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Summary

This review provides an overview of the main tools and techniques used to ensure computational
reproducibility of results. This review is a good fit to the readership of the Gigascience journal.
Overall I found the manuscript to be clearly written and would recommend it for publication,
although I would like the authors to consider the following issues in a potential revision. In
particular, I am most critical about the current set of figures.

As a general comment, where possible, the material in the figures should be supported by online
files (e.g. knitr, Docker) so that the reader can immediately get workable examples to examine, run
and amend.

Detailed comments

p4, l2 (page 4, line 2): an extra citation might be (Gronenschild et al. 2012) which showed that even
the choice of operating system or neuroimaging software version affects results.

p4, l18-20: as far as I am awared, journals do not encourage direct use of repositories like github
or bitbucket because they offer no long-term storage. It is regarded much more appropriate to use
permanent URLS (e.g. DOIs) to point to archived versions of software, such as zenodo. We have
written elsewhere on this topic (Eglen et al. 2016).

p6, l10: in addition to the other topics of reproducibility and education, it would be worth
mentionining education/training to encourage users to adopt reproducible practices (Wilson 2016).

p6, l15: minor point, but perhaps worth numbering the seven sections that describe the seven
approaches reviewed, starting here.

p8, l17: “Make can be configured”; if you are referring to the “-j N” switch, then it is simpler to say
that “Make can automatically identify. . . ” as there is no extra configuration needed.

p11 l9: reference 53 at the end of the sentence is not needed, as you refer to it at the start of the
sentence.

p13, l3-9: you should probably mention http://mybinder.org in this section. It provides a transpar-
ent method for interacting with Jupyter documents over the web (Rosenberg and Horn 2016).

p14, l2: I disagree slightly here with the view re: long-running jobs. knitr at least can cache
intermediate computations transparently which helps enormously.

p14, l8: Do you have examples of Dexy in use within this field? Asking this also in a more general
way, it might be worth making a table listing examples explicitly of each of the seven approaches,
so that they are easy to find.

p18, l18: I do not see why the VMs are “black boxes”. Surely to create the VM all the relevant
code must be provided, so that you can at least examine what is done, or extend the analysis (as
mentioned on l20). Can you clarify what you mean here.
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p22, l1: as well as capturing software in Docker, we have used it recently to capture the entire
environment to write our research papers in knitr ( https://hub.docker.com/r/sje30/eglen2015/
and https://hub.docker.com/r/sje30/waverepo/ ).

p22, l14-19: I found the section about other operating systems (Windows/mac) rather clumsy.
From the user’s perspective, the modern docker toolbox seems to work smoothly enough (at least
on macs) that the details at the end of p22 seem irrelevant. It might instead be worth mentioning
that docker builds can be automatically triggered, e.g. upon new commits to github.

p 23, l6: “Scientific advancement requires trust.” I think trust is the wrong word here.
e.g. The Royal Society’s motto ‘Nullius in verba’ is taken to mean ‘take nobody’s word for it’
(https://royalsociety.org/about-us/history/). Rather, what these tools do is promote transparency
to reduce the barriers for others to repeat prior work. With this in mind, I’d suggest the authors
re-read this first paragraph of the discussion to see whether they think “trust” is what they are
promoting here.

Figures

Figure 1: is this really needed in such a review? I don’t think it adds anything.

Figure 2: I think should be provided as a text file so that people can run it for themselves.

Figure 3: Text file definitely needed so people can run it for themselves. But also I’d consider
making the targets a bit more specific. All of the targets in this example Makefile are PHONY and
perhaps it could be rewritten in the more canonical Makefile style? The way it is currently written,
it is hard to see how this differs from a shell script. (Each time make all is run, won’t the files be
downloaded again?)

Figure 4: can you show something that is a bit more bio-relevant, e.g. some genomic analysis?

Figure 5: as figure 4. Can you design Figure 4 and 5 carefully to highlight the differences between
knitr and jupyter?

Figure 6-8: I would suggest you drop these. They show the notion of stacks and containers, but
most bioscientists won’t get much value from them.
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 1 

Abstract 2 

When reporting research findings, scientists document the steps they followed so that 3 

others can verify and build upon the research. When those steps have been described in 4 

sufficient detail that others can retrace the steps and obtain similar results, the research is 5 

said to be reproducible. Computers play a vital role in many research disciplines and 6 

present both opportunities and challenges for reproducibility. Computers can be 7 

programmed to execute analysis tasks, and those programs can be repeated and shared 8 

with others. Due to the deterministic nature of most computer programs, the same analysis 9 

tasks, applied to the same data, will often produce the same outputs. However, in practice, 10 

computational findings often cannot be reproduced due to complexities in how software is 11 

packaged, installed, and executed—and due to limitations in how scientists document 12 

analysis steps. Many tools and techniques are available to help overcome these challenges. 13 

Here we describe seven such strategies. With a broad scientific audience in mind, we 14 

describe strengths and limitations of each approach, as well as circumstances under which 15 

each might be applied. No single strategy is sufficient for every scenario; thus we 16 

emphasize that it is often useful to combine approaches. 17 
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Introduction 1 

When reporting research, scientists document the steps they followed to obtain their 2 

results. If the description is comprehensive enough that they and others can repeat the 3 

procedures and obtain semantically consistent results, the findings are considered to be 4 

"reproducible”[1–6]. Reproducible research forms the basic building blocks of science, 5 

insofar as it allows researchers to verify and build on each other's work with confidence. 6 

Computers play an increasingly important role in many scientific disciplines[7–10]. For 7 

example, in the United Kingdom, 92% of academic scientists use some type of software in 8 

their research, and 69% of scientists say their research is feasible only with software 9 

tools[11]. Thus efforts to increase scientific reproducibility should consider the ubiquity of 10 

computers in research. 11 

Computers present both opportunities and challenges for scientific reproducibility. On one 12 

hand, due to the deterministic nature of most computer programs, many computational 13 

analyses can be performed such that others can obtain exactly identical results when 14 

applied to the same input data[12]. Accordingly, computational research can be held to a 15 

high reproducibility standard. On the other hand, even when no technical barrier prevents 16 

reproducibility, scientists often cannot reproduce computational findings due to 17 

complexities in how software is packaged, installed, and executed—and due to limitations 18 

in how scientists document these steps[13]. This problem is acute in many disciplines, 19 

including genomics, signal processing, and ecological modeling[14–16], where data sets are 20 

large and computational tools are evolving rapidly. However, the same problem can affect 21 
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any scientific discipline that requires computers for research. Seemingly minor differences 1 

in computational approaches can have major influences on analytical outputs[12,17–21], 2 

and the effects of these differences may exceed those that result from experimental 3 

factors[22]. 4 

Journal editors, funding agencies, governmental institutions, and individual scientists have 5 

increasingly made calls for the scientific community to embrace practices that support 6 

computational reproducibility[23–30]. This movement has been motivated, in part, by 7 

scientists' failed efforts to reproduce previously published analyses. For example, 8 

Ioannidis, et al. evaluated 18 published research studies that used computational methods 9 

to evaluate gene-expression data but were able to reproduce only 2 of those studies[31]. In 10 

many cases, a failure to share the study's data was the culprit; however, incomplete 11 

descriptions of software-based analyses were also common. Nekrutenko and Taylor 12 

examined 50 papers that analyzed next-generation sequencing data and observed that 13 

fewer than half provided any details about software versions or parameters[32]. 14 

Recreating analyses that lack such details can require hundreds of hours of effort[33] and 15 

may be impossible, even after consulting the original authors. Failure to reproduce 16 

research may also lead to careerist effects, including retractions[34]. 17 

Noting such concerns, some journals have emphasized the value of placing computer 18 

source code in open-access repositories, such as GitHub (https://github.com) or BitBucket 19 

(https://bitbucket.org). In addition, journals have extended requirements for "Methods" 20 

sections, now asking researchers to provide detailed descriptions of 1) how to install 21 
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software and its dependencies and 2) what parameters and data-preprocessing steps are 1 

used in analyses[10,23]. A recent Institute of Medicine report emphasized that, in addition 2 

to computer code and research data, "fully specified computational procedures" should be 3 

made available to the scientific community[24]. They elaborated that such procedures 4 

should include "all of the steps of computational analysis" and that "all aspects of the 5 

analysis need to be transparently reported”[24]. Such policies represent important 6 

progress. However, it is ultimately the responsibility of individual scientists to ensure that 7 

others can verify and build upon their analyses. 8 

Describing a computational analysis sufficiently—such that others can reexecute it, 9 

validate it, and refine it—requires more than simply stating what software was used, what 10 

commands were executed, and where to find the source code[13,26,35–37]. Software is 11 

executed within the context of an operating system (for example, Windows, Mac OS, or 12 

Linux), which enables the software to interface with computer hardware (Figure 1). In 13 

addition, most software relies on a hierarchy of software dependencies, which perform 14 

complementary functions and must be installed alongside the main software tool. One 15 

version of a given software tool or dependency may behave differently or have a different 16 

interface than another version of the same software. In addition, most analytical software 17 

offers a range of parameters (or settings) that the user can specify. If any of these variables 18 

differs from what the original experimenter used, the software may not execute properly or 19 

analytical outputs may differ considerably from what the original experimenter observed. 20 
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Scientists can use various tools and techniques to overcome these challenges and to 1 

increase the likelihood that their computational analyses will be reproducible. These 2 

techniques range in complexity from simple (e.g., providing written documentation) to 3 

advanced (e.g., providing a "virtual" environment that includes an operating system and all 4 

software necessary to execute the analysis). This review describes seven strategies across 5 

this spectrum. We describe strengths and limitations of each approach, as well as 6 

circumstances under which each might be applied. No single strategy will be sufficient for 7 

every scenario; therefore, in many cases, it will be most practical to combine multiple 8 

approaches. This review focuses primarily on the computational aspects of reproducibility. 9 

The related topics of empirical reproducibility, statistical reproducibility, and data sharing 10 

have been described elsewhere[38–44]. We believe that with greater awareness and 11 

understanding of computational-reproducibility techniques, scientists—including those 12 

with limited computational experience—will be more apt to perform computational 13 

research in a reproducible manner. 14 

Narrative descriptions are a simple but valuable way to support 15 

computational reproducibility 16 

The most fundamental strategy for enabling others to reproduce a computational analysis 17 

is to provide a detailed, written description of the process. For example, when reporting 18 

computational results in a research article, authors customarily provide a narrative that 19 

describes the software they used and the analytical steps they followed. Such narratives 20 

can be invaluable in enabling others to evaluate the scientific approach and to reproduce 21 
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the findings. In many situations—for example, when software execution requires user 1 

interaction or when proprietary software is used—narratives are the only feasible option 2 

for documenting such steps. However, even when a computational analysis uses open-3 

source software and can be fully automated, narratives help others understand how to 4 

reexecute an analysis. 5 

Although most research articles that use computational methods provide some type of 6 

narrative, these descriptions often lack sufficient detail to enable others to retrace those 7 

steps [31,32]. Narrative descriptions should indicate the operating system(s), software 8 

dependencies, and analytical software that were used and how to obtain them. In addition, 9 

narratives should indicate the exact software versions used, the order in which they were 10 

executed, and all non-default parameters that were specified. Such descriptions should 11 

account for the fact that computer configurations differ vastly, even for computers that use 12 

the same operating system. Because it can be difficult for scientists to remember such 13 

details after the fact, it is best to record this information throughout the research process, 14 

rather than at the time of manuscript preparation[8]. 15 

The following sections describe techniques for automating computational analyses. These 16 

techniques can diminish the need for scientists to write narratives. However, because it is 17 

often impractical to automate all computational steps, we expect that, for the foreseeable 18 

future, narratives will play a vital role in enabling computational reproducibility. 19 
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Custom scripts and code can automate a research analysis 1 

Scientific software can often be executed in an automated manner via text-based 2 

commands. Using such commands—via a command-line interface—scientists can indicate 3 

which software program(s) should be executed and which parameter(s) should be used. 4 

When multiple commands must be executed, they can be compiled into scripts, which 5 

specify the order in which the commands should be executed (Figure 2). In many cases, 6 

scripts also include commands for installing and configuring software. Such scripts serve as 7 

valuable documentation not only for individuals who wish to reexecute the analysis but 8 

also for the researcher who performed the original analysis[45]. In these cases, no amount 9 

of narrative is an adequate substitute for providing the actual commands that were used. 10 

When writing command-line scripts, it is essential to explicitly document any software 11 

dependencies and input data that are required for each step in the analysis. The Make 12 

utility (https://www.gnu.org/software/make) provides one way to specify such 13 

requirements[35]. Before any command is executed, Make verifies that each documented 14 

dependency is available. Accordingly, researchers can use Make files (scripts) to specify a 15 

full hierarchy of operating-system components and dependent software that must be 16 

present to perform the analysis (Figure 3). In addition, Make can be configured to 17 

automatically identify any commands that can be executed in parallel, potentially reducing 18 

the amount of time required to execute the analysis. Although Make was designed 19 

originally for UNIX-based operating systems (such as Mac OS or Linux), similar utilities 20 

have since been developed for Windows operating systems 21 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://paperpile.com/c/o8ANTm/GIVf
https://paperpile.com/c/o8ANTm/Espr


9 
 

(http://gnuwin32.sourceforge.net/packages/make.htm). Box 1 lists various utilities that 1 

can be used to automate software execution. 2 

Box 1: Utilities that can be used to automate software execution. 

● GNU Make and Make for Windows: Tools for building software from source files 
and for ensuring that the software's dependencies are met. 

● Snakemake[46] = An extension of Make that provides a more flexible syntax and 
makes it easier to execute tasks in parallel. 

● BPipe[47] = A tool that provides a flexible syntax for users to specify commands 
to be executed; it maintains an audit trail of all commands that have been 
executed. 

● GNU Parallel[48] = A tool for executing commands in parallel across one or more 
computers. 

● Makeflow[49] = A tool that can execute commands simultaneously on various 
types of computer architectures, including computer clusters and cloud 
environments. 

● SCONS[50] = An alternative to GNU Make that enables users to customize the 
process of building and executing software using scripts written in the Python 
programming language. 

● CMAKE (https://cmake.org) = A tool that enables users to execute Make scripts 
more easily on multiple operating systems. 

 3 

In addition to creating scripts that execute existing software, many researchers also create 4 

new software by writing computer code in a programming language such as Python, C++, 5 

Java, or R. Such code may perform relatively simple tasks, such as reformatting data files or 6 

invoking third-party software. In other cases, computer code may constitute a manuscript's 7 

key intellectual contribution. 8 
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Whether analysis steps are encoded in scripts or as computer code, scientists can support 1 

reproducibility by publishing these artefacts alongside research papers. By doing so, the 2 

authors enable readers to evaluate the analytical approach in full detail and to extend the 3 

analysis more readily[51]. Although scripts and code may be included alongside a 4 

manuscript as supplementary material, a better alternative is to store them in a version-5 

control system (VCS)[8,9,45] and to share these repositories via Web-based services like 6 

GitHub (https://github.com) or Bitbucket (https://bitbucket.org). With such a VCS 7 

repository, scientists can track different versions of scripts and code that have been 8 

developed as the research project evolved. In addition, outside observers can see the full 9 

version history, contribute revisions to the code, and reuse the code for their own 10 

purposes[52]. When submitting a manuscript, the authors may “tag” a specific version of 11 

the repository that was used for the final analysis described in the manuscript. 12 

Software frameworks enable easier handling of software dependencies 13 

Virtually all computer scripts and code rely on external software dependencies and 14 

operating-system components. For example, suppose that a research study required a 15 

scientist to apply Student’s t-test. Rather than write code that implements this statistical 16 

test, the scientist would likely find an existing software library that implements the test and 17 

then invoke that library from her code. A considerable amount of time can be saved with 18 

this approach, and a wide range of software libraries are freely available. However, 19 

software libraries change frequently—invoking the wrong version of a library may result in 20 
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an error or an unexpected output. Thus to enable others to reproduce an analysis, it is 1 

critical to indicate which dependencies (and versions thereof) must be installed. 2 

One way to address this challenge is to build on a preexisting software framework. Such 3 

frameworks make it easier to access software libraries that are commonly used to perform 4 

specific types of analysis task. Typically, such frameworks also make it easier to download 5 

and install software dependencies and ensure that the versions of software libraries and 6 

their dependencies are compatible with each other. For example, Bioconductor[53], created 7 

for the R statistical programming language[54], is a popular framework that contains 8 

hundreds of software packages for analyzing biological data[53]. The Bioconductor 9 

framework facilitates versioning, documenting, and distributing code. Once a software 10 

library has been incorporated into Bioconductor, other researchers can find, download, 11 

install, and configure it on most operating systems with relative ease. In addition, 12 

Bioconductor installs software dependencies automatically. These features ease the process 13 

of performing an analysis  and can help with reproducibility. Various software frameworks 14 

exist for other scientific disciplines[55–60]. General-purpose tools for managing software 15 

dependencies also exist—for example, Apache Ivy (http://ant.apache.org/ivy) and Puppet 16 

(https://puppetlabs.com). 17 

To best support reproducibility, software frameworks should make it easy for scientists to 18 

download and install previous versions of a software tool as well as previous versions of 19 

dependencies. Such a design would enable other scientists to reproduce analyses that were 20 

conducted with previous versions of a software framework. In the case of Bioconductor, 21 
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considerable extra work may be required to install specific versions of Bioconductor 1 

software and their dependencies. To overcome such limitations, scientists may use a 2 

software container or virtual machine (see below) to package the specific versions they 3 

used in an analysis. Alternatively, they might use third-party solutions such as the aRchive 4 

project (http://bioarchive.github.io). 5 

Literate programming combines narratives directly with code 6 

Although narratives, scripts, and computer code support reproducibility individually, 7 

additional value can be gained from combining these entities. Even though a researcher 8 

may provide computer code alongside a research paper, other scientists may have difficulty 9 

interpreting how the code accomplishes specific tasks. A longstanding way to address this 10 

problem is via code comments, which are human-readable annotations interspersed 11 

throughout computer code. However, code comments and other types of documentation 12 

often become outdated as code evolves throughout the analysis process[61]. One way to 13 

overcome this problem is to use a technique called literate programming[62]. With this 14 

approach, the scientist writes a narrative of the scientific analysis and intermingles code 15 

directly within the narrative. As the code is executed, a document is generated that includes 16 

the code, narratives, and any outputs (e.g., figures, tables) that the code produces. 17 

Accordingly, literate programming helps ensure that readers understand exactly how a 18 

particular research result was obtained. In addition, this approach motivates the scientist 19 

to keep the target audience in mind when performing a computational analysis, rather than 20 

simply to write code that a computer can parse[62]. Consequently, by reducing barriers of 21 
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understanding among scientists, literate programming can help to engender greater trust 1 

in computational findings. 2 

One popular literate-programming tool is Jupyter[63]. Using its Web-based interface, 3 

scientists can create interactive "notebooks" that combine code, data, mathematical 4 

equations, plots, and rich media[64]. Originally known as IPython and previously designed 5 

exclusively for the Python programming language, Jupyter (http://jupyter.org) now makes 6 

it possible to execute code in many different programming languages. Such functionality 7 

may be important to scientists who prefer to combine the strengths of different 8 

programming languages. 9 

knitr[65] has also gained considerable popularity as a literate-programming tool. It is 10 

written in the R programming language and thus can be integrated seamlessly with the 11 

array of statistical and plotting tools available in that environment. However, like Jupyter, 12 

knitr can execute code written in multiple programming languages. Commonly, knitr is 13 

applied to documents that have been authored using RStudio[66], an open-source tool with 14 

advanced editing and package-management features. 15 

Jupyter notebooks and knitr reports can be saved in various output formats, including 16 

HTML and PDF (see examples in Figures 4-5). Increasingly, scientists include such 17 

documents with journal manuscripts as supplementary material, enabling others to repeat 18 

analysis steps and recreate manuscript figures[67–70]. 19 

Scientists typically use literate-programming tools for data analysis tasks that can be 20 

executed in a modest amount of time (e.g., minutes or hours).  It is possible to execute 21 
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Jupyter or knitr at the command line; thus longer-running tasks can be executed on high-1 

performance computers. However, this approach runs counter to the interactive nature of 2 

notebooks and require additional technical expertise to configure and execute the 3 

notebooks. 4 

Literate-programming notebooks are suitable for research analyses that require a modest 5 

amount of computer code. For analyses that require larger amounts of code, more 6 

advanced programming environments may be more suitable—perhaps in combination 7 

with a “literate documentation” tool such as Dexy (http://www.dexy.it).  8 

Workflow-management systems enable software execution via a 9 

graphical user interface 10 

Writing computer scripts and code may seem daunting to many researchers. Although 11 

various courses and tutorials are helping to make this task less formidable[71–74], many 12 

scientists use "workflow management systems" to facilitate the process of executing 13 

scientific software[75]. Typically managed via a graphical user interface, workflow 14 

management systems enable scientists to upload data and process it using existing tools. 15 

For multistep analyses, the output from one tool can be used as input to additional tools, 16 

potentially resulting in a series of commands known as a workflow. 17 

Galaxy[76,77] has gained considerable popularity within the bioinformatics community—18 

especially for performing next-generation sequencing analysis. As users construct 19 

workflows, Galaxy provides descriptions of how software parameters should be used, 20 
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examples of how input files should be formatted, and links to relevant discussion forums. 1 

To help with processing large data sets and computationally complex algorithms, Galaxy 2 

also provides an option to execute workflows on cloud-computing services[78]. In addition, 3 

researchers can share workflows with each other (https://usegalaxy.org); this feature has 4 

enabled the Galaxy team to build a community that helps to encourage reproducibility, 5 

define best practices, and reduce the time required for novices to get started. 6 

Various other workflow systems are freely available to the research community (see Box 7 

2). For example, VisTrails is used by researchers from many disciplines, including climate 8 

science, microbial ecology, and quantum mechanics[79]. It enables scientists to design 9 

workflows visually, connecting data inputs with analytical modules and the resulting 10 

outputs. In addition, VisTrails tracks a full history of how each workflow was created. This 11 

capability, referred to as "retrospective provenance", makes it possible for others not only 12 

to reproduce the final version of an analysis but also to examine previous incarnations of 13 

the workflow and examine how each change influenced the analytical outputs[80]. 14 

Box 2: Workflow management tools freely available to the research community. 

● Galaxy[76,77] - https://usegalaxy.org 

● VisTrails[79] - http://www.vistrails.org 

● Kepler[81] - https://kepler-project.org 

● iPlant Collaborative[82] - http://www.iplantcollaborative.org 

● GenePattern[83,84] - 
http://www.broadinstitute.org/cancer/software/genepattern 

● Taverna[85] - http://www.taverna.org.uk 

● LONI Pipeline[86] - http://pipeline.bmap.ucla.edu 
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Although workflow-management systems offer many advantages, users must accept 1 

tradeoffs. For example, although the teams that develop these tools often provide public 2 

servers where users can execute workflows, many scientists share these limited resources, 3 

so the public servers may not have adequate computational power or storage space to 4 

execute large-scale analyses in a timely manner. As an alternative, many scientists install 5 

these systems on their own computers; however, configuring and supporting them 6 

requires time and expertise. In addition, if a workflow tool does not yet provide a module 7 

to support a given analysis, the scientist must create a new module to support it. This task 8 

constitutes additional overhead; however, utilities such as the Galaxy Tool Shed[87] are 9 

helping to facilitate this process. 10 

Virtual machines encapsulate an entire operating system and software 11 

dependencies 12 

Whether an analysis is executed at the command line, within a literate-programming 13 

notebook, or via a workflow-management system, an operating system and relevant 14 

software dependencies must be installed before the analysis can be performed. The process 15 

of identifying, installing, and configuring such dependencies consumes a considerable 16 

amount of scientists' time. Different operating systems (and versions thereof) may require 17 

different installation and configuration steps. Furthermore, earlier versions of software 18 

dependencies, which may currently be installed on a given computer, may be incompatible 19 

with—or produce different outputs than—newer versions. 20 
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One solution is to use virtual machines, which can encapsulate an entire operating system 1 

and all software, scripts, code, and data necessary to execute a computational 2 

analysis[88,89] (Figure 6). Using virtualization software—such as VirtualBox or VMWare 3 

(see Box 3)—a virtual machine can be executed on practically any desktop, laptop, or 4 

server, irrespective of the main ("host") operating system on the computer. For example, 5 

even though a scientist's computer may be running a Windows operating system, the 6 

scientist may perform an analysis on a Linux operating system that is running 7 

concurrently—within a virtual machine—on the same computer. The scientist has full 8 

control over the virtual ("guest") operating system and thus can install software and 9 

modify configuration settings as necessary. In addition, a virtual machine can be 10 

constrained to use specific amounts of computational resources (e.g., computer memory, 11 

processing power), thus enabling system administrators to ensure that multiple virtual 12 

machines can be executed simultaneously on the same computer without impacting each 13 

other's performance. After executing an analysis, the scientist can export the entire virtual 14 

machine to a single, binary file. Other scientists can then use this file to reconstitute the 15 

same computational environment that was used for the original analysis. With a few 16 

exceptions (see Discussion), these scientists will obtain exactly the same results that the 17 

original scientist obtained. This process provides the added benefits that 1) the scientist 18 

must only document the installation and configuration steps for a single operating system, 19 

2) other scientists need only install the virtualization software and not individual software 20 

components, and 3) analyses can be reexecuted indefinitely, so long as the virtualization 21 

software remains compatible with current computer systems[90]. Also useful, a team of 22 
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scientists can employ virtual machines to ensure that each team member has the same 1 

computational environment, even though the team members may have different 2 

configurations on their host operating systems. 3 

One criticism of using virtual machines to support computational reproducibility is that 4 

virtual-machine files are large (typically multiple gigabytes), especially if they include raw 5 

data files. This imposes a barrier for researchers to share virtual machines with the 6 

research community. One option is to use cloud-computing services (see Box 4). Scientists 7 

can execute an analysis in the cloud, take a "snapshot" of their virtual machine, and share it 8 

with others in that environment[88,91]. Cloud-based services typically provide 9 

repositories where virtual-machine files can be stored and shared easily among users. 10 

Despite these advantages, some researchers may prefer that their data reside on local 11 

computers, rather than in the cloud—at least while the research is being performed. In 12 

addition, cloud-based services may use proprietary software, so virtual machines may only 13 

be executable within each provider's infrastructure. Furthermore, to use a cloud-service 14 

provider, scientists may need to activate a fee-based account. 15 

Another criticism of using virtual machines to support computational reproducibility is 16 

that the software and scripts used in the analysis will be less easily accessible to other 17 

scientists—details of the analysis are effectively concealed behind a “black box”[92]. 18 

Although other researchers may be able to reexecute the analysis within the virtual 19 

machine, it may be more difficult for them to understand and extend the analysis[92]. This 20 

problem can be ameliorated when all narratives, scripts, and code are stored in public 21 
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repositories—separately from the virtual machine—and then imported when the analysis 1 

is executed[93]. Another solution is to use a prepackaged virtual machine, such as Cloud 2 

BioLinux, that contains a variety of software tools commonly used within a given research 3 

community[94]. 4 

Scientists can automate the process of building and configuring virtual machines using 5 

tools such as Vagrant or Vortex (see Box 3). For either tool, users can write text-based 6 

configuration files that provide instructions for building virtual machines and allocating 7 

computational resources to them. In addition, these configuration files can be used to 8 

specify analysis steps[93]. Because these files are text based and relatively small (usually a 9 

few kilobytes), scientists can share them easily and track different versions of the files via 10 

source-control repositories. This approach also mitigates problems that might arise during 11 

the analysis stage. For example, even when a computer's host operating system must be 12 

reinstalled due to a computer hardware failure, the virtual machine can be recreated with 13 

relative ease. 14 

Box 3: Virtual-machine software. 

Virtualization hypervisors: 

● VirtualBox (open source) - https://www.virtualbox.org 

● Xen (open source) - http://www.xenproject.org 

● VMWare (partially open source) - http://www.vmware.com 

Virtual-machine management tools: 

● Vagrant (open source) - https://www.vagrantup.com 

● Vortex (open source) - https://github.com/websecurify/node-vortex 
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Box 4: Commercial cloud-service providers. 

● Amazon Web Services - http://aws.amazon.com 

● Rackspace Cloud - http://www.rackspace.com/cloud 

● Google Cloud Platform - https://cloud.google.com/compute 

● Windows Azure - https://azure.microsoft.com 

 1 

Software containers ease the process of installing and configuring 2 

dependencies 3 

Software containers are a lighter-weight alternative to virtual machines. Like virtual 4 

machines, containers can encapsulate operating-system components, scripts, code, and 5 

data into a single package that can be shared with others. Thus, as with virtual machines, 6 

analyses executed within a software container should produce identical outputs, 7 

irrespective of the underlying operating system or whatever software may be installed 8 

outside the container (see Discussion for caveats). As is true for virtual machines, multiple 9 

containers can be executed simultaneously on a single computer, and each container may 10 

contain different software versions and configurations. However, whereas virtual machines 11 

include an entire operating system, software containers interface directly with the 12 

computer's main operating system and extend it as needed (Figure 3). This design provides 13 

less flexibility than virtual machines because containers are specific to a given type of 14 

operating system; however, containers require considerably less computational overhead 15 

than virtual machines and can be initialized much more quickly[95]. 16 
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The open-source Docker utility (https://www.docker.com)—which has gained popularity 1 

among informaticians since its release in 2013—provides the ability to build, execute, and 2 

share software containers for Linux-based operating systems. Users specify a Docker 3 

container's contents using text-based commands. These instructions can be placed in a 4 

"Dockerfile," which other scientists can use to rebuild the container. As with virtual-5 

machine configuration files, Dockerfiles are text based, so they can be shared easily and can 6 

be tracked and versioned in source-control repositories. Once a Docker container has been 7 

built, its contents can be exported to a binary file; these files are generally smaller than 8 

virtual-machine files, so they can be shared more easily—for example, via DockerHub 9 

(https://hub.docker.com). 10 

A key feature of Docker containers is that their contents can be stacked in distinct layers (or 11 

"images"). Each image includes software component(s) that address a particular need (see 12 

Figure 7 for an example). Within a given research lab, scientists might create general-13 

purpose images that support functionality for multiple projects, and they might create 14 

specialized images that address the needs of specific projects. Docker's modular design 15 

provides the advantage that when images within a container are updated, Docker only 16 

needs to track the specific components that have changed; users who wish to update to a 17 

newer version must download a relatively small update. In contrast, even a minor change 18 

to a virtual machine would require users to export and reshare the entire virtual machine. 19 

Scientists have begun to share Docker images with others who are working in the same 20 

subdiscipline. For example, nucleotid.es is a catalog of genome-assembly tools that have 21 
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been encapsulated in Docker images[96,97]. Genome-assembly tools differ considerably in 1 

the dependencies that they require and in the parameters that they support. This project 2 

provides a means to standardize these assemblers, to circumvent the need to install 3 

dependencies for each tool, and to perform benchmarks across the tools. Such projects may 4 

help to reduce the reproducibility burden on individual scientists. 5 

The use of Docker containers for reproducible research comes with caveats. Individual 6 

containers are stored and executed in isolation from other containers on the same 7 

computer; however, because all containers on a given machine share the same operating 8 

system, this isolation is not as complete as it is with virtual machines. This means, for 9 

example, that a given container is not guaranteed to have access to a specific amount of 10 

computer memory or processing power—multiple containers may have to compete for 11 

these resources[95]. In addition, containers may be more vulnerable to security 12 

breaches[95]. Another caveat is that Docker containers can only be executed on Linux-13 

based operating systems. For other operating systems, Docker containers must be executed 14 

within a virtual machine (for example, see http://boot2docker.io). Although this 15 

configuration offsets some benefits of using containers, combining virtual machines with 16 

containers may provide a happy medium for many scientists, allowing them to use a non-17 

Linux host operating system, while receiving the benefits of containers within the guest 18 

operating system. 19 
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Efforts are ongoing to develop and refine software-container technologies. Box 5 lists 1 

various tools that are currently available. In coming years, these technologies promise to 2 

play an influential role within the scientific community. 3 

Box 5: Open-source containerization software. 

● Docker - https://www.docker.com 

● Linux Containers - https://linuxcontainers.org 

● lmctfy - https://github.com/google/lmctfy 

● OpenVZ - http://openvz.org 

● Warden - http://docs.cloudfoundry.org/concepts/architecture/warden.html 

 4 

Discussion 5 

Scientific advancement requires trust. This review provides a comprehensive, though 6 

inexhaustive, list of techniques that can help to engender such trust. Principally, scientists 7 

must perform research in such ways that they can trust their own findings[3,45]. Science 8 

philosopher Karl Popper contended that "[w]e do not take even our own observations 9 

quite seriously, or accept them as scientific observations, until we have repeated and tested 10 

them"[2]. Indeed, in many cases, the individuals who benefit most from computational 11 

reproducibility are those who performed the original analysis. But reproducible practices 12 

can also help scientists garner each other's trust[45,98]. When other scientists can 13 

reproduce an analysis and determine exactly how its conclusions were drawn, they may be 14 

more apt to cite the work and build upon it. In contrast, when others fail to reproduce 15 
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research findings, it can derail scientific progress and lead to embarrassment, accusations, 1 

and retractions. 2 

We have described seven tools and techniques for computational reproducibility. None of 3 

these approaches is sufficient for every scenario in isolation. Rather scientists will often 4 

find value in combining approaches. For example, a researcher who uses a literate-5 

programming notebook (which combines narratives with code) might incorporate the 6 

notebook into a software container so that others can execute it without needing to install 7 

specific software dependencies. The container might also include a workflow-management 8 

system to ease the process of integrating multiple tools and incorporating best practices for 9 

the analysis. This container could be packaged within a virtual machine to ensure that it 10 

can be executed on many operating systems (see Figure 8). In determining a 11 

reproducibility strategy, scientists must evaluate the tradeoff between robustness and 12 

practicality. 13 

The call for computational reproducibility relies on the premise that reproducible science 14 

will bolster the efficiency of the overall scientific enterprise[99]. Although reproducible 15 

practices may require additional time and effort, these practices provide ancillary benefits 16 

that help offset those expenditures[45]. Primarily, the scientists who perform a study may 17 

experience increased efficiency[45]. For example, before and after a manuscript is 18 

submitted for publication, it faces scrutiny from co-authors and peer reviewers who may 19 

suggest alterations to the analysis. Having a complete record of all analysis steps and being 20 

able to retrace those steps precisely, makes it faster and easier to implement the requested 21 
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alterations[45,100]. Reproducible practices can also improve the efficiency of team science 1 

because colleagues can more easily communicate their research protocols and inspect each 2 

other's work; one type of relationship where this is critical is that between academic 3 

advisors and mentees[100]. Finally, when research protocols are shared transparently with 4 

the broader community, scientific advancement increases because scientists can learn 5 

more easily from each other's work and duplicate each other's efforts less frequently[100]. 6 

Reproducible practices do not necessarily ensure that others can obtain results that are 7 

perfectly identical to what the original scientists obtained. Indeed, this objective may be 8 

infeasible for some types of computational analysis, including those that use randomization 9 

procedures, floating-point operations, or specialized computer hardware[89,101]. In such 10 

cases, the goal may shift to ensuring that others can obtain results that are semantically 11 

consistent with the original findings[5,6]. In addition, in studies where vast computational 12 

resources are needed to perform an analysis or where data sets are distributed 13 

geographically[102–104], full reproducibility may be infeasible. Alternatively, it may be 14 

infeasible to reallocate computational resources for analyses that are highly 15 

computationally intensive[8]. In these cases, researchers can provide relatively simple 16 

examples that demonstrate the methodology[8]. When legal restrictions prevent 17 

researchers from sharing software or data publicly, or when software is available only via a 18 

Web interface, researchers should document the analysis steps as well as possible and 19 

describe why such components cannot be shared[24]. 20 
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Computational reproducibility does not guarantee against analytical biases or ensure that 1 

software produces scientifically valid results[105]. As with any research, a poor study 2 

design, confounding effects, or improper use of analytical software may plague even the 3 

most reproducible analyses[105,106]. On one hand, increased transparency puts scientists 4 

at a greater risk that such problems will be exposed. On the other hand, scientists who are 5 

fully transparent about their scientific approach may be more likely to avoid such pitfalls, 6 

knowing that they will be more vulnerable to such criticisms. Either way, the scientific 7 

community benefits. 8 

Lastly, we emphasize that some reproducibility is better than none. As Voltaire said, the 9 
perfect should not be the enemy of the good[107]. Although some of the practices 10 
described in this review require more technical expertise than others, these practices are 11 
freely accessible to all scientists and provide long-term benefits to the researcher and to 12 
the scientific community. Indeed, as scientists act in good faith to perform these practices, 13 
where feasible, the pace of scientific progress will surely increase.  14 
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 1 

Figure Legends 2 

Figure 1: Basic computer architecture. Computer hardware consists of hardware 3 

devices, including central processing units, hard drives, random access memory, keyboard, 4 

mouse, etc. Operating systems enable software to interface with hardware; popular 5 

operating-system families are Windows, Mac OS, and Linux. Users interact with computers 6 

via software interfaces. In scientific computing, software enables users to execute 7 

algorithms, analyze data, generate graphics, etc. To execute properly, most software tools 8 

depend on specific versions of software dependencies, which must be installed on the same 9 

operating system. 10 

Figure 2: Example of a command-line script. This script can be used to align DNA 11 

sequence data to a reference genome. First it downloads software and data files necessary 12 

for the analysis. Then it extracts (“unzips”) these files, aligns the data to a reference 13 

genome for Ebolavirus. Finally, it converts, sorts, and indexes the aligned data.  14 

Figure 3: Example of a Make file. This file performs the same function as the command-15 

line script shown in Figure 2, except that it is formatted for the Make utility. Accordingly, it 16 

is structured so that specific tasks must be executed before other tasks, in a hierarchical 17 

structure. For example, the “download” target must be completed before the downloaded 18 

files can be prepared (“prepare” target). The “all” target specifies all of the targets that 19 

must be executed, in order. 20 
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Figure 4: Example of a Jupyter notebook. This example contains code (in the Python 1 

programming language) for generating random numbers and plotting them in a graph 2 

within a Jupyter notebook. Importantly, the code and output object (graph) are contained 3 

within the same document. 4 

Figure 5: Example of a document that has been created using knitr. This example 5 

contains code (in the R language) for generating random numbers and plotting them in a 6 

graph. The knitr tool was used to generate the document, which combines the code and the 7 

output object (figure). 8 

Figure 6: Architecture of virtual machines. Virtual machines encapsulate analytical 9 

software and dependencies within a "guest" operating system, which may be different than 10 

the main ("host") operating system. A virtual machine executes in the context of 11 

virtualization software, which executes alongside whatever other software is installed on 12 

the computer. 13 

Figure 7: Architecture of software containers. Software containers encapsulate 14 

analytical software and dependencies. In contrast to virtual machines, containers execute 15 

within the context of the computer's main operating system. 16 

Figure 8: Example of a Docker container that could be used for genomics research. 17 

This container would enable researchers to preprocess various types of molecular data, 18 

using tools from Bioconductor and Galaxy, and to analyze the resulting data within an 19 

IPython notebook. Each box within the container represents a distinct Docker image. These 20 

images are layered such that some images depend on others (for example, the Bioconductor 21 
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image depends on R). At its base, the container includes operating-system libraries, which 1 

may not be present (or may be configured differently) on the computer's main operating 2 

system. 3 
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** In the point-by-point replies below, the reviewer’s comments are shown first. Our
responses are prefixed by >> characters. **

Reviewer #1 (Titus Brown)

In this paper, Piccolo et al. do a nice (and I think comprehensive?) job of outlining
strategies for computational reproducibility.  The point is well made that science is
increasingly dependent on computational reproducibility (and that in theory we should
be able to do computational reproducibility easily and well) and hence we should
explore effective approaches that are actually being used.

I know of no other paper that covers this array of material, and this is a quite nice
exposition that I would recommend to many.  I can't evaluate how broadly it will appeal
to a diverse audience but it seems very readable to me.

>> We thank the reviewer for taking time to review our manuscript and for these
positive comments!

This paper is a nice complement to Ten Simple Rules...,
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003285, in that it
is longer, more in depth, and provides more explicit recommendations.  It is also more
up to date.

>> Thanks for this comment. Our goal, in part, was to extend beyond what the Ten
Simple Rules… article covers. We cite that article multiple times within our manuscript.

I reviewed this paper previously, and it has been updated in light of my (and other)
reviewers' comments.  I was positive about it then, and the revisions are good ;). One
note is that the 'binder' service (http://mybinder.org) should be mentioned as a
harbinger of the future. I have a blog post summary of it here: ivory.idyll.org/blog/2016-
mybinder.html

Signed,
C. Titus Brown
ctbrown@ucdavis.edu

>> Thanks for this suggestion. We have updated the second sentence of the
Discussion section. We mention Binder (and Everware) and describe them as potential
“harbingers of the future.” (I hope it’s OK that we borrowed this phrase from Titus. )

Reviewer #2 (Stephen Eglen)

Summary

This review provides an overview of the main tools and techniques used to ensure
computational reproducibility of results. This review is a good fit to the readership of the
Gigascience journal.

>> We thank the reviewer for taking time to review this manuscript and for these
positive comments!

Overall I found the manuscript to be clearly written and would recommend it for
publication, although I would like the authors to consider the following issues in a
potential revision. In particular, I am most critical about the current set of figures. As a
general comment, where possible, the material in the figures should be supported by
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online files (e.g. knitr, Docker) so that the reader can immediately get workable
examples to examine, run and amend.

>> We have addressed these comments below. We now provide executable files to
complement Figures 1-4. We have included these in the supplementary material. We
have also improved these materials based on the reviewer’s comments.

Detailed comments

p4, l2 (page 4, line 2): an extra citation might be (Gronenschild et al. 2012) which
showed that even the choice of operating system or neuroimaging software version
affects results.

>> We have added this citation at the suggested location.

p4, l18-20: as far as I am aware, journals do not encourage direct use of repositories
like github or bitbucket because they offer no long-term storage. It is regarded much
more appropriate to use permanent URLS (e.g. DOIs) to point to archived versions of
software, such as zenodo. We have written elsewhere on this topic (Eglen et al. 2016).

>> We have updated this text so that it no longer mentions GitHub and Bitbucket as
examples of storage locations for archived versions of code. Now we mention Zenodo
and figshare as services that provide permanent DOIs.

p6, l10: in addition to the other topics of reproducibility and education, it would be worth
mentioning education/training to encourage users to adopt reproducible practices
(Wilson 2016).

>> We have added a reference to Wilson 2016 and have mentioned “education about
reproducibility” as a topic that is covered elsewhere.

p6, l15: minor point, but perhaps worth numbering the seven sections that describe the
seven
approaches reviewed, starting here.

>> We have numbered these sections as an aid to the reader.

p8, l17: “Make can be configured”; if you are referring to the “-j N” switch, then it is
simpler to say that “Make can automatically identify. . . ” as there is no extra
configuration needed.

>> We have made this change to the text. Thanks for pointing it out.

p11 l9: reference 53 at the end of the sentence is not needed, as you refer to it at the
start of the
sentence.

>> We have removed this citation at the end of the sentence.

p13, l3-9: you should probably mention http://mybinder.org in this section. It provides a
transparent method for interacting with Jupyter documents over the web (Rosenberg
and Horn 2016).

>> Thanks for this suggestion. We have updated the second sentence of the
Discussion section. We mention Binder (and Everware, a similar service) and cite the
paper by Rosenberg and Horn.

p14, l2: I disagree slightly here with the view re: long-running jobs. knitr at least can
cache
intermediate computations transparently which helps enormously.

>> We have modified this paragraph to indicate that long-running notebooks can be
executed at the command line.
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p14, l8: Do you have examples of Dexy in use within this field? Asking this also in a
more general way, it might be worth making a table listing examples explicitly of each
of the seven approaches, so that they are easy to find.

>> We haven’t found any substantive examples where Dexy is used in a biology-
focused study. We have included it more as an indicator that alternative literate
programming environments may be useful in cases where Juptyer and knitr are not
suitable.

>> Although it may be useful to add a table that lists examples where each of the
seven methods is used, we have cited various such studies throughout the text. We
hope these references will provide useful examples, but we wish to avoid putting too
much emphasis on any individual study.

p18, l18: I do not see why the VMs are “black boxes”. Surely to create the VM all the
relevant
code must be provided, so that you can at least examine what is done, or extend the
analysis (as mentioned on l20). Can you clarify what you mean here.

>> We have rewritten this paragraph to clarify our points. Our goal was to emphasize
the importance of providing easy access to scripts and code that are used within a
virtual machine for an analysis. Although it would be possible for other scientists to
examine the full contents of a virtual machine, it is less convenient (and perhaps less
transparent). So we encourage the idea of storing these scripts and code in a public
repository, separate from the virtual machine. C. Titus Brown (reviewer #1) has also
emphasized this point on his blog, which we cite: http://ivory.idyll.org/blog/vms-
considered-harmful.html.

p22, l1: as well as capturing software in Docker, we have used it recently to capture the
entire
environment to write our research papers in knitr
(https://hub.docker.com/r/sje30/eglen2015/
and https://hub.docker.com/r/sje30/waverepo/ ).

>> Thanks for pointing to these. We now cite these papers as examples of enabling
others to execute analyses described in research papers.

p22, l14-19: I found the section about other operating systems (Windows/mac) rather
clumsy.
From the user’s perspective, the modern docker toolbox seems to work smoothly
enough (at least on macs) that the details at the end of p22 seem irrelevant. It might
instead be worth mentioning that docker builds can be automatically triggered, e.g.
upon new commits to github.

>> Thanks for this suggestion. Indeed, the Docker toolbox has been updated recently
so that it is much more convenient to install and execute Docker on non-Linux
machines. We have simplified the text accordingly. We have also clarified that the
overhead of using a virtual machine to execute Docker containers on Windows or Mac
operating systems offsets some of the performance benefits of containers.

p 23, l6: “Scientific advancement requires trust.” I think trust is the wrong word here.
e.g. The Royal Society’s motto ‘Nullius in verba’ is taken to mean ‘take nobody’s word
for it’
(https://royalsociety.org/about-us/history/). Rather, what these tools do is promote
transparency
to reduce the barriers for others to repeat prior work. With this in mind, I’d suggest the
authors
re-read this first paragraph of the discussion to see whether they think “trust” is what
they are
promoting here.

>> Thanks for this insight. We have revised the first paragraph of the Discussion
section. It no longer uses the word “trust” but instead focuses on the ideas of explicitly
documenting research steps and being transparent about the way those steps are
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shared.

Figures

Figure 1: is this really needed in such a review? I don’t think it adds anything.

>> After considering this feedback, we agree that this figure is not needed, and we
have removed it from the manuscript.

Figure 2: I think should be provided as a text file so that people can run it for
themselves.

>> We now provide a text version of this script as a supplementary file.

Figure 3: Text file definitely needed so people can run it for themselves. But also I’d
consider
making the targets a bit more specific. All of the targets in this example Makefile are
PHONY and perhaps it could be rewritten in the more canonical Makefile style? The
way it is currently written, it is hard to see how this differs from a shell script. (Each
time make all is run, won’t the files be downloaded again?)

>> Thanks for pointing this out. We have modified the example Makefile so that it
follows a more conventional style. Now it will only download the files (and execute the
other steps) one time (if the steps executed successfully). In addition, we now provide
a text version as a supplementary file.

Figure 4: can you show something that is a bit more bio-relevant, e.g. some genomic
analysis?

>> We have updated this figure so that it shows a plot of simulated gene-expression
data.

Figure 5: as figure 4. Can you design Figure 4 and 5 carefully to highlight the
differences between knitr and jupyter?

>> We have updated this figure so it also shows a plot simulated-gene expression
data. We are unsure which differences between knitr and Jupyter that the reviewer
would like us to point out. However, we believe the updated figures show a more
distinct difference between the two.

Figure 6-8: I would suggest you drop these. They show the notion of stacks and
containers, but
most bioscientists won’t get much value from them.

>> We respect the reviewer’s point of view; however, given feedback from scientists
who have read our preprint, we feel that some scientists will benefit from these figures.
Thus we prefer to retain them.
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Abstract 

When reporting research findings, scientists document the steps they followed so that 

others can verify and build upon the research. When those steps have been described in 

sufficient detail that others can retrace the steps and obtain similar results, the research is 

said to be reproducible. Computers play a vital role in many research disciplines and 

present both opportunities and challenges for reproducibility. Computers can be 

programmed to execute analysis tasks, and those programs can be repeated and shared 

with others. The deterministic nature of most computer programs means that the same 

analysis tasks, applied to the same data, will often produce the same outputs. However, in 

practice, computational findings often cannot be reproduced because of complexities in 

how software is packaged, installed, and executed—and because of limitations associated 

with how scientists document analysis steps. Many tools and techniques are available to 

help overcome these challenges; here we describe seven such strategies. With a broad 

scientific audience in mind, we describe the strengths and limitations of each approach, as 

well as the circumstances under which each might be applied. No single strategy is 

sufficient for every scenario; thus we emphasize that it is often useful to combine 

approaches. 

Keywords: Computational reproducibility; Practice of science; Literate programming; 

Virtualization; Software containers; Software frameworks 
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Introduction 

When reporting research, scientists document the steps they followed to obtain their 

results. If the description is comprehensive enough that they and others can repeat the 

procedures and obtain semantically consistent results, the findings are considered to be 

“reproducible” [1–6]. Reproducible research forms the basic building blocks of science, 

insofar as it allows researchers to verify and build on each other's work with confidence. 

Computers play an increasingly important role in many scientific disciplines [7–10]. For 

example, in the United Kingdom, 92% of academic scientists use some type of software in 

their research, and 69% of scientists say their research is feasible only with software tools 

[11]. Thus efforts to increase scientific reproducibility should consider the ubiquity of 

computers in research. 

Computers present both opportunities and challenges for scientific reproducibility. On one 

hand, the deterministic nature of most computer programs means that identical results can 

be obtained from many computational analyses applied to the same input data [12]. 

Accordingly, computational research can be held to a high reproducibility standard. On the 

other hand, even when no technical barrier prevents reproducibility, scientists often 

cannot reproduce computational findings because of complexities in how software is 

packaged, installed, and executed—and because of limitations associated with how 

scientists document these steps [13]. This problem is acute in many disciplines, including 

genomics, signal processing, and ecological modeling [14–16], which have large data sets 

and rapidly evolving computational tools. However, the same problem can affect any 
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scientific discipline requiring computers for research. Seemingly minor differences in 

computational approaches can have major influences on analytical outputs [12, 17–22], 

and the effects of these differences may exceed those resulting from experimental factors 

[23]. 

Journal editors, funding agencies, governmental institutions, and individual scientists have 

increasingly made calls for the scientific community to embrace practices to support 

computational reproducibility [24–31]. This movement has been motivated, in part, by 

scientists’ failed efforts to reproduce previously published analyses. For example, Ioannidis 

et al. evaluated 18 published research studies that used computational methods to evaluate 

gene expression data, but they were able to reproduce only two of those studies [32]. In 

many cases, the culprit was a failure to share the study’s data; however, incomplete 

descriptions of software-based analyses were also common. Nekrutenko and Taylor 

examined 50 papers that analyzed next-generation sequencing data and observed that 

fewer than half provided any details about software versions or parameters [33]. 

Recreating analyses that lack such details can require hundreds of hours of effort [34] and 

may be impossible, even after consulting the original authors. Failure to reproduce 

research may also lead to careerist effects, including retractions [35]. 

Noting such concerns, some journals have emphasized the value of placing computer code 

in open access repositories. It is most useful when scientists provide direct access to an 

archived version of the code via a uniform resource locator (URL). For example, Zenodo.org 

and figshare.com provide permanent digital object identifiers (DOI) that can link to 
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software code (and other digital objects) used in publications. In addition, some journals 

have extended requirements for “Methods” sections, now asking researchers to provide 

detailed descriptions of 1) how to install software and its dependencies, and 2) what 

parameters and data preprocessing steps are used in analyses [10, 24]. A 2012 Institute of 

Medicine report emphasized that, in addition to computer code and research data, “fully 

specified computational procedures” should be made available to the scientific community 

[25]. The report’s authors elaborated that such procedures should include “all of the steps 

of computational analysis”, and that “all aspects of the analysis need to be transparently 

reported” [25]. Such policies represent important progress. However, it is ultimately the 

responsibility of individual scientists to ensure that others can verify and build upon their 

analyses. 

Describing a computational analysis sufficiently—such that others can re-execute, validate, 

and refine it—requires more than simply stating what software was used, what commands 

were executed, and where to find the source code [13, 27, 36–38]. Software is executed 

within the context of an operating system (for example, Windows, Mac OS, or Linux), which 

enables the software to interface with computer hardware. In addition, most software 

relies on a hierarchy of software dependencies, which perform complementary functions 

and must be installed alongside the main software tool. One version of a given software 

tool or dependency may behave differently or have a different interface than another 

version of the same software. In addition, most analytical software offers a range of 

parameters (or settings) that the user can specify. If any of these variables differs from 

those used by the original experimenter, the software may not execute properly or 
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analytical outputs may differ considerably from those observed by the original 

experimenter. 

Scientists can use various tools and techniques to overcome these challenges and to 

increase the likelihood that their computational analyses will be reproducible. These 

techniques range in complexity from simple (e.g., providing written documentation) to 

advanced (e.g., providing a virtual environment that includes an operating system and all 

the software necessary to execute the analysis). This review describes seven strategies 

across this spectrum. We describe many of the strengths and limitations of each approach, 

as well as the circumstances under which each might be applied. No single strategy will be 

sufficient for every scenario; therefore, in many cases, it will be most practical to combine 

multiple approaches. This review focuses primarily on the computational aspects of 

reproducibility. The related topics of empirical reproducibility, statistical reproducibility, 

data sharing, and education about reproducibility have been described elsewhere [39–46]. 

We believe that with greater awareness and understanding of computational 

reproducibility techniques, scientists—including those with limited computational 

experience—will be more apt to perform computational research in a reproducible 

manner. 
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1. Narrative descriptions are a simple but valuable way to support 

computational reproducibility 

The most fundamental strategy for enabling others to reproduce a computational analysis 

is to provide a detailed, written description of the process. For example, when reporting 

computational results in a research article, authors customarily provide a narrative that 

describes the software they used and the analytical steps they followed. Such narratives 

can be invaluable in enabling others to evaluate the scientific approach and to reproduce 

the findings. In many situations—for example, when software execution requires user 

interaction or when proprietary software is used—narratives are the only feasible option 

for documenting such steps. However, even when a computational analysis uses open-

source software and can be fully automated, narratives help others understand how to re-

execute an analysis. 

Although most articles about research that uses computational methods provide some type 

of narrative, these descriptions often lack sufficient detail to enable others to retrace those 

steps [32, 33]. Narrative descriptions should indicate the operating system(s), software 

dependencies, and analytical software that were used, and how to obtain them. In addition, 

narratives should indicate the exact software versions used, the order in which they were 

executed, and all non-default parameters that were specified. Such descriptions should 

account for the fact that computer configurations can differ vastly, even for computers with 

the same operating system. Because it can be difficult for scientists to remember such 
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details after the fact, it is best to record this information throughout the research process, 

rather than at the time of manuscript preparation [8]. 

The following sections describe techniques for automating computational analyses. These 

techniques can diminish the need for scientists to write narratives. However, because it is 

often impractical to automate all computational steps, we expect that, for the foreseeable 

future, narratives will play a vital role in enabling computational reproducibility. 

2. Custom scripts and code can automate research analysis 

Scientific software can often be executed in an automated manner via text-based 

commands. Using such commands—via a command-line interface—scientists can indicate 

the software program(s) to be executed and which parameter(s) should be used. When 

multiple commands must be executed, they can be compiled into scripts specifying the 

order in which the commands should be executed (Figure 1; Additional file 1). In many 

cases, scripts also include commands for installing and configuring software. Such scripts 

serve as valuable documentation not only for individuals who wish to re-execute the 

analysis, but also for the researcher who performed the original analysis [47]. In these 

cases, no amount of narrative is an adequate substitute for providing the actual commands 

that were used. 

When writing command-line scripts, it is essential to explicitly document any software 

dependencies and input data that are required for each step in the analysis. The Make 

utility [114] provides one way to specify such requirements [36]. Before any command is 
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executed, Make verifies that each documented dependency is available. Accordingly, 

researchers can use Make files (scripts) to specify a full hierarchy of operating system 

components and dependent software that must be present to perform the analysis (Figure 

2; Additional file 2). In addition, Make can automatically identify any commands that can be 

executed in parallel, potentially reducing the amount of time required for the analysis. 

Although Make was originally designed for UNIX-based operating systems (such as Mac OS 

or Linux), similar utilities have since been developed for Windows operating systems 

[116]. Box 1 lists various utilities that can be used to automate software execution. 

Box 1. Utilities that can be used to automate software execution 

● GNU Make and Make for Windows: tools for building software from source files 

and for ensuring that the software’s dependencies are met. 

● Snakemake [48]: an extension of Make that provides a more flexible syntax and 

makes it easier to execute tasks in parallel. 

● BPipe [49]: a tool that provides a flexible syntax for users to specify commands to 

be executed; it maintains an audit trail of all commands that have been executed. 

● GNU Parallel [50]: a tool for executing commands in parallel across one or more 

computers. 

● Makeflow [51]: a tool that can execute commands simultaneously on various 
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types of computer architectures, including computer clusters and cloud 

environments. 

● SCONS [52]: an alternative to GNU Make that enables users to customize the 

process of building and executing software using scripts written in the Python 

programming language. 

● CMAKE.org: a tool that enables users to execute Make scripts more easily on 

multiple operating systems. 

As well as creating scripts to execute existing software, many researchers also create new 

software by writing computer code in a programming language such as Python, C++, Java, 

or R. Such code may perform relatively simple tasks, such as reformatting data files or 

invoking third-party software. In other cases, computer code may constitute a manuscript’s 

key intellectual contribution. 

Whether analysis steps are encoded in scripts or as computer code, scientists can support 

reproducibility by publishing these artifacts alongside research papers. By doing so, 

authors enable readers to evaluate the analytical approach in full detail and to extend the 

analysis more readily [53]. Although scripts and code may be included alongside a 

manuscript as supplementary material, a better alternative is to store them in a public 

repository with a permanent URL. It is often also useful to store code in a version control 

system (VCS) [8, 9, 47], and to share it via Web-based services like GitHub.com or 

Bitbucket.org [54]. With such a VCS repository, scientists can track the different versions of 
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scripts and code that have been developed throughout the evolution of the research 

project. In addition, outside observers can see the full version history, contribute revisions 

to the code, and reuse the code for their own purposes [55]. When submitting a 

manuscript, the authors may “tag” a specific version of the repository that was used for the 

final analysis described in the manuscript. 

3. Software frameworks enable easier handling of software 

dependencies 

Virtually all computer scripts and code relies on external software dependencies and 

operating system components. For example, suppose a research study required a scientist 

to apply Student’s t-test. Rather than write code to implement this statistical test, the 

scientist would likely find an existing software library that implements the test and then 

invoke that library from their code. Much time can be saved with this approach, and a wide 

range of software libraries are freely available. However, software libraries change 

frequently; invoking the wrong version of a library may result in an error or an unexpected 

output. Thus, to enable others to reproduce an analysis, it is critical to indicate which 

dependencies (and versions thereof) must be installed. 

One way to address this challenge is to build on a pre-existing software framework, which 

makes it easier to access software libraries that are commonly used to perform specific 

types of analysis task. Typically, such frameworks also make it easier to download and 

install software dependencies, and to ensure that the versions of software libraries and 
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their dependencies are compatible with each other. For example, Bioconductor [56], 

created for the R statistical programming language [57], is a popular framework that 

contains hundreds of software packages for analyzing biological data. The Bioconductor 

framework facilitates versioning, documenting, and distributing code. Once a software 

library has been incorporated into Bioconductor, other researchers can find, download, 

install, and configure it on most operating systems with relative ease. In addition, 

Bioconductor installs software dependencies automatically. These features ease the 

process of performing an analysis, and can help with reproducibility. Various software 

frameworks exist for other scientific disciplines [58–63]. General purpose tools for 

managing software dependencies also exist, for example, Apache Ivy [116] and Puppet 

[117]. 

To best support reproducibility, software frameworks should make it easy for scientists to 

download and install previous versions of a software tool, as well as previous versions of 

dependencies. Such a design enables other scientists to reproduce analyses that were 

conducted with previous versions of a software framework. In the case of Bioconductor, 

considerable extra work may be required to install specific versions of Bioconductor 

software and their dependencies. To overcome these limitations, scientists may use a 

software container or virtual machine to package together the specific versions they used 

in an analysis. Alternatively, they might use third-party solutions such as the aRchive 

project [118]. 
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4. Literate programming combines narratives with code 

Although narratives, scripts, and computer code individually support reproducibility, there 

is additional value in combining these entities. Even though a researcher may provide 

computer code alongside a research paper, other scientists may have difficulty interpreting 

how the code accomplishes specific tasks. A longstanding way to address this problem is 

via code comments: human-readable annotations interspersed throughout computer code. 

However, code comments and other types of documentation often become outdated as 

code evolves throughout the analysis process [64]. One way to overcome this problem is to 

use a technique called literate programming [65]. In this approach, the scientist writes a 

narrative of the scientific analysis and intermingles code directly within the narrative. As 

the code is executed, a document is generated that includes the code, narratives, and any 

outputs (e.g., figures, tables) of the code. Accordingly, literate programming helps ensure 

that readers understand exactly how a particular research result was obtained. In addition, 

this approach motivates the scientist to keep the target audience in mind when performing 

a computational analysis, rather than simply to write code that a computer can parse [65]. 

Consequently, by reducing barriers of understanding among scientists, literate 

programming can help to engender greater trust in computational findings. 

One popular literate programming tool is Jupyter [66]. Using Jupyter.org’s Web-based 

interface, scientists can create interactive “notebooks” that combine code, data, 

mathematical equations, plots, and rich media [67]. Originally known as IPython, and 

previously designed exclusively for the Python programming language, Jupyter now makes 
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it possible to execute code in many different programming languages. Such functionality 

may be important to scientists who prefer to combine the strengths of different 

programming languages. 

knitr [68] has also gained considerable popularity as a literate programming tool. It is 

written in the R programming language, and thus can be integrated seamlessly with the 

array of statistical and plotting tools available in that environment. However, like Jupyter, 

knitr can execute code written in multiple programming languages. Commonly, knitr is 

applied to documents that have been authored using RStudio [69], an open-source tool 

with advanced editing and package management features. 

Jupyter notebooks and knitr reports can be saved in various output formats, including 

hypertext markup language (HTML) and portable document format (PDF; see examples in 

Figures 3 and 4; Additional files 3 and 4). Increasingly, scientists include such documents 

as supplementary materials to journal manuscripts, enabling others to repeat analysis 

steps and recreate manuscript figures [70–73]. 

Scientists typically use literate programming tools for data analysis tasks that can be 

executed interactively, in a modest amount of time (e.g., minutes or hours).  However, it is 

possible to execute Jupyter or knitr at the command line; thus longer running tasks can be 

executed on high-performance computers. 

Literate programming notebooks are suitable for research analyses that require a modest 

amount of computer code. For analyses needing larger amounts of code, more advanced 
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programming environments may be more suitable, perhaps in combination with a “literate 

documentation” tool such as Dexy.it.  

5. Workflow management systems enable software to be executed via a 

graphical user interface 

Writing computer scripts and code seems daunting to many researchers. Although various 

courses and tutorials are helping to make this task less formidable [46, 74–76], many 

scientists use “workflow management systems” to facilitate the execution of scientific 

software [77]. Typically managed via a graphical user interface, workflow management 

systems enable scientists to upload data and process them using existing tools. For 

multistep analyses, the output from one tool can be used as input to additional tools, 

resulting in a series of commands known as a workflow. 

Galaxy [78, 79] has gained considerable popularity within the bioinformatics community, 

especially for performing next-generation sequencing analysis. As users construct 

workflows, Galaxy provides descriptions of how software parameters should be used, 

examples of how input files should be formatted, and links to relevant discussion forums. 

To help with processing large data sets and computationally complex algorithms, Galaxy 

also provides an option to execute workflows on cloud-computing services [80]. In 

addition, researchers can share workflows with each other at UseGalaxy.org; this feature 

has enabled the Galaxy team to build a community that encourages reproducibility, helps 

define best practices, and reduce the time required for novices to get started. 
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Various other workflow systems are freely available to the research community (see Box 

2). For example, VisTrails.org is used by researchers from many disciplines, including 

climate science, microbial ecology, and quantum mechanics [81]. It enables scientists to 

design visual workflows, and connect data inputs with analytical modules and the resulting 

outputs. In addition, VisTrails tracks a full history of how each workflow was created. This 

capability, referred to as “retrospective provenance”, makes it possible for others to not 

only reproduce the final version of an analysis, but also to examine previous incarnations of 

the workflow and how each change influenced the analytical outputs [82]. 

Box 2: Workflow management tools freely available to the research community. 

● Galaxy [78, 79] 

● VisTrails [81] 

● Kepler-project.org [83]  

● CyVerse.org (formerly known as The iPlant Collaborative) [84]  

● GenePattern [85, 86, 119]  

● Taverna.org.uk [87] 

● LONI Pipeline [88, 120] 

Although workflow management systems offer many advantages, users must accept 

tradeoffs. For example, although the teams that develop these tools often provide public 

servers where users can execute workflows, many scientists share these resources, limiting 

the computational power or storage space available to execute large-scale analyses in a 
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timely manner. As an alternative, many scientists install these systems on their own 

computers; however, configuring and supporting them requires time and expertise. In 

addition, if a workflow tool does not yet provide a module to support a given analysis, the 

scientist must create one. This task constitutes additional overheads; however, utilities 

such as the Galaxy Tool Shed [89] are helping to facilitate this process. 

6. Virtual machines encapsulate an entire operating system and software 

dependencies 

Whether within a literate programming notebook, or via a workflow management system, 

an operating system and relevant software dependencies must be installed before an 

analysis is executed. The process of identifying, installing, and configuring such 

dependencies consumes a considerable amount of scientists’ time. Different operating 

systems (and versions thereof) may require different installation and configuration steps. 

Furthermore, earlier versions of software dependencies, which may currently be installed 

on a given computer, may be incompatible with—or produce different outputs than—

newer versions. 

One solution is to use virtual machines, which can encapsulate an entire operating system 

and all software, scripts, code, and data necessary to execute a computational analysis [90, 

91] (Figure 5). Using virtualization software such as VirtualBox or VMWare (see Box 3), a 

virtual machine can be executed on practically any desktop, laptop, or server, irrespective 

of the main (“host”) operating system on the computer. For example, even though a 
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scientist’s computer may be running a Windows operating system, they may perform an 

analysis on a Linux operating system that is running concurrently—within a virtual 

machine—on the same computer. The scientist has full control over the virtual (“guest”) 

operating system, and thus can install software and modify configuration settings as 

necessary. In addition, a virtual machine can be constrained to use specific amounts of 

computational resources (e.g., computer memory, processing power), thus enabling system 

administrators to ensure that multiple virtual machines can be executed simultaneously on 

the same computer without impacting each other’s performance. After executing an 

analysis, the scientist can export the entire virtual machine to a single, binary file. Other 

scientists can then use this file to reconstitute the same computational environment that 

was used for the original analysis. With a few exceptions (see Discussion), these scientists 

will obtain exactly the same results as the original scientist. This process provides the 

added benefits that 1) the scientist must only document the installation and configuration 

steps for a single operating system, 2) other scientists need only install the virtualization 

software and not individual software components, and 3) analyses can be re-executed 

indefinitely, so long as the virtualization software remains compatible with current 

computer systems [92]. The fact that a team of scientists can employ virtual machines to 

ensure that each team member has the same computational environment is also useful 

because team members may have different configurations on their host operating systems. 

One criticism of using virtual machines to support computational reproducibility is that 

virtual machine files are large (typically multiple gigabytes), especially if they include raw 

data files. This imposes a barrier for researchers to share virtual machines with the 
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research community. One option is to use cloud-computing services (see Box 4). Scientists 

can execute an analysis in the cloud, take a “snapshot” of their virtual machine, and share it 

with others in that environment [90, 93]. Cloud-based services typically provide 

repositories where virtual machine files can easily be stored and shared among users. 

Despite these advantages, some researchers may prefer their data to reside on local 

computers, rather than in the cloud—at least while the research is being performed. In 

addition, cloud-based services may use proprietary software, so virtual machines may only 

be executable within each provider’s infrastructure. Furthermore, to use a cloud service 

provider, scientists may need to activate a fee-based account. 

When using virtual machines to support reproducibility, it is important that other scientists 

can not only re-execute the analysis, but also examine the scripts and code used within the 

virtual machine [94]. Although it is possible for others to examine the contents of a virtual 

machine directly, it is preferable to store the scripts and code in public repositories—

separately from the virtual machine—so others can examine and extend the analysis more 

easily [95]. In addition, scientists can use a virtual machine that has been prepackaged for a 

particular research discipline. For example, CloudBioLinux contains a variety of 

bioinformatics tools commonly used by genomics researchers [96]. The scripts for building 

this virtual machine are stored in a public repository [121]. 

Scientists can automate the process of building and configuring virtual machines using 

tools such as Vagrant or Vortex (see Box 3). For either tool, users can write text-based 

configuration files that provide instructions for building virtual machines and allocating 
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computational resources to them. In addition, these configuration files can be used to 

specify analysis steps [95]. Because these files are text based and relatively small (usually a 

few kilobytes), scientists can share them easily and track different versions of the files via 

source control repositories. This approach also mitigates problems that might arise during 

the analysis stage. For example, even when a computer’s host operating system must be 

reinstalled because of a computer hardware failure, the virtual machine can be recreated 

with relative ease. 

Box 3: Virtual machine software. 

Virtualization hypervisors: 

● VirtualBox.org (open source) 

● XenProject.org (open source) 

● VMWare.com (partially open source) 

Virtual machine management tools: 

● VagrantUP.com (open source) 

● Vortex (open source) [122] 

 

Box 4: Commercial cloud-service providers. 
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● Amazon Web Services [123] 

● Rackspace.com/Cloud 

● Google Cloud Platform [124] 

● Windows Azure [125] 

 

7. Software containers ease the process of installing and configuring 

dependencies 

Software containers are a lighter weight alternative to virtual machines. Like virtual 

machines, containers encapsulate operating system components, scripts, code, and data 

into a single package that can be shared with others. Thus, as with virtual machines, 

analyses executed within a software container should produce identical outputs, 

irrespective of the underlying operating system or the software that may be installed 

outside the container (see Discussion for caveats). As is true for virtual machines, multiple 

containers can be executed simultaneously on a single computer, and each container may 

contain different software versions and configurations. However, whereas virtual machines 

include an entire operating system, software containers interface directly with the 

computer's main operating system and extend it as needed (Figure 6). This design provides 

less flexibility than virtual machines because containers are specific to a given type of 
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operating system; however, containers require considerably less computational overhead 

than virtual machines, and can be initialized much more quickly [97]. 

The open source Docker.com utility, which has gained popularity among informaticians 

since its release in 2013, provides the ability to build, execute, and share software 

containers for Linux-based operating systems. Users specify a Docker container’s contents 

using text-based commands. These instructions can be placed in a “Dockerfile”, which other 

scientists can use to rebuild the container. As with virtual machine configuration files, 

Dockerfiles are text based, so they can be shared easily, and can be tracked and versioned 

in source control repositories. Once a Docker container has been built, its contents can be 

exported to a binary file; these files are generally smaller than virtual machine files, so they 

can be shared more easily—for example, via hub.Docker.com. 

A key feature of Docker containers is that their contents can be stacked in distinct layers 

(or “images”). Each image includes software components to address a particular need. 

Within a given research lab, scientists might create general purpose images to support 

functionality for multiple projects, and specialized images to address the needs of specific 

projects. An advantage of Docker’s modular design is that when images within a container 

are updated, Docker only needs to track the specific components that have changed; users 

who wish to update to a newer version must download a relatively small update. In 

contrast, even a minor change to a virtual machine would require users to export and 

reshare the entire virtual machine. 
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Scientists have begun to share Docker images that enable others to execute analyses 

described in research papers [98–100], and to facilitate benchmarking efforts among 

researchers in a given subdiscipline. For example, nucleotid.es is a catalog of genome-

assembly tools that have been encapsulated in Docker images [101, 102]. Genome 

assembly tools differ considerably in the dependencies they require, and in the parameters 

they support. This project provides a means to standardize these assemblers, circumvent 

the need to install dependencies for each tool, and perform benchmarks across the tools. 

Such projects may help to reduce the reproducibility burden on individual scientists. 

The use of Docker containers for reproducible research comes with caveats. Individual 

containers are stored and executed in isolation from other containers on the same 

computer; however, because all containers on a given machine share the same operating 

system, this isolation is not as complete as it is with virtual machines. This means, for 

example, that a given container is not guaranteed to have access to a specific amount of 

computer memory or processing power—multiple containers may have to compete for 

these resources [97]. In addition, containers may be more vulnerable to security breaches 

[97]. Because Docker containers can only be executed on Linux-based operating systems, 

they must be executed within a virtual machine on Windows and Mac operating systems. 

Docker provides installation packages to facilitate this integration; however, the overhead 

of using a virtual machine offsets some of the performance benefits of using containers. 
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Efforts are ongoing to develop and refine software container technologies. Box 5 lists 

various tools that are currently available. In the coming years, these technologies promise 

to play an influential role within the scientific community. 

Box 5: Open-source containerization software. 

● Docker.com  

● LinuxContainers.org 

● lmctfy [126] 

● OpenVZ.org 

● Warden [127] 

 

Conclusions 

Scientific advancement requires researchers to explicitly document the research steps they 

performed and to transparently share those steps with other researchers. This review 

provides a comprehensive, though not exhaustive, list of techniques that can help meet 

these requirements for computational analyses. Science philosopher Karl Popper 

contended that, “[w]e do not take even our own observations quite seriously, or accept 

them as scientific observations, until we have repeated and tested them” [2]. Indeed, in 

many cases, the individuals who benefit most from computational reproducibility are those 
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who performed the original analysis, but reproducible and transparent practices can also 

increase the level at which a scientist’s work is accepted by other scientists [47, 103]. When 

other scientists can reproduce an analysis and determine exactly how its conclusions were 

drawn, they may be more apt to cite and build upon the work. In contrast, when others fail 

to reproduce research findings, it can derail scientific progress and may lead to 

embarrassment, accusations, and retractions. 

We have described seven tools and techniques for facilitating computational 

reproducibility. None of these approaches is sufficient for every scenario in isolation; 

rather, scientists will often find value in combining approaches. For example, a researcher 

who uses a literate programming notebook (that combines narratives with code) might 

incorporate the notebook into a software container so that others can execute it without 

needing to install specific software dependencies. The container might also include a 

workflow management system to ease the process of integrating multiple tools and 

incorporating best practices for the analysis. This container could be packaged within a 

virtual machine or cloud-computing environment to ensure that it can be executed 

consistently (see Figure 7). Binder [104] and Everware [128] are two services that allow 

researchers to execute Jupyter notebooks within a Web browser, using a Docker container 

to package the underlying software, and a cloud-computing environment to execute it. 

Although still under active development, such services may be harbingers of the future for 

computationally reproducible science. 
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The call for computational reproducibility relies on the premise that reproducible science 

will bolster the efficiency of the overall scientific enterprise [105]. Although reproducible 

practices may require additional time and effort, these practices provide ancillary benefits 

that help offset those expenditures [47]. Primarily, scientists may experience increased 

efficiency in their research [47]. For example, before and after a manuscript is submitted 

for publication, it faces scrutiny from co-authors and peer reviewers who may suggest 

alterations to the analysis. Having a complete record of all the analysis steps, and being 

able to retrace those steps precisely, makes it faster and easier to implement the requested 

alterations [47,106]. Reproducible practices can also improve the efficiency of team science 

because colleagues can more easily communicate their research protocols and inspect each 

other’s work; one type of relationship where this is critical is that between academic 

advisors and mentees [106]. Finally, when research protocols are shared transparently 

with the broader community, scientific advancement increases because scientists can learn 

more easily from each other’s work and there is less duplication of effort [106]. 

Reproducible practices do not necessarily ensure that others can obtain identical results to 

those obtained by the original scientists. Indeed, this objective may be infeasible for some 

types of computational analysis, including those that use randomization procedures, 

floating-point operations, or specialized computer hardware [91, 107]. In such cases, the 

goal may shift to ensuring that others can obtain results that are semantically consistent 

with the original findings [5,6]. In addition, in studies where vast computational resources 

are needed to perform an analysis, or where data sets are distributed geographically [108–

110], full reproducibility may be infeasible. Alternatively, it may be infeasible to reallocate 
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computational resources for highly computationally intensive analyses [8]. In these cases, 

researchers can provide relatively simple examples to demonstrate the methodology [8]. 

When legal restrictions prevent researchers from publicly sharing software or data, or 

when software is available only via a Web interface, researchers should document the 

analysis steps as well as possible and describe why such components cannot be shared 

[25]. 

Computational reproducibility does not guarantee against analytical biases, or ensure that 

software produces scientifically valid results [111]. As with any research, a poor study 

design, confounding effects, or improper use of analytical software may plague even the 

most reproducible analyses [111, 112]. On one hand, increased transparency puts 

scientists at a greater risk that such problems will be exposed. On the other hand, scientists 

who are fully transparent about their scientific approach may be more likely to avoid such 

pitfalls, knowing that they will be more vulnerable to such criticisms. Either way, the 

scientific community benefits. 

Lastly, we emphasize that some reproducibility is better than none. Although some of the 

practices described in this review require more technical expertise than others, they are 

freely accessible to all scientists, and provide long-term benefits to the researcher and to 

the scientific community. Indeed, as scientists act in good faith to perform these practices, 

where feasible, the pace of scientific progress will surely increase. 
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Additional files  

Additional file 1: This script is supporting material for Figure 1. It can be used to align 

DNA sequence data to a reference genome. First, it downloads the software and data files 

necessary for the analysis. Then, it extracts (“unzips”) these files, and aligns the data to a 

reference genome for Ebola virus. Finally, it converts, sorts, and indexes the aligned data. 

Additional file 2: This Make file is supporting material for Figure 2. It performs the same 

function as Additional file 1, except that it is formatted for the Make utility. Accordingly, it 

is structured so that specific tasks must be executed before other tasks, in a hierarchical 

manner. 

Additional file 3: This Jupyter notebook is supporting material for Figure 3. It contains 

code (in the Python programming language) for generating random numbers and plotting 

them in a graph.  

Additional file 4: This document contains code (in the R language) for generating random 

numbers and plotting them on a graph. This document is in R Markdown format and can be 

compiled using knitr. 
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Figure legends 

Figure 1. Example of a command line script. This script can be used to align DNA 

sequence data to a reference genome. First, it downloads the software and data files 

necessary for the analysis. Then, it extracts (“unzips”) these files, and aligns the data to a 

reference genome for Ebola virus. Finally, it converts, sorts, and indexes the aligned data. 

See Additional file 1 for an executable version of this script. 

Figure 2. Example of a Make file. This file performs the same function as the command 

line script shown in Figure 1, except that it is formatted for the Make utility. Accordingly, it 

is structured so that specific tasks must be executed before other tasks, in a hierarchical 

manner. See Additional file 2 for an executable version of this file. 

Figure 3. Example of a Jupyter notebook. This example contains code (in the Python 

programming language) for generating random numbers and plotting them in a graph 

within a Jupyter notebook. Importantly, the code and output object (graph) are contained 

within the same document. See Additional file 3 for an executable version of the notebook. 

Figure 4. Example of a document created using knitr. This example contains code (in 

the R language) for generating random numbers and plotting them on a graph. The knitr 

tool was used to generate the document, which combines the code and the output object 

(figure). See Additional file 4 for an executable version of this document. 

Figure 5. Architecture of virtual machines. Virtual machines encapsulate analytical 

software and dependencies within a “guest” operating system, which may be different to 
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the main (“host”) operating system. A virtual machine executes in the context of 

virtualization software, which runs alongside other software installed on the computer. 

Figure 6. Architecture of software containers. Software containers encapsulate 

analytical software and dependencies. In contrast to virtual machines, containers execute 

within the context of the computer’s main operating system. 

Figure 7. Example of a Docker container for genomics research. This container would 

enable researchers to preprocess various types of molecular data, using tools from 

Bioconductor and Galaxy, and to analyze the resulting data within a Jupyter notebook. Each 

box within the container represents a distinct Docker image. These images are layered such 

that some images depend on others (for example, the Bioconductor image depends on R). 

At its base, the container includes operating system libraries, which may not be present (or 

may be configured differently) on the computer’s main operating system. 
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