Thoutireddy P, Gurnis M, Aivazis M. GeoFramework: Coupling multiple

models of mantle convection within a computational framework. Geochem. Geophys.

Geosyst. [Internet]. 2006;7. Available from: http://doi.wiley.com/10.1029/2005GC001155

60. Heisen B, Boukhelef D, Esenov S, Hauf S, Kozlova I, Maia L, et al. Karabo: An Integrated

Software Framework Combining Control, Data Management, and Scientific Computing

Tasks. 14th International Conference on Accelerator & Large Experimental Physics Control

Systems, ICALEPCS2013. San Francisco, CA; 2013.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://paperpile.com/b/o8ANTm/U5fg
http://paperpile.com/b/o8ANTm/U5fg
http://paperpile.com/b/o8ANTm/BGKk
http://paperpile.com/b/o8ANTm/BGKk
http://paperpile.com/b/o8ANTm/Wlzo
http://paperpile.com/b/o8ANTm/Wlzo
http://paperpile.com/b/o8ANTm/Wlzo
http://paperpile.com/b/o8ANTm/Dxef
http://paperpile.com/b/o8ANTm/Dxef
http://www.r-project.org/
http://paperpile.com/b/o8ANTm/TLyn
http://paperpile.com/b/o8ANTm/TLyn
http://paperpile.com/b/o8ANTm/TLyn
http://paperpile.com/b/o8ANTm/EH7K
http://paperpile.com/b/o8ANTm/EH7K
http://paperpile.com/b/o8ANTm/EH7K
http://paperpile.com/b/o8ANTm/EH7K
http://paperpile.com/b/o8ANTm/gLzl
http://paperpile.com/b/o8ANTm/gLzl
http://paperpile.com/b/o8ANTm/gLzl
http://paperpile.com/b/o8ANTm/gLzl

37

61. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image

analysis. Nat. Methods. Nature Publishing Group; 2012;9:671–5.

62. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an

open-source platform for biological-image analysis. Nat. Methods. Nature Publishing Group,

a division of Macmillan Publishers Limited. All Rights Reserved.; 2012;9:676–82.

63. Biasini M, Schmidt T, Bienert S, Mariani V, Studer G, Haas J, et al. OpenStructure: an

integrated software framework for computational structural biology. Acta Crystallogr. D

Biol. Crystallogr. 2013;69:701–9.

64. Martin RC. Clean code: a handbook of agile software craftsmanship. Pearson Education;

2009.

65. Knuth DE. Literate Programming. Comput. J. 1984;27:97–111.

66. Pérez F, Granger BE. IPython: a System for Interactive Scientific Computing. Computing

in Science and Engineering. IEEE Computer Society; 2007;9:21–9.

67. Shen H. Interactive notebooks: Sharing the code. Nature. 2014;515:151–2.

68. Xie Y. Dynamic Documents with R and knitr. CRC Press; 2013. p. 216.

69. RStudio Team. RStudio: Integrated Development for R [Internet]. [cited 2015 Nov 20].

Available from: http://www.rstudio.com

70. Gross AM, Orosco RK, Shen JP, Egloff AM, Carter H, Hofree M, et al. Multi-tiered genomic

analysis of head and neck cancer ties TP53 mutation to 3p loss. Nat. Genet. Nature

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://paperpile.com/b/o8ANTm/MJ0J
http://paperpile.com/b/o8ANTm/MJ0J
http://paperpile.com/b/o8ANTm/76D6
http://paperpile.com/b/o8ANTm/76D6
http://paperpile.com/b/o8ANTm/76D6
http://paperpile.com/b/o8ANTm/iK3Z
http://paperpile.com/b/o8ANTm/iK3Z
http://paperpile.com/b/o8ANTm/iK3Z
http://paperpile.com/b/o8ANTm/lJN5
http://paperpile.com/b/o8ANTm/lJN5
http://paperpile.com/b/o8ANTm/XgiF
http://paperpile.com/b/o8ANTm/RShH
http://paperpile.com/b/o8ANTm/RShH
http://paperpile.com/b/o8ANTm/BBfB
http://paperpile.com/b/o8ANTm/jkFM
http://paperpile.com/b/o8ANTm/PnOW
http://paperpile.com/b/o8ANTm/PnOW
http://www.rstudio.com/
http://paperpile.com/b/o8ANTm/QjlF
http://paperpile.com/b/o8ANTm/QjlF

38

Publishing Group; 2014;46:1–7.

71. Ding T, Schloss PD. Dynamics and associations of microbial community types across the

human body. Nature. Nature Publishing Group, a division of Macmillan Publishers Limited.

All Rights Reserved.; 2014;509:357–60.

72. Ram Y, Hadany L. The probability of improvement in Fisher’s geometric model: A

probabilistic approach. Theor. Popul. Biol. 2015;99:1–6.

73. Meadow JF, Altrichter AE, Kembel SW, Moriyama M, O’Connor TK, Womack AM, et al.

Bacterial communities on classroom surfaces vary with human contact. Microbiome.

2014;2:7.

74. White E. Programming for Biologists [Internet]. Available from:

http://www.programmingforbiologists.org

75. Peng RD. Coursera course: Computing for Data Analysis [Internet]. Available from:

https://www.coursera.org/course/compdata

76. Bioconductor - Courses and Conferences [Internet]. [cited 2015 Nov 20]. Available

from: http://master.bioconductor.org/help/course-materials

77. Gil Y, Deelman E, Ellisman M, Fahringer T, Fox G, Gannon D, et al. Examining the

challenges of scientific workflows. Computer . 2007;40:24–32.

78. Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, et al. Galaxy: a

platform for interactive large-scale genome analysis. Genome Res. 2005;15:1451–5.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://paperpile.com/b/o8ANTm/QjlF
http://paperpile.com/b/o8ANTm/9URt
http://paperpile.com/b/o8ANTm/9URt
http://paperpile.com/b/o8ANTm/9URt
http://paperpile.com/b/o8ANTm/WFGg
http://paperpile.com/b/o8ANTm/WFGg
http://paperpile.com/b/o8ANTm/Ickb
http://paperpile.com/b/o8ANTm/Ickb
http://paperpile.com/b/o8ANTm/Ickb
http://paperpile.com/b/o8ANTm/YBDz
http://paperpile.com/b/o8ANTm/YBDz
http://www.programmingforbiologists.org/
http://paperpile.com/b/o8ANTm/pCdH
http://paperpile.com/b/o8ANTm/pCdH
https://www.coursera.org/course/compdata
http://paperpile.com/b/o8ANTm/Rklv
http://paperpile.com/b/o8ANTm/Rklv
http://master.bioconductor.org/help/course-materials
http://paperpile.com/b/o8ANTm/m2CK
http://paperpile.com/b/o8ANTm/m2CK
http://paperpile.com/b/o8ANTm/qjzv
http://paperpile.com/b/o8ANTm/qjzv

39

79. Goecks J, Nekrutenko A, Taylor J. Galaxy: a comprehensive approach for supporting

accessible, reproducible, and transparent computational research in the life sciences.

Genome Biol. 2010;11:R86.

80. Afgan E, Baker D, Coraor N, Goto H, Paul IM, Makova KD, et al. Harnessing cloud

computing with Galaxy Cloud. Nat. Biotechnol. 2011;29:972–4.

81. Callahan SP, Freire J, Santos E, Scheidegger CE, Silva CT, Vo HT. VisTrails: Visualization

Meets Data Management. Proceedings of the 2006 ACM SIGMOD International Conference

on Management of Data. New York, NY, USA: ACM; 2006. p. 745–7.

82. Davidson SB, Freire J. Provenance and scientific workflows. Proceedings of the 2008

ACM SIGMOD international conference on Management of data - SIGMOD ’08. 2008. p.

1345.

83. Altintas I, Berkley C, Jaeger E, Jones M, Ludascher B, Mock S. Kepler: an extensible

system for design and execution of scientific workflows. Proceedings. 16th International

Conference on Scientific and Statistical Database Management, 2004. IEEE; 2004. p. 423–4.

84. Goff SA, Vaughn M, McKay S, Lyons E, Stapleton AE, Gessler D, et al. The iPlant

Collaborative: Cyberinfrastructure for Plant Biology. Front. Plant Sci. Frontiers; 2011;2:34.

85. Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP. GenePattern 2.0. Nat. Genet.

2006;38:500–1.

86. Reich M, Liefeld J, Thorvaldsdottir H, Ocana M, Polk E, Jang D, et al. GenomeSpace: An

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://paperpile.com/b/o8ANTm/fyQT
http://paperpile.com/b/o8ANTm/fyQT
http://paperpile.com/b/o8ANTm/fyQT
http://paperpile.com/b/o8ANTm/FgIP
http://paperpile.com/b/o8ANTm/FgIP
http://paperpile.com/b/o8ANTm/SiRU
http://paperpile.com/b/o8ANTm/SiRU
http://paperpile.com/b/o8ANTm/SiRU
http://paperpile.com/b/o8ANTm/8e9D
http://paperpile.com/b/o8ANTm/8e9D
http://paperpile.com/b/o8ANTm/8e9D
http://paperpile.com/b/o8ANTm/KfQh
http://paperpile.com/b/o8ANTm/KfQh
http://paperpile.com/b/o8ANTm/KfQh
http://paperpile.com/b/o8ANTm/V6Bm
http://paperpile.com/b/o8ANTm/V6Bm
http://paperpile.com/b/o8ANTm/EsWp
http://paperpile.com/b/o8ANTm/EsWp
http://paperpile.com/b/o8ANTm/gZPd

40

environment for frictionless bioinformatics. Cancer Res. 2012;72:3966–3966.

87. Wolstencroft K, Haines R, Fellows D, Williams A, Withers D, Owen S, et al. The Taverna

workflow suite: designing and executing workflows of Web Services on the desktop, web or

in the cloud. Nucleic Acids Res. 2013;41:557–61.

88. Rex DE, Ma JQ, Toga AW. The LONI Pipeline Processing Environment. Neuroimage.

2003;19:1033–48.

89. Lazarus R, Kaspi A, Ziemann M. Creating re-usable tools from scripts: The Galaxy Tool

Factory. Bioinformatics. 2012;28:3139–40.

90. Dudley JT, Butte AJ. In silico research in the era of cloud computing. Nat. Biotechnol.

Nature Publishing Group; 2010;28:1181–5.

91. Hurley DG, Budden DM, Crampin EJ. Virtual Reference Environments: a simple way to

make research reproducible. Brief. Bioinform. 2014;1–3.

92. Gent IP. The Recomputation Manifesto. arXiv [Internet]. 2013; Available from:

http://arxiv.org/abs/1304.3674

93. Howe B. Virtual Appliances, Cloud Computing, and Reproducible Research. Comput. Sci.

Eng. IEEE Computer Society; 2012;14:36–41.

94. Brown CT. Virtual machines considered harmful for reproducibility [Internet]. 2012.

Available from: http://ivory.idyll.org/blog/vms-considered-harmful.html

95. Piccolo SR. Building portable analytical environments to improve sustainability of

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://paperpile.com/b/o8ANTm/gZPd
http://paperpile.com/b/o8ANTm/Pvtw
http://paperpile.com/b/o8ANTm/Pvtw
http://paperpile.com/b/o8ANTm/Pvtw
http://paperpile.com/b/o8ANTm/0xpK
http://paperpile.com/b/o8ANTm/0xpK
http://paperpile.com/b/o8ANTm/i7gc
http://paperpile.com/b/o8ANTm/i7gc
http://paperpile.com/b/o8ANTm/AFAK
http://paperpile.com/b/o8ANTm/AFAK
http://paperpile.com/b/o8ANTm/Fotg
http://paperpile.com/b/o8ANTm/Fotg
http://paperpile.com/b/o8ANTm/sRz2
http://paperpile.com/b/o8ANTm/sRz2
http://arxiv.org/abs/1304.3674
http://paperpile.com/b/o8ANTm/wM2W
http://paperpile.com/b/o8ANTm/wM2W
http://paperpile.com/b/o8ANTm/CPxL
http://paperpile.com/b/o8ANTm/CPxL
http://ivory.idyll.org/blog/vms-considered-harmful.html
http://paperpile.com/b/o8ANTm/dZOk

41

computational-analysis pipelines in the sciences [Internet]. 2014. Available from:

http://dx.doi.org/10.6084/m9.figshare.1112571

96. Krampis K, Booth T, Chapman B, Tiwari B, Bicak M, Field D, et al. Cloud BioLinux: pre-

configured and on-demand bioinformatics computing for the genomics community. BMC

Bioinformatics. 2012;13:42.

97. Felter W, Ferreira A, Rajamony R, Rubio J. An Updated Performance Comparison of

Virtual Machines and Linux Containers [Internet]. IBM Research Division; 2014. Available

from:

http://domino.research.ibm.com/library/CyberDig.nsf/papers/0929052195DD819C8525

7D2300681E7B/$File/rc25482.pdf

98. Eglen SJ, Weeks M, Jessop M, Simonotto J, Jackson T, Sernagor E. A data repository and

analysis framework for spontaneous neural activity recordings in developing retina.

Gigascience. 2014;3:3.

99. Eglen SJ. Bivariate spatial point patterns in the retina: a reproducible review. Journal de

la Société Française de Statistique. 2016;157:33–48.

100. Bremges A, Maus I, Belmann P, Eikmeyer F, Winkler A, Albersmeier A, et al. Deeply

sequenced metagenome and metatranscriptome of a biogas-producing microbial

community from an agricultural production-scale biogas plant. Gigascience. 2015;4:33.

101. Belmann P, Dröge J, Bremges A, McHardy AC, Sczyrba A, Barton MD. Bioboxes:

standardised containers for interchangeable bioinformatics software. Gigascience.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://paperpile.com/b/o8ANTm/dZOk
http://paperpile.com/b/o8ANTm/dZOk
http://dx.doi.org/10.6084/m9.figshare.1112571
http://paperpile.com/b/o8ANTm/6CaC
http://paperpile.com/b/o8ANTm/6CaC
http://paperpile.com/b/o8ANTm/6CaC
http://paperpile.com/b/o8ANTm/Rz3P
http://paperpile.com/b/o8ANTm/Rz3P
http://paperpile.com/b/o8ANTm/Rz3P
http://paperpile.com/b/o8ANTm/Rz3P
http://domino.research.ibm.com/library/CyberDig.nsf/papers/0929052195DD819C85257D2300681E7B/$File/rc25482.pdf
http://domino.research.ibm.com/library/CyberDig.nsf/papers/0929052195DD819C85257D2300681E7B/$File/rc25482.pdf
http://paperpile.com/b/o8ANTm/5y3w
http://paperpile.com/b/o8ANTm/5y3w
http://paperpile.com/b/o8ANTm/5y3w
http://paperpile.com/b/o8ANTm/BtKy
http://paperpile.com/b/o8ANTm/BtKy
http://paperpile.com/b/o8ANTm/xqA4
http://paperpile.com/b/o8ANTm/xqA4
http://paperpile.com/b/o8ANTm/xqA4
http://paperpile.com/b/o8ANTm/qQ7i
http://paperpile.com/b/o8ANTm/qQ7i

42

2015;4:47.

102. Barton M. nucleotides · genome assembler benchmarking [Internet]. [cited 2015 Nov

20]. Available from: http://nucleotid.es

103. Hones MJ. Reproducibility as a Methodological Imperative in Experimental Research.

PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association.

Philosophy of Science Association; 1990. p. 585–99.

104. Rosenberg DM, Horn CC. Neurophysiological analytics for all! Free open-source

software tools for documenting, analyzing, visualizing, and sharing using electronic

notebooks. J. Neurophysiol. American Physiological Society; 2016;jn.00137.2016.

105. Crick T. “ Share and Enjoy ”: Publishing Useful and Usable Scientific Models. Available

from: http://arxiv.org/abs/1409.0367v2

106. Donoho DL. An invitation to reproducible computational research. Biostatistics.

2010;11:385–8.

107. Goldberg D. What Every Computer Scientist Should Know About Floating-point

Arithmetic. ACM Comput. Surv. New York, NY, USA: ACM; 1991;23:5–48.

108. Shirts M, Pande VS. COMPUTING: Screen Savers of the World Unite! Science.

2000;290:1903–4.

109. Bird I. Computing for the Large Hadron Collider. Annu. Rev. Nucl. Part. Sci.

2011;61:99–118.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://paperpile.com/b/o8ANTm/qQ7i
http://paperpile.com/b/o8ANTm/g1e2
http://paperpile.com/b/o8ANTm/g1e2
http://nucleotid.es/
http://paperpile.com/b/o8ANTm/CTWZ
http://paperpile.com/b/o8ANTm/CTWZ
http://paperpile.com/b/o8ANTm/CTWZ
http://paperpile.com/b/o8ANTm/wQRq
http://paperpile.com/b/o8ANTm/wQRq
http://paperpile.com/b/o8ANTm/wQRq
http://paperpile.com/b/o8ANTm/3O0J
http://paperpile.com/b/o8ANTm/3O0J
http://arxiv.org/abs/1409.0367v2
http://paperpile.com/b/o8ANTm/nxFQ
http://paperpile.com/b/o8ANTm/nxFQ
http://paperpile.com/b/o8ANTm/oIOq
http://paperpile.com/b/o8ANTm/oIOq
http://paperpile.com/b/o8ANTm/KBH9
http://paperpile.com/b/o8ANTm/KBH9
http://paperpile.com/b/o8ANTm/KrW5
http://paperpile.com/b/o8ANTm/KrW5

43

110. Anderson DP. BOINC: A System for Public Resource Computing and Storage.

Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing (GRID’04).

2004.

111. Ransohoff DF. Bias as a threat to the validity of cancer molecular-marker research.

Nat. Rev. Cancer. 2005;5:142–9.

112. Bild AH, Chang JT, Johnson WE, Piccolo SR. A field guide to genomics research. PLoS

Biol. 2014;12:e1001744.

113. GNU Make [Internet]. 2016. Available from https://www.gnu.org/software/make

114. Make for Windows [Internet]. 2016. Available from

http://gnuwin32.sourceforge.net/packages/make.htm

115. Ivy, the agile dependency manager [Internet]. 2016. Available from

http://ant.apache.org/ivy

116. Puppet [Internet]. 2016. Available from https://puppetlabs.com

117. aRchive: Enabling reproducibility of Bioconductor package versions (for Galaxy)

[Internet]. 2016. Available from http://bioarchive.github.io

118. GenePattern: A platform for reproducible bioinformatics [Internet]. 2016. Available

from http://www.broadinstitute.org/cancer/software/genepattern]

119. LONI Pipeline Processing Environment [Internet]. 2016. Available from

http://www.loni.usc.edu/Software/Pipeline

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://paperpile.com/b/o8ANTm/5wJ6
http://paperpile.com/b/o8ANTm/5wJ6
http://paperpile.com/b/o8ANTm/5wJ6
http://paperpile.com/b/o8ANTm/gb0y
http://paperpile.com/b/o8ANTm/gb0y
http://paperpile.com/b/o8ANTm/sjkW
http://paperpile.com/b/o8ANTm/sjkW

44

120. CloudBioLinux: configure virtual (or real) machines with tools for biological analyses

[Internet]. 2016. Available from https://github.com/chapmanb/cloudbiolinux

121. Vortex [Internet]. 2016. Available from https://github.com/websecurify/node-vortex

122. Amazon Web Services [Internet]. 2016. Available from http://aws.amazon.com

123. Google Cloud Platform [Internet]. 2016. Available from

https://cloud.google.com/compute

124. Microsoft Azure [Internet]. 2016. Available from https://azure.microsoft.com

125. lmctfy - Let Me Contain That For You [Internet]. 2016. Available from

https://github.com/google/lmctfy

126. Warden [Internet]. 2016. Available from

http://docs.cloudfoundry.org/concepts/architecture/warden.html

127. everware [Internet]. 2016. Available from https://github.com/everware/everware

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

45

Figure legends

Figure 1. Example of a command line script. This script can be used to align DNA

sequence data to a reference genome. First, it downloads the software and data files

necessary for the analysis. Then, it extracts (“unzips”) these files, and aligns the data to a

reference genome for Ebola virus. Finally, it converts, sorts, and indexes the aligned data.

See Additional file 1 for an executable version of this script.

Figure 2. Example of a Make file. This file performs the same function as the command

line script shown in Figure 1, except that it is formatted for the Make utility. Accordingly, it

is structured so that specific tasks must be executed before other tasks, in a hierarchical

manner. See Additional file 2 for an executable version of this file.

Figure 3. Example of a Jupyter notebook. This example contains code (in the Python

programming language) for generating random numbers and plotting them in a graph

within a Jupyter notebook. Importantly, the code and output object (graph) are contained

within the same document. See Additional file 3 for an executable version of the notebook.

Figure 4. Example of a document created using knitr. This example contains code (in

the R language) for generating random numbers and plotting them on a graph. The knitr

tool was used to generate the document, which combines the code and the output object

(figure). See Additional file 4 for an executable version of this document.

Figure 5. Architecture of virtual machines. Virtual machines encapsulate analytical

software and dependencies within a “guest” operating system, which may be different to

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

46

the main (“host”) operating system. A virtual machine executes in the context of

virtualization software, which runs alongside other software installed on the computer.

Figure 6. Architecture of software containers. Software containers encapsulate

analytical software and dependencies. In contrast to virtual machines, containers execute

within the context of the computer’s main operating system.

Figure 7. Example of a Docker container for genomics research. This container would

enable researchers to preprocess various types of molecular data, using tools from

Bioconductor and Galaxy, and to analyze the resulting data within a Jupyter notebook. Each

box within the container represents a distinct Docker image. These images are layered such

that some images depend on others (for example, the Bioconductor image depends on R).

At its base, the container includes operating system libraries, which may not be present (or

may be configured differently) on the computer’s main operating system.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 1 Click here to download Figure Figure_1.jpg

http://www.editorialmanager.com/giga/download.aspx?id=2509&guid=6907e4db-0d2a-4b37-bd6a-c9a9cae81c2f&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=2509&guid=6907e4db-0d2a-4b37-bd6a-c9a9cae81c2f&scheme=1

Figure 2 Click here to download Figure Figure_2.jpg

http://www.editorialmanager.com/giga/download.aspx?id=2510&guid=611fa2df-3e5e-4b3b-bfb6-aa7bc088eb4f&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=2510&guid=611fa2df-3e5e-4b3b-bfb6-aa7bc088eb4f&scheme=1

Figure 3 Click here to download Figure Figure_3.jpg

http://www.editorialmanager.com/giga/download.aspx?id=2511&guid=a344976c-59bc-4ec8-8c5e-a01050b2aed7&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=2511&guid=a344976c-59bc-4ec8-8c5e-a01050b2aed7&scheme=1

Figure 4 Click here to download Figure Figure_4.jpg

http://www.editorialmanager.com/giga/download.aspx?id=2512&guid=e4fc172c-0873-4b64-96dc-a0ccc5db72b2&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=2512&guid=e4fc172c-0873-4b64-96dc-a0ccc5db72b2&scheme=1

Figure 5 Click here to download Figure Figure_5.jpg

http://www.editorialmanager.com/giga/download.aspx?id=2513&guid=673afe50-5f69-4a8e-9838-f9d9993b47bc&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=2513&guid=673afe50-5f69-4a8e-9838-f9d9993b47bc&scheme=1

Figure 6 Click here to download Figure Figure_6.jpg

http://www.editorialmanager.com/giga/download.aspx?id=2514&guid=7517ea64-beb6-442a-a26c-67fc45f94658&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=2514&guid=7517ea64-beb6-442a-a26c-67fc45f94658&scheme=1

Figure 7 Click here to download Figure Figure_7.jpg

http://www.editorialmanager.com/giga/download.aspx?id=2515&guid=29e37f08-4bc3-4093-b380-e289fcf552c3&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=2515&guid=29e37f08-4bc3-4093-b380-e289fcf552c3&scheme=1

Supplementary File 1

Click here to access/download
Supplementary Material

Script_Example.sh

http://www.editorialmanager.com/giga/download.aspx?id=2516&guid=0f460b3a-00b9-4e16-a2ca-fe524b78af34&scheme=1

Supplementary File 2

Click here to access/download
Supplementary Material

Makefile_Example

http://www.editorialmanager.com/giga/download.aspx?id=2517&guid=d2ab1d61-c829-486e-8b1d-5ce99974f461&scheme=1

Supplementary File 3

Click here to access/download
Supplementary Material
Jupyter_Example.ipynb

http://www.editorialmanager.com/giga/download.aspx?id=2518&guid=596daf55-a11f-4815-9817-02d32d4d12ef&scheme=1

Supplementary File 4

Click here to access/download
Supplementary Material

Markdown_Example.Rmd

http://www.editorialmanager.com/giga/download.aspx?id=2519&guid=bcfe4b2f-3330-44b4-bcb2-af74d73562b8&scheme=1

	Summary
	Detailed comments
	Figures
	References

