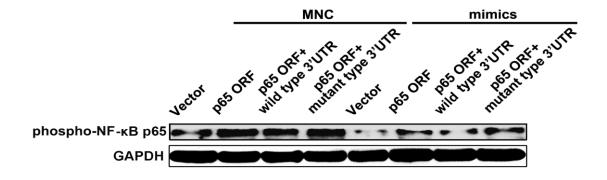
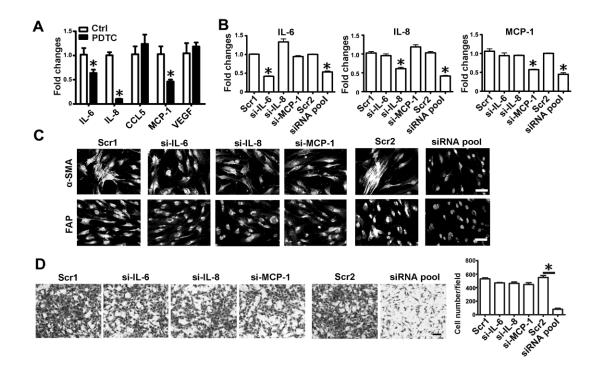

miR-155-5p inhibition promotes the transition of bone marrow mesenchymal stem cells to gastric cancer tissue derived MSC-like cells via NF-kB p65 activation



Supplementary Material


Supplementary Figure 1: Isolation and characteristics of mesenchymal stem cells

A. Morphological appearance of bone marrow mesenchymal stem cells (BM-MSC), gastric cancer tissues derived MSC-like cells (GC-MSC) and adjacent non-cancerous gastric tissues derived MSC-like cells (GCN-MSC) in the 3rd passage. Magnification: $\times 100$, *Scale bar*=50µm. B. Flow cytometric analysis of the surface

antigens of BM-MSC, GC-MSC and GCN-MSC. Monoclonal antibodies against CD44, CD34, CD14 and CD45 were FITC-conjugated, while CD29 and CD105 were PE-conjugated. IgG-PE and IgG-FITC were used in the control group. C. Differentiation potential of BM-MSC, GC-MSC and GCN-MSC. MSCs grew in adipogenic or osteogenic medium for two weeks. Upper: Alkaline phosphatase staining detection for osteogenic differentiation; Lower: Oil-Red-O staining detection for adipogenic differentiation: ×100, *Scale bar* = 50µm.

Supplementary Figure 2: Phosphorylation level of NF-κB p65 detection in BM-MSC co-transfected with ORF constructs and miR-155-5p mimics

Supplementary Figure 3: Downstream molecules of NF-κB p65 identification and their function analysis in GC-MSC

A. *q*RT-PCR of cytokine mRNA expression in GC-MSC after treated with PDTC. B.-D. GC-MSC was transfected with siRNA against each cytokine separately or siRNA pool. B, *q*RT-PCR of IL-6, IL-8 and MCP-1 mRNA expression. C. α -SMA and FAP protein levels detected by immunofluorescent staining, Magnification: 200×, *Scale bar* = 50µm. D. Migration analysis. Magnification: 100×, *Scale bar* =50µm. Representative graphs were shown. Cell number of each field were counted and presented as columns. Data were presented as Means ±SD. * , *P*< 0.05.

Genes	Primers sequences (5'-3')	Annealing	Product
		Temperatures(°C)	length(bp)
β-actin	For ^a :CACGAAACTACTCCCAACTCC	56	265
	Rev ^b :CATACTCC TGCTTGAGCTGATC		
IL-6	For ^a : TACATCCTCGACGGCATCTC	61	252
	Rev ^b : AGCTCTGGCTTGTTCCTCAC		
IL-8	For ^a :GCTCTGTGTGAAGGTGCAGTTT	62	144
	Rev ^b :TTCTGTGTTGGCGCAGTGT		
CCL5	For ^a :GGATTCCTGCAGAGGATCAA	62	154
	Rev ^b :GTGGTGTCCGAGGAATATGG		
MCP-1	For ^a :GAACCGAGAGGCTGAGACTA	59	259
	Rev ^b :GCCTCTGCACTGAGATCTTC		
VEGF	For ^a : CCTTGCTGCTCTACCTCCAC	58	280
	Rev ^b :ATCTGCATGGTGATGTTGGA		

Supplementary Table 1: Primers sequences for *q*RT-PCR and the conditions of amplification

^a For, forward primer; ^b Rev, reverse primer. h, human

oligonucleotide	Sequences(5'-3')	modification	
Mimics negative control	Sense:UUCUCCGAACGUGUCACGUTT		
(MNC)	Antisense:ACGUGACACGUUCGGAGAATT		
·D 155 5 · · ·	Sense:UUAAUGCUAAUCGUGAUAGGGGU	2'-O-Methyl-modified	
miR-155-5p mimics	Antisense:CCCUAUCACGAUUAGCAUUAAUU		
Inhibitor negative control (INC)	CAGUACUUUUGUGUAGUACAA	2'-O-Methyl-modified	
miR-155-5p inhibitor	ACCCCUAUCACGAUUAGCAUUAA		
Scramble control	Sense:UUCUCCGAACGUGUCACGUTT		
(Scr)	Antisense:ACGUGACACGUUCGGAGAATT		
si-NF-ĸB p65	Sense:CCUCCUUUCAGGAGAUGAATT		
si tti kb pos	Antisense:UUCAUCUCCUGAAAGGAGGTT		
si-IKBKE	Sense:GCUGAACCACCAGAACAUUTT		
SI-IKDKE	Antisense:AAUGUUCUGGUGGUUCAGCTT		
si-IL6	Sense:CCCAGGAGAAGAUUCCAAATT	2'-O-Methyl-modified	
51-11.0	Antisense:UUUGGAAUCUUCUCCUGGGTT		
si-IL8	Sense:GCCAGAUGCAAUACAAGAUTT		
51-11.0	Antisense:AUCUUGUAUUGCAUCUGGCTT		
	Sense:GCUGUUAUAACUUCACCAATT		
si-MCP-1	Antisense:UUGGUGAAGUUAUAACAGCTT		

Supplementary Table 2: Sequences and modifications of the oligonucleotides

Supplementary Table 3: Primers sequences for vector construction

Vector	Primers sequences (5'-3')			
luc-NF-кВ p65 3'UTR	For ^a : GAAGCCCTCCAAAAGCACTTAC			
wild type	Rev ^b : CTAGCCAGCTTGGCAACAGAT			
	For ^a :tctctttttggaggtgcttaagcagactgtcgaacttctctggaaagggggga			
luc-NF-κB p65 3'UTR	gctgg			
mutant type	Rev ^b :ccagctccccctttccagagaagtt <i>cgacag</i> tctgcttaagcacctccaaa			
	aagaga			
luc-IKBKE p65 3'UTR	For ^a : TGAAGCTGCTGGCATCTGAC			
wild type	Rev ^b : ATGGAGGAGCAGTACCTGAG			
	For ^{1a} :gctccatggggcacatgaggcatcctga <i>ctgtcg</i> agaatgattccaacact			
	gctcttc			
luc-IKBKE p65 3'UTR	Rev ^{1b} :gaagagcagtgttggaatcattct <i>cgacag</i> tcaggatgcctcatgtgcccc			
mutant type	atggagc			
mutant type	For ^{2a} : gctgctggccaggatgtcgcc <i>ctgtcg</i> accttccactgcctttctccc			
	Rev ^{2b} :gggagaaaggcagtggaaggt <i>cgacag</i> ggcgacatcctggccagcag			
	<u>c</u>			

^a For, forward primer;^b Rev, reverse primer; ^c Sequences in italic and bold indicate mutant sites.