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S1.	Materials	and	Methods	
The	basic,	underlying	model	structure,	like	the	data,	is	largely	as	described	in	SI	

Materials	and	Methods	of	Birrell	et	al.1.	Here,	we	briefly	outline	the	model	dynamics	in	

order	to	introduce	a	slight	change	in	notation,	and	then	we	proceed	to	detail	some	

model	developments	and	detail	two	possible	approaches	to	accommodating	spatial	

heterogeneity	in	transmission.	

	

S1.1	The	model	of	Birrell	et	al.1	
A	deterministic	SEIR	transmission	model	ሺto	be	more	exact,	an	SEEIIR	model,	so	that	the	

exposure	ሺEሻ	and	infectious	ሺIሻ	states	have	Erlang	distributed	waiting	timesሻ,	outputs	a	

time	series	of	numbers	of	newly	infected	individuals,	which,	in	turn,	act	as	input	into	a	

disease	reporting	model.	This	model	component	describes	the	proportion	of	the	new	

infections	that	will	appear	in	each	of	the	various	surveillance	data	streams,	and	the	time	

taken	from	the	initial	infection	to	the	time	of	report	of	the	symptomatic	case.	

	



3 
 

In	general,	assume	that	a	population	has	been	divided	up	into	J	strata,	and	that	we	wish	

to	monitor	an	epidemic	over	K	time	intervals	ሾݐ௡ିଵ, ௡ሻݐ ൌ ሾሺ݊ െ 1ሻݐߜ, ,ሻݐߜ݊ ݊ ൌ 1,… , ܶ.	

Denote	the	state	vector	to	be	࢜ሺݐሻ ൌ ൫ࡿሺݐሻ, ,ሻݐ૚ሺࡱ ,ሻݐ૛ሺࡱ ,ሻݐ૚ሺࡵ 	the	of	each	where	ሻ൯,ݐ૛ሺࡵ

components	is	a	J‐dimensional	vector,	e.g.,	ࡿሺݐሻ ൌ ൛ ௝ܵሺݐሻ; ݆ ൌ 1,… , 	of	evolution	The	ൟ.ܬ

this	state	vector	is	then	approximated	by	the	below	system	of	difference	equations:	

	 ௝ܵሺݐ௡ሻ ൌ ௝ܵሺݐ௡ିଵሻ൫1 െ ,൯ݐߜ௡ିଵሻݐ௝ሺߣ

௡ሻݐଵ,௝ሺܧ ൌ ௡ିଵሻሺ1ݐଵ,௝ሺܧ െ ሻݐߜߪ ൅ ௝ܵሺݐ௡ିଵሻߣ௝ሺݐ௡ିଵሻݐߜ,	

௡ሻݐଶ,௝ሺܧ ൌ ௡ିଵሻሺ1ݐଶ,௝ሺܧ െ ሻݐߜߪ ൅ 	,ݐߜߪ௡ିଵሻݐଵ,௝ሺܧ

௡ሻݐଵ,௝ሺܫ ൌ ௡ିଵሻሺ1ݐଵ,௝ሺܫ െ ሻݐߜߛ ൅ 	,ݐߜߪ௡ିଵሻݐଶ,௝ሺܧ

௡ሻݐଶ,௝ሺܫ ൌ ௡ିଵሻሺ1ݐଶ,௝ሺܫ െ ሻݐߜߛ ൅ .ݐߜߛ௡ିଵሻݐଵ,௝ሺܫ

ሺS1ሻ

where	σ	and	γ	are	related	to	the	mean	durations	of	latent	and	infectious	infection,	dL	

and	dI,	via	

ߪ ൌ 2 ݀୐⁄ ߛ	, ൌ 2 ୍݀⁄ ,	

the	infection	hazard,	ߣ௝ሺݐ௡ିଵሻ,	is	found	through	the	Reed‐Frost	formulation	

௡ሻݐ௝ሺߣ ൌ 1 െෑൣሺ1 െ ௡ሻሻூభ,೔ݐ௝,௜ሺߚ
ሺ௧೙ሻାூమ,೔ሺ௧೙ሻ൧

௃

௜ୀଵ

	

where	ߚ௝,௜ሺݐ௡ሻ	is	the	ሺj,iሻth	entry	of	the	time‐varying	ሺAൈAሻ	matrix	βሺtሻ,	the	entries	of	

which	give	the	infection	rate	of	a	susceptible	individual	in	stratum	j	due	to	a	single	

infectious	individual	in	stratum	i.	We	relate	this	infection	rate	matrix	to	the	epidemic’s	

reproductive	number,	R0,	through	

	 ઺ሺݐሻ ൌ ሻݐሺۻ R଴ ܴ଴
∗ൗ ሺS2ሻ

where	Mሺtሻ	is	a	contact	matrix	describing	the	relative	rates	of	contact	between	any	two	

individuals	of	different	strata,	and	ܴ଴
∗	is	the	dominant	eigenvalue	of	the	next	generation	

matrix	M*	which	has	entries	ܯ௝,௜
∗ ൌ ௝ܰܯ௝,௜ሺ0ሻ݀ூ,	where	Nj	is	the	size	of	the	population	in	

stratum	j.	
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There	are	two	keys	output	time	series	from	the	model.	The	first	is	the	seropositivity,	

which	is	related	to	the	levels	of	cumulative	incidence	in	the	population.	This	can	be	

written	

௝ݍ
ୱୣ୰୭ሺݐ௡ሻ ൌ 1 െ

ௌೕሺ௧೙ሻ

ேೕ
.	

The	second	is	the	number	of	new	infections.	Within	stratum,	j,	in	the	nth	interval,	these	

are	denoted	

	 Δ௝
ሺ୧୬୤ୣୡሻሺݐ௡ሻ ൌ ௝ܵሺݐ௡ିଵሻߣ௝ሺݐ௡ିଵሻݐߜ. ሺS3ሻ

These	are	the	outputs	of	the	transmission	model	that	act	as	inputs	into	the	disease	

reporting	model.	The	disease	reporting	model	has	as	its	outputs,	time	series	composed	

of	the	expected	number	of	reported	healthcare	events	ሺhere,	either	a	GP	consultation	or	

a	virological	confirmation	of	illnessሻ.	These	are	obtained	through	a	convolution	of	a	

fraction	of	the	incident	infections,	

	
௝ߤ
ሺୣ୴ୣ୬୲ሻሺݐ௡ሻ ൌ ௝݌ߠ

ሺୣ୴ୣ୬୲ሻሺݐ௡ሻ෍ ௝݂ሺ݇; ,୴ୣ୬୲ୣߤ ୴ୣ୬୲ଶୣߪ ሻΔ௝
ሺ୧୬୤ୣୡሻሺݐ௡ି௞ሻ

௡

௞ୀ଴

	 ሺS4ሻ

where		represents	the	proportion	of	infections	that	lead	to	febrile	symptoms,	

௝݌
ሺୣ୴ୣ୬୲ሻሺݐ௡ሻ	is	the,	possibly	time‐varying,	proportion	of	symptomatic	cases	that	lead	to	a	

particular	healthcare	event,	and	 ௝݂ሺ݇; ,୴ୣ୬୲ୣߤ ୴ୣ୬୲ଶୣߪ ሻ	is	the	probability	that,	assuming	

that	all	infections	and	disease	reporting	occur	at	the	same	point	in	each	time	interval,	

the	time	from	the	infection	to	the	reporting	of	the	healthcare	event	is	݇ݐߜ.	It	is	then	

assumed	that	the	observed	number	of	events	has	a	probability	distribution	that	is	

centred	on	ߤ௝
ሺୣ୴ୣ୬୲ሻሺݐ௡ሻ.	
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S1.2	Model	extensions	
In	this	study,	the	daily	counts	of	virologically	confirmed	cases	in	the	early	part	of	the	

pandemic	can	be	reasonably	assumed	to	be	distributed	with	mean	as	calculated	by	

Equation	ሺS4ሻ,	whereas	the	primary	care	consultations	are	very	different.	These	counts	

contain	some	significant	contamination	from	individuals	suffering	non‐pandemic	

influenza	like	illness	ሺILIሻ	–	they	have	the	symptoms,	but	not	the	infection,	in	which	we	

are	interested.	This	level	of	‘background’	infection	is	atypical	of	normal	‘flu’	seasons	as	

there	is	a	heightened	sensitivity	amongst	the	public	to	the	presence	of	symptoms,	and	

this	sensitivity	fluctuates	rapidly	due	to,	amongst	other	factors,	the	levels	of	media	

reporting	prevalent	at	any	time.	So	the	existence	of	relevant	historical	data	is	unlikely.	

Furthermore,	there	is	a	strong	within‐week	pattern	in	the	reporting	of	primary	care	

consultations.	There	is	little	to	no	reporting	of	consultations	at	weekends,	whilst	many	

delay	their	consultation	until	the	following	Monday	ሺSupplementary	Fig.	S1ሻ.	Therefore,	

when	considering	daily	data,	we	need	to	consider	a	way	to	account	for	this	pattern.	

Previously1,	these	factors	were	inadequately	handled	and	so	a	large	degree	of	

overdispersion	was	evident	in	the	data,	which	had	to	be	modelled	using	the	negative	

binomial	distribution.	How	the	model	has	since	been	adapted	to	account	for	these	two	

obscuring	factors	is	outlined	in	the	next	two	sub‐sections,	though	we	retain	the	negative	

binomial	distribution	in	the	calculation	of	the	likelihood	of	the	primary	care	

consultation	data.	

	

S1.2.1	Background	consultations	In	Birrell	et	al.1,	posterior	inference	for	the	“background”	

consultation	rates	in	London	ቀܤ௝ሺݐሻቁ	was	obtained	via	a	log‐linear	generalised	linear	

model	ሺglmሻ	in	a	two‐stage	process.	The	first	stage	generated	priors	for	the	parameters	

of	the	glm	by	applying	a	simple	joint	model	for	consultations	and	virological	positivity	
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data	to	data	from	the	English	regions	outside	of	London.	In	the	second	stage,	posterior	

distributions	were	obtained	by	including	the	glm	as	part	of	the	epidemic	model.	In	the	

modelling	of	this	paper,	the	data	from	within‐	and	outside‐London	are	unified	as	the	

models	considered	incorporate	a	spatial	dimension.	This	spatial	aspect	allows	the	

borrowing	of	strength	across	the	regions	and,	as	a	result,	there	is	sufficient	information	

to	estimate	background	parameters	without	the	requirement	for	external	information	

or	modelling	to	generate	an	informative	prior.	As	in	Birrell	et	al1,	within	each	stratum,	

the	background	rates	of	consultation	are	assumed	to	be	piecewise	constant,	remaining	

constant	over	intervals	that	are	approximately	fortnightly	in	duration.	If	time	is	broken	

into	K	intervals,	then,	neglecting	any	spatial	variation	for	the	moment,	the	background	

consultation	rate	is	given	by	the	glm	

log൛ܤ௝ሺݐ௡ሻൟ ൌ ௧೙,௝ݔ
୘ ,ሺ஻ሻࢼ ݊ ൌ 1,… , ܶ; ݅ ൌ 1,… , 	.ܣ

The	precise	nature	of	the	design	vectors	࢞௧೙,௝	and	hence	the	interpretation	of	the	

parameters	ࢼሺ஻ሻ	is	discussed	once	we	formally	introduce	the	spatial	aspect	of	our	

modelling	in	Supplementary	Section	S1.3.1.	

	

Once	the	ܤ௝ሺݐ௡ሻ	have	been	calculated,	define	ߤ௝
∗ሺݐ௡ሻ ൌ ௝ߤ

ሺୋ୔ሻሺݐ௡ሻ ൅ 	the	then	௡ሻ,ݐ௝ሺܤ

virological	swabs	taken	within	time	interval	ሾݐ௡ିଵ, 	given	positivity	have	j	stratum	in	௡ሻ,ݐ

by	

௝ݍ
୴୧୰୭ሺݐ௡ሻ ൌ 1 െ

஻ೕሺ௧೙ሻ

ఓೕ
∗ሺ௧೙ሻ

.	

	

S1.2.2	Day	of	the	week	reporting	effects:	A	highly	evident	artefact	in	the	daily	number	of	

reported	primary	care	consultations	is	the	within‐week	pattern	of	consultation	

ሺSupplementary	Fig.	S1ሻ.	Doctor	surgeries	are	rarely	open	on	weekends	and	are	even	
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less	likely	to	report/swab	patients	on	these	days.	Patients	whose	illness	may	fall	on	a	

weekend	may	delay	their	consultation	until	the	following	Monday.	If	we	denote	

݀ሺݐ௡ሻ ൌ 1,… ,7	to	be	the	day	of	the	week	on	which	the	nth	interval	falls,	then	the	day	of	

the	week	effects	upon	reporting	can	be	accounted	for	by	introducing	scalars	cd	such	that	

	
௝ߤ
ᇱ ሺݐ௡ሻ ൌ ܿௗሺ௧೙ሻߤ௝

∗ሺݐ௡ሻ 	and		ෑܿௗ ൌ 1

଻

ௗୀଵ

ሺS5ሻ

The	second	equation	in	Supplementary	Equation	ሺS5ሻ	is	enforced	to	ensure	identifiable	

effects.	

	
Despite	the	model	adaptations	listed	above	and	therefore	a	much	reduced	degree	of	

dispersion,	the	primary	care	consultations	are	still	assumed	to	have	negative	binomial	

distribution	with	mean	given	by	Supplementary	Equation	ሺS5ሻ	and	variance	

௝ߤ
ᇱ ሺݐ௡ሻሺ1 ൅ 	.factor	dispersion	time‐varyingሻ	ሺpossibly	a	is	0	൐	௧೙ߟ	where	௧೙ሻ,ߟ

	

S1.2.3	Multi‐region	modelling	Epidemics	of	the	type	described	by	our	SEEIIR	model	

ሺSupplementary	Equation	ሺS1ሻሻ	are	most	effective	when	the	studied	population	can	be	

stratified	into	groups	within	which	transmission	dynamics	are	homogeneous.	There	

was	significant	regional	heterogeneity	in	the	2009	A/H1N1pdm	outbreak2,3.	Initially,	

Greater	London	and	West	Midlands	were	the	only	two	regions	with	a	sustained	

spring/summer	first	wave	of	infection.	If	the	pandemic	was	subsequently	modelled	at	a	

national	level,	the	model	ignores	this	heterogeneity,	a	phenomena	compounded	by	the	

fact	that	important	virological	swabbing	data	over‐sampled	the	regions	of	high	

incidence,	leading	to	an	over‐pessimistic	view	of	the	spread	of	infection.	
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It	is	important,	therefore,	to	stratify	by	region,	to	the	finest	spatial	level	that	our	data	

will	permit.	Unfortunately,	this	stratification,	in	practical	terms,	is	heavily	constrained	

by	the	sample	sizes	of	the	virological	and	serological	data.	

	

To	handle	this	regional	variation,	we	stratify	the	transmission	dynamics	according	to	

our	region	definitions.	We	consider	two	main	approaches	to	account	for	spatial	

variation	in	infection.	In	an	approach	that	we	label	the	‘parallel‐region’	model,	each	

region	has	its	own	epidemic	and	there	is	no	inter‐region	transmission.	The	second	

approach,	we	term	the	‘meta‐region’	model,	we	presume	that	census	commuter	data	can	

be	used	as	a	proxy	for	rates	of	contact	between	individuals	of	different	regions.	

	

These	two	modelling	approaches	will	be	discussed	in	detail	in	the	next	two	subsections.	

	

S1.3	Parallel‐region	model	
S1.3.1	Parameterisation:	The	model	of	Birrell	et	al.1	is	implemented	in	each	of	our	four	

regions,	each	with	no	external	influence	upon	transmission	in	the	other	regions.	It	

differs	in	that	many	parameters	are	shared	across	the	regions,	whereas,	for	the	

background	levels	of	consultation,	the	regional	differences	in	consultation	rates	are	

modelled	via	log‐linear	regression.	The	transmission	model	is	parameterised	in	terms	of	

the	initial	rate	of	epidemic	growth	within	each	region,	߰௥,	and	a	further	region	specific	

parameter,	߭௥.	These	parameters	are	a	reparameterisation	of	the	region‐specific	

reproductive	number,	R0,r,	obtained	via	the	expression4	

	
ܴ଴,௥ ൌ ߰௥݀ூ

ቀ
ഗೝ೏ಽ
మ

ାଵቁ
మ

ଵି భ

൬
ഗೝ೏಺
మ శభ൰

మ
, ሺS6ሻ
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and	the	size	of	the	initial	seed	of	infection	I0,r	through1	

	 ଴,௥ܫ ൌ
ௗ಺௘ഔೝ ∑ ேೌೌ

௣ೝ,భ
ሺృౌሻሺ௧బሻோబ,ೝ

, ሺS7ሻ

The	region	specific	ܴ଴,௥	and	ܫ଴,௥	ensure	that	different	timings	and	epidemic	growth	rates	

are	possible	in	each	of	the	regions.	Parameters	that	describe	viral	properties	are	

typically	held	fixed	over	the	regions	but	those	that	are	more	behavioural	in	nature	are	

allowed	to	vary.	Column	3	of	Table	1	gives	the	type	of	spatial	variation	used	for	each	of	

the	parameter	groups.	SI	2.2.1	and	2.2.2	to	Birrell	et	al.1	describe	two	modelling	

challenges,	the	parameterisation	of	the	contact	matrices	and	the	propensity	of	the	ILI	

symptomatic	to	consult	with	a	GP.	These	challenges	are	still	relevant	and,	subject	to	a	

slight	change	in	notation,	are	handled	in	an	identical	fashion	within	each	region	in	the	

modelling	presented	here.	The	consultation	propensity,	pሺGPሻ	is	now,	however,	region	

specific,	so	that	there	are	now	32,	not	8,	parameters	of	this	type	and	݌௥,௔
ሺୋ୔ሻሺݐ௡ሻ	gives	the	

value	of	the	propensity	in	region	r	for	individuals	of	age	group	a	in	the	nth	time	interval.	

	

The	one	parameter	grouping	where	the	spatial	variation	is	modelled	to	any	extent	is	the	

background	consultation	parameters.	As	discussed	in	Supplementary	S1.2.1,	the	

background	consultation	rates	are	constant	over	approximately	fortnightly	intervals.	If	

we	seek,	therefore,	to	evaluate	the	background	rate	of	GP	consultation	in	region,	r,	in	

time	interval,	ሾݐ௡ିଵ,ݐ௡ሻ	among	age	groups	a,	ܤ௥,௔ሺݐ௡ሻ,	we	pick	the	fortnightly	interval	

߬ ≝ ߬ሺݐ௡ሻ ∈ ሼ1, … , ܶሽ	that	contains	the	interval	ሾݐ௡ିଵ,ݐ௡ሻ.	The	overall	model	was	

implemented	a	number	of	times,	initially	starting	with	a	saturated	sub‐model	for	

	:௡ሻݐ௥,௔ሺܤ

	

܏ܗܔ ቀࢇ,࢘࡮ሺ࢚࢔ሻቁ ൌ ࣆ ൅ ࢘ࢻ ൅ ఛࢼ ൅ ࢇࢽ ൅ ఛ࢘ࢾ ൅ ࢇ࢘ࣕ ൅ ࣍ఛࢇ ൅ ࣎࢘ఛࢇ;	
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ݎ ∈ ሼܮ,ܹ,ܰ, ܵሽ, ߬ ൌ 1,… , ௑ܶ, ܽ ൌ 1,… , 	.ܣ

܏ܗܔ ቀࢇ,࢘࡮ሺ࢚࢔ሻቁ ൌ ∗ࣆ ൅ ∗࢘ࢻ ൅ ∗ఛࢼ ൅ ∗ࢇࢽ ൅ ∗ఛ࢘ࢾ ൅ ∗ࢇ࢘ࣕ ൅ ࣍ఛࢇ∗ ൅ ࣎࢘ఛࢇ∗ ;	

ݎ ∈ ሼܮ,ܹ,ܰ, ܵሽ; 	߬ ൌ ௑ܶ ൅ 1,… , ܶ; 	ܽ ൌ 1,… , 	.ܣ

Here	Tx	indicates	the	time	interval	that	concluded	at	the	same	time	as	the	launch	of	the	

National	Pandemic	Flu	Service	ሺNPFSሻ	on	July	23	2009,	and	the	regions	ሼL,W,N,Sሽ	

correspond	to	London,	West	Midlands,	North	and	South	respectively.	Note	that	this	

specification	implies	that	there	are	separate	and	non‐interacting	models	for	the	

background	consultation	rate	in	the	pre‐	and	post‐NPFS	eras.	

	

Using	the	parallel‐region	model,	and	carrying	out	a	crude	model	selection	on	the	basis	

of	the	posterior	mean	deviance,	2 logሼܮሺ߮ሻሽ	given	in	Supplementary	S1.5	Inference,	the	

model	was	repeatedly	implemented	with	higher	order	terms	systematically	removed	in	

the	hope	of	finding	a	more	parsimonious	parameterisation	without	incurring	any	

significant	lack	of	fit	to	the	data.	Additionally,	some	age	groups	and	regions	were	paired	

together,	to	cover	gaps	where	data	denominators	were	too	small	to	warrant	extra	

age/region	effects.	The	final	model	settled	upon,	and	the	one	that	is	applied	over	the	

course	of	the	rest	of	the	analysis	in	the	manuscript,	is:	

ሻ൯࢔ሺ࢚ࢇ,࢘࡮൫܏ܗܔ ൌ ࣆ ൅ ࢘ࢻ ൅ ఛࢼ ൅ ࢇࢽ ൅ ఛ࢘ࢾ ൅ ;ࢇ࢘ࣕ ݎ ∈ ሼܮ,ܹ, ܵሽ; 	߬ ൌ 1,… ௑ܶ; ܽ ൌ 2,… , 	ܣ

ሻ൯࢔ሺ࢚ࢇ,࢘࡮൫܏ܗܔ ൌ ∗ࣆ ൅ ∗࢘ࢻ ൅ ∗ఛࢼ ൅ ∗ࢇࢽ ൅ ∗ࢇ࢘ࣕ ; ݎ ∈ ሼܮ,ܹ, ܵሽ; 	߬ ൌ ௑ܶ ൅ 1,… , ܶ; ܽ ൌ 2,… , 	ܣ
	

with	sum‐to‐zero	constraints	implemented	on	all	regression	terms	and	with	

௡ሻݐே,௔ሺܤ ൌ ௡ሻݐ௥,ଵሺܤ	and	௡ሻݐௌ,௔ሺܤ ൌ 	the	equate	constraints	two	last	These	௡ሻ.ݐ௥,ଶሺܤ

background	in	the	North	and	South	ሺthere	is	insufficient	virological	data	in	the	North	to	

accurately	estimate	the	background	hereሻ	and	the	rates	in	the	൏	1	age	group	are	

assumed	to	be	the	same	as	in	the	1‐4	age	group	ሺthe	QSurveillance	data	don’t	
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distinguish	between	these	age	groups,5	only	the	virological	data	do,6	so	there	is	a	lack	of	

information	to	separately	estimate	the	twoሻ.	

	

S1.3.2	Mixing	As	there	is	no	inter‐regional	transmission	there	is	a	separate	system	of	

forward	simulation	Equations	ሺ1ሻ	for	each	region.	The	pattern	of	transmission	is	

determined	by	the	ሺAAሻ	contact	matrices	Mሺtሻ,	that	are	based	on	contact	rates	derived	

from	POLYMOD	data	from	the	United	Kingdom7.	This	allows	for	a	significant	

computational	speed‐up	as	the	calculation	of	the	likelihood	of	the	data	in	each	region	

can	utilise	parallel	computation.	

	

S1.3.3	Seeding	Supplementary	Equation	ሺS7ሻ	gives	the	initial	number	of	infectives	in	each	

region.	Within	these	regions,	these	infectives	are	distributed	across	the	age‐defined	

strata	according	to	the	normalised	eigenvector	of	the	next	generation	matrix	M*	

corresponding	to	eigenvector	ܴ଴
∗	ሺsee	Supplementary	Equation	ሺS2ሻሻ.	The	relation	

between	the	initial	number	of	infectives	and	the	numbers	of	individuals	in	each	disease	

state	at	t0	are	determined	from	ܫ଴,௥,	the	initial	rate	of	epidemic	growth	߰௥	and	the	mean	

infectious	and	latent	periods.	There	are,	therefore,	two	parameters	per	region	that	

describe	the	initial	condition	of	the	epidemic,	߰௥	and	߭௥.	

	

S1.4	Meta‐region	model		
S1.4.1	Parameterisation	In	the	meta‐region	approach,	the	four	regions	are	linked	by	

commuter	flows.	Together	they	can	be	regarded	as	one	single	region,	the	population	

within	being	divided	into	strata	defined	by	both	age	group	and	region.	In	Equations	ሺ1ሻ	

and	ሺS1ሻ,	the	index	j	could	be	related	to	the	age	ܽ ൌ 	1, . . . , ݎ	region	and	,ܣ ൌ 	1, . . . , ܴ,	by	

assigning	strata	to	be	݆ ൌ ܽ ൅ ݎሺܣ െ 1ሻ.	This	means	that	we	have	the	same	system	of	
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equations	as	in	each	of	the	parallel	region	models,	but	the	number	of	strata	has	

increased	such	that		݆	߳	ሺ1, . . . , 	and	regions	of	number	total	the	are	A	and	R	where	ሻ,ܣܴ

age	groups,	respectively.	This	therefore	leads	to	some	fundamental	differences	between	

the	parallel‐region	approach	and	the	meta‐region	approach:	

•	In	the	parallel‐region	approach,	each	region	has	its	own	exponential	growth	

rate	߰௥,		while	in	the	meta‐region	approach	it	is	a	global	measure.	By	Supplementary	

Equation	ሺS6ሻ,	which	still	holds	within	the	meta‐regional	model	and	for	which	a	detailed	

proof	is	given	in	Supplementary	Section	3,	this	holds	also	for	regional	reproductive	

numbers	ܴ଴,௥.	

		 •	The	initial	seed	of	infection	in	the	parallel‐region	approach	consists	of	a	

number	of	infectious	individuals	in	each	region.	Again,	in	the	meta‐region	approach,	this	

is	a	global	value,	I0.	

	•	In	Equation	ሺ3ሻ	and	Supplementary	Equation	ሺS2ሻ,	the	contact	matrices	ۻሺݐሻ	

are	ሺAAሻ	matrices	for	the	parallel‐region	model.	Now	they	are	ሺRARAሻ	matrices	ሺݐሻ	

ሺsee	equation	ሺ4ሻሻ,	a	consequence	of	the	now	possible	interactions	between	age	groups	

in	different	regions.	

	

S1.4.2	Density	dependence	and	mixing	among	regions	The	last	point	above	requires	some	

thought	as	to	how	the	contact	matrices	are	to	be	specified.	Supplementary	Table	S1	

gives	commuting	matrices	۱ሺܽሻ	for	each	of	the	four	adult	age	groups	describing	the	

proportion	of	individuals	from	each	age	group	who	move	to	other	regions	ሺor	stay	in	

their	native	regionሻ	over	the	course	of	a	specified	day.	We	assume	that	individuals	

younger	than	16	years	do	not	commute.	Let’s	presume	that	these	commuter	movements	

cover	a	fraction	of	a	commuter’s	total	time	.	In	this	proportion	of	time,	transmission	is	

only	possible	between	two	individuals	if	they	are	in	the	same	region.	Assuming	that	
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commuting	movements	all	take	place	at	the	same	time,	an	individual	native	to	region	r	

of	age	group	a	will	be	in	the	same	region	as	an	individual	native	to	region	s	of	age	group	

b	with	probability	∑ ௦௩ሺܾሻோܥ௥௩ሺܽሻܥ
జୀଵ .	We	assume	that,	once	in	a	region,	contacts	

between	any	two	individuals	will	occur	in	proportion	to	POLYMOD‐estimated	rates	of	

contact	between	members	of	their	respective	age	groups.7	Further,	it	is	assumed	that	

there	is	some	density	dependent	effects	on	transmission	ሺi.e.	contacts	are	more	likely	

between	any	two	individuals	when	they	are	in	a	lower‐populated	regionሻ.	Based	on	

these	assumptions,	we	have	a	contact	matrix		giving	rates	of	contact	between	

individuals	of	stratum	ሺݎ, ܽሻ	indexed	by	݆ ൌ ܽ ൅ ݎሺܣ െ 1ሻ	and	stratum		ሺݏ, ܾሻ	indexed	by	

݅൫ൌ ܾ ൅ ݏሺܣ െ 1ሻ൯	to	be	as	defined	in	Equation	ሺ3ሻ,	where	the	‘daytime’	populations	for	

each	stratum	are	given	by	 ௩ܰ,௔
ୈ ൌ ∑ ௦௩ሺܽሻܥ ௦ܰ,௔

ோ
௦ୀଵ .	

	

For	the	model	fitting	in	this	paper,	we	use	a	value	for		that	assumes	that	individuals	

commute	for	a	half‐day	period,	on	five	days	out	of	seven	in	each	week,	so	we	set		ൌ	ሺ1	

/2ሻ		ሺ5/7ሻ	ൌ	5/14.	Transmission	in	this	meta‐region	model,	therefore,	is	directly	

characterised	by	the	interactions	between	regions	arising	from	commuter	flux	as	well	as	

within‐region	interactions.	This	is	the	approach	of	Keeling	et	al.,8	though	alternatives	

exist	in	the	methods	of	Eggo	et	al.9	and	Gog	et	al.10,	where	short‐term	migrations	are	

modelled	via	a	diffusion	process,	e.g.	the	gravity	model.	

	

The	denominators	of	Equation	ሺ3ሻ	give	the	prevalent	degree	of	density	dependence.	

There	are	two	things	to	consider	here:	

•	The	value	of	.	A	value	of		ൌ	0	corresponds	to	frequency	dependent	

transmission	ሺtwo	people	are	equally	like	to	interact	regardless	of	the	population	
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size	of	their	regionሻ,	whereas		ൌ	1	corresponds	to	a	density	dependent	effect	

upon	transmission.	Values	of		ൌ	0,	0.5,	and	1	will	be	considered.	

	•	How	density	dependence	should	be	incorporated.	Equation	ሺ3ሻ	uses	

dependence	upon	the	population	size	of	the	strata	of	the	uninfected	individual	in	

an	infectious	contact.	However,	it	is	not	obvious	why	it	should	be	this	and	not	the	

population	size	of	the	region	to	which	the	infectious	individual	belongs,	and,	

furthermore,	in	the	parallel‐region	model	it	is	assumed	that	there	are	no	density	

dependent	effects	across	the	age	groups.	Therefore,	as	an	alternative,	it	is	

proposed	to	replace	 ௩ܰ,௔
ୈ 	with	the	region‐wide	population	size	 ௩ܰ

ୈ ൌ ∑ ௩ܰ,௔
ୈ஺

௔ୀଵ 	

and	 ௩ܰ,௔
୒ 	with	 ௩ܰ

୒ ൌ ∑ ௩ܰ,௔
୒஺

௔ୀଵ .	This	tests	whether	it	is	the	population	size	of	a	

region	that	is	important	in	density	dependence,	as	opposed	to	the	age‐group	

constitution	of	that	population.	

	

S1.4.3	Seeding	The	POLYMOD‐based	contact	matrices	used	in	the	parallel‐region	model	

lead	to	very	rapid	mixing	and	the	disease‐free	equilibrium	of	infection	is	attained	after	

only	a	relatively	short	time.	Therefore,	fitted	epidemic	curves	are	not	particularly	

sensitive	to	the	choice	of	the	initial	seeding	of	infection	across	the	strata.	

	

On	the	contrary,	the	spatial	heterogeneity	in	population	sizes	and	patterns	of	

movements	in	the	meta‐region	model	means	that	the	initial	seeding	of	infection	will	

affect	the	geographical	spreading	of	the	predicted	epidemics.11,	12	As	illustrated	in	the	

main	text,	the	expanded	ሺRARAሻ	contact	matrix		in	the	meta‐region	model	has	a	

near‐block	diagonal	structure	that	leads	to	very	slow	mixing.	This	renders	doubtful	the	

validity	of	using	an	asymptotically‐justified	seeding	as	the	disease‐free	equilibrium	is	
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attained	very	slowly	ሺif	at	allሻ.	Therefore,	in	addition	to	estimating	the	number	of	initial	

infections,	and	unlike	in	the	parallel‐region	model	where	the	distribution	of	this	seeding	

among	the	seven	age	groups	within	each	region	is	determined	by	the	dominant	

eigenvalue	of	the	next‐generation	matrix,	the	initial	distribution	of	infection	has	to	be	

estimated,	or,	as	here,	some	practical	alternatives	for	specifying	the	distribution	need	to	

be	formulated.	We	consider:	the	next‐generation	matrix‐based	seeding	and	label	this	

the	‘nextgen’	approach;	an	‘empirical’	seeding,	representing	the	distribution	of	an	initial	

number	of	confirmed	cases	observed	prior	to	1st	May,	2009	which	should	hopefully	be	

indicative	of	the	early	pattern	of	infection;	and	an	‘extended	empirical’	seeding,	a	hybrid	

of	the	two	previous	approaches,	where	the	empirical	seeding	is	used	to	divide	the	initial	

infective	individuals	among	the	regions,	and	within	each	region,	the	dominant	

eigenvalue	of	the	within‐region	contact	matrix	is	used	to	determine	the	distribution	

across	the	age	groups	‐	the	distribution	of	the	seeds	that	would	be	used	were	this	region	

to	be	considered	in	isolation,	as	in	the	parallel‐region	model	and	in	Birrell	et	al.1	

	

S1.4.4	Random	Commuters	vs.	Fixed	Commuters	Individuals	within	each	stratum	are	

assumed	to	be	homogeneous	of	behaviour.	That	is,	in	any	given	interval,	any	individual	

within	a	specific	stratum	is	equally	likely	to	be	one	who	commutes.	This	may	well	prove	

to	be	a	gross	simplification	because:	

•	The	bulk	of	commuting	is	done	by	a	much	smaller	sub‐population	within	a	

stratum,	each	of	whom	commutes	on	a	regular	basis.	

	•	Infectious	individuals	are	still	assumed	to	carry	on	with	normal	commuting	

behaviour,	whereas	in	reality,	they	may	well	be	too	ill	to	travel.	

The	first	simplification	we	term	to	be	an	assumption	of	‘commuting	at	random’.	To	

consider	the	possibility	that	there	is	a	fixed	sub‐population	within	each	stratum	who	
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commute	regularly,	we	further	stratify	the	adult	age‐groups	into	‘commuters’	and	‘non‐

commuters’.	Commuters	are	assumed	not	to	stay	in	their	native	region	during	working	

hours,	whereas	non‐commuters	stay	in	their	native	region	with	certainty.	So,	rather	

than	RA	strata	ሺin	our	example,	this	is	74	ൌ	28ሻ,	we	partition	further.	Four	of	the	seven	

age	groups	are	of	adult‐age	individuals	and	can	be	further	divided	into	commuters	and	

non‐commuters	classes.	Therefore	we	now	consider	ሺA	൅	4ሻR	ൌ	44	strata.	In	this	

example,	the	expanded	matrix	has	an	identical	mathematical	expression	as	before	

ሺEquation	ሺ3ሻ,	main	textሻ,	once	Crsሺaሻ	is	replaced	by	ܥ௥௦∗ ሺܽሻ,	where	

∗௥௥ܥ ሺܽሻ ൌ ൜
1, ܽ	belongs	to	a	non‐commuter	class
0, ܽ	belongs	to	a	commuter	class 	

∗௥௦ܥ ሺܽሻ ൌ ቐ
			0,																ܽ	belongs	to	a	non‐commuter	class
௥௦ሺܽሻܥ

1 െ ௥௥ሺܽሻܥ
,					ܽ	belongs	to	a	commuter	class												

	

The	assumption	of	commuting	at	random	speeds	up	the	spread	of	infection	across	the	

four	regions	while	the	fixed	commuting	assumption	increases	the	transiency	of	any	

commuting	effects	and	results	in	greater	heterogeneity	in	the	times	of	peak	infection	

across	the	regions.	However,	simulations	have	shown	that	the	peak	size	and	attack	rate	

are	insensitive	to	the	commuting	assumption.	We	shall	investigate	whether	the	‘fixed	

commuters’	assumption	can	improve	the	model	fit.	

	

S1.5	Inference		
The	statistical	model	developed	was	implemented	within	the	Bayesian	framework.	

Here,	parameter	inference	is	based	upon	posterior	probability	distributions	derived	for	

the	vector	of	parameters	through	the	combination	of	the	likelihood	of	the	data	and	pre‐

specified	prior	distributions	for	the	parameter	components.	Posterior	distributions	are	

not	typically	available	in	an	easy‐to‐express	analytic	form.	Instead,	they	have	to	be	
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approximated	through	sampling	algorithms.	Here	Markov	Chain	Monte	Carlo	ሺMCMCሻ	

has	been	used,	implemented	using	bespoke	C൅൅	code.	

	

Having	obtained	approximations	to	the	posterior	distributions,	inference	can	be	made	

about	other	epidemic	quantities	of	interest,	where	the	quantity	can	be	expressed	as	a	

function	of	our	parameters	ሺsuch	as	the	epidemic	trajectory,	epidemic	attack	rate	etc.ሻ.	

The	Bayesian	framework	specifies	how	the	uncertainty	about	parameters	that	is	

encapsulated	in	their	posterior	distributions	is	propagated	to	functions	of	the	

parameter	vector,	resulting	in	posterior	distributions	for	the	quantities	of	interest.	

	

S1.5.1	Likelihood	The	likelihood	function	is	merely	an	extension	of	that	which	is	

expressed	in	Birrell	et	al.1	If	we	denote	the	collection	of	all	the	model	parameters	by	the	

vector	࣐,	and	

i.	ݓ௥௡௔		is	a	realisation	of	 ௥ܹ௡௔,	the	random	variable	representing	the	number	of	

positive	results	in	a	sample	of	݉௥௡௔
௩ 	virologically	tested	swabs	taken	in	region	r	

in	the	݊th	interval,	ሾݐ௡ିଵ,ݐ௡ሻ	from	individuals	in	age	group	a.	This	data	is	assumed	

to	have	binomial	distribution.		

ii.	ݔ௥௡௔	is	a	realisation	of	ܺ௥௡௔,	the	random	variable	giving	the	number	of	reported	

lab‐confirmed	cases	in	the	interval	ሾݐ௡ିଵ,ݐ௡ሻ	in	region	r,	amongst	individuals	in	

age	group	a.	This	data	is	assumed	to	be	Poisson	distributed.		

iii.	ݕ௥௡௔	is	a	realisation	of	 ௥ܻ௡௔,	the	random	variable	giving	the	number	of	GP	

consultations	in	the	interval	ሾݐ௡ିଵ,ݐ௡ሻ	in	region	r,	amongst	individuals	in	age	

group	a.	This	data	is	assumed	to	have	a	negative‐binomial	distribution.		

iv.	ݖ௥௡௔	is	a	realisation	of	ܼ௥௡௔,	the	random	variable	giving,	in	a	test	for	the	

presence	of	immunity‐conferring	A/H1N1pdm	antibodies,	the	number	of	
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positive	results	from	݉௥௡௔
௦ 	blood	sera	samples	taken	in	the	interval	ሾݐ௡ିଵ,ݐ௡ሻ	in	

region	r,	from	individuals	in	age	group	a.	This	data	is	assumed	to	have	binomial	

distribution.	

	

Conditional	upon	the	model	parameters,	it	is	assumed	that	all	observations	are	

independent.	Therefore,	the	likelihood	can	simply	be	written:	

ሺ࣐ሻܮ ൌ ∏ ∏ ∏ ሼܮሺݓ௥௡௔|݉௥௡௔
௩ , ࣐ሻܮሺݔ௥௡௔|࣐ሻܮሺݕ௥௡௔|࣐ሻܮሺݖ௥௡௔|݉௥௡௔

ௌ , ࣐ሻሽ஺
௔ୀଵ

௄
௡ୀଵ

ோ
௥ୀଵ .	

It	is	worth	noting	how	the	ሺregion‐specificሻ	overdispersion	parameter	for	the	GP	

consultation	data,	ߟ௧೙	helps	to	form	the	likelihood.	The	negative‐binomial	distribution	

has	mean	ߤ௥௔ᇱ ሺݐ௡ሻ,	analogous	to	the	single	region	quantity	expressed	in	Supplementary	

Equation	ሺS5ሻ,	and	variance	given	by	ߤ௥௔ᇱ ሺݐ௡ሻሺ1 ൅ 	the	parameterisation,	this	In	௥,௧೙ሻ.ߟ

negative	binomial	likelihood	is:	

௥௡௔|߮ሻݕሺܮ ൌ
୻ሺ௬ೝ೙ೌା௥ೝ೙ೌሻ

୻ሺ௥ೝ೙ೌሻ୻ሺ௬ೝ೙ೌାଵሻ
൬

ଵ

ଵାఎೝ,೟೙
൰
௥ೝ೙ೌ

൬
ఎೝ,೟೙

ଵାఎೝ,೟೙
൰
௬ೝ೙ೌ

,	

where	ݎ௥௡௔ ൌ ௥௔ᇱߤ ሺݐ௡ሻ/ߟ௥,௧೙.	The	time	dependence	in	the	dispersion	parameter	exists	

through	a	single	change	point	at	the	time	of	the	NPFS	launch,	reflecting	a	systematic	

change	in	GP	consultation	behaviour	of	the	population.	

	

S1.5.2	Priors	Supplementary	Table	S2	provides	a	summary	list	of	all	the	model	

parameters.	Some	are	free	parameters	for	which	priors	need	to	be	specified,	to	enable	

their	estimation	ሺin	the	form	of	posterior	distributionsሻ,	and	others	are	fixed	

parameters,	assumed	to	be	known.	SI2.3.2	to	Birrell	et	al.1	details	the	justification	

behind	many	of	the	prior	distributions	listed	in	the	table.	Here,	some	parameters	have	

an	added	dependency	on	the	index	r,	indicating	regional	variation.	In	this	case,	

parameters	are	independently	and	identically	distributed	across	regions.	There	are	two	
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additional	rows	to	the	table	corresponding	to	the	parameters	of	the	background	

consultation	rate	and	the	day	of	the	week	reporting	effects.	Both	of	these	sets	of	

parameters	have	multivariate	normal	prior	distributions,	of	dimension	61	and	6	

respectively.	The	covariance	matrices	܄ሺ஻ሻ	and	܄ሺ௖ሻ	are	designed	such	that	the	rates	of	

background	consultation,	ܤ௔,௥ሺݐ௡ሻ,	and	the	within‐week	reporting	effects,	ܿௗ,	are,	a	

priori,	everywhere	identically	distributed.		

	

S2.	Further	Results		
Overall,	our	comparisons	suggest	that	the	choice	of		ൌ	1,	and	the	use	of	 ௥ܰ 	rather	than	

௥ܰ,௔	in	Equation	ሺ3ሻ	give	a	better	model	fitting	as	shown	in	Supplementary	Table	S3.	

This	points	to	a	density‐dependent	effect	upon	transmission,	but	makes	the	somewhat	

sensible	choice	that	the	density	dependence	is	governed	by	the	overall	population	size,	

and	not	the	size	of	specific	strata.	Of	the	seeding	options,	the	empirically	based	seeds	

performed	most	strongly,	with	the	extended‐empirical	being	the	preferred	choice.	The	

distinction	between	commuters	and	non‐commuters	in	the	stratification	typically	led	to	

a	mild	improvement	in	fit	under	most	parameterisations.	However,	when	considering	a	

‘best’	model,	i.e.	with		ൌ	1,	regional	density	dependent	effects	and	the	extended	

empirical	seed,	the	improvement	in	the	expansion	to	44	strata	is	no	longer	evident.	As	

this	model	takes	substantially	longer	to	implement,	the	reduced	stratification	that	does	

not	distinguish	between	commuters	and	non‐commuters	is	preferred.	

	

S2.1	The	Estimated	Epidemic	and	Goodness‐of‐fit		
Figure	2	gives	the	temporal	pattern	of	infections	under	both	modelling	approaches	by	

both	age‐group	and	region.	Supplementary	Table	S4	additionally	provides	posterior	
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means	for	the	overall	age‐specific	attack	rates	by	both	age‐group	and	region,	and	

partitions	this	among	the	first	and	second	waves	of	infection.	Fig.	2	presents	

qualitatively	similar	temporal	patterns	in	each	of	the	four	regions.	For	example,	the	four	

regions	each	attained	two	peaks	triggered	by	the	start	of	a	school	holiday	in	weeks	29	

and	43,	with	the	exception	of	the	West	Midlands	which	experienced	a	later	second	peak	

in	week	49.	The	occurrence	of	this	later	peak	in	the	West	Midlands	could,	perversely,	be	

attributable	to	the	fact	that	a	greater	portion	of	its	supply	of	susceptibles	is	drained	by	

the	first	wave,	leading	to	very	slow	second	wave	growth	that	manages	to	persist	over	

the	short	autumn	holiday	period,	whereas	the	epidemic	has	‘burnt	out’	in	the	other	

regions	by	this	time.	The	two	models	demonstrate,	furthermore,	that	the	temporal	

patterns	in	the	North	and	South	are	very	much	dominated	by	the	second	wave	of	

infections,	whereas	the	peak	of	infection	for	London	and	West	Midlands	lie	in	the	first	

wave	ሺeven	if	their	second	waves	may	have	a	greater	cumulative	infectionሻ.	Despite	the	

delayed	second	peak,	the	West	Midlands	still	has	the	lowest	attack	rate	during	the	

second	wave.	

	

There	are	two	main	differences	in	the	results	obtained	under	the	two	modelling	

approaches.	First,	there	is	a	shift	towards	second	wave	infection	in	the	meta‐region	

model	for	London	ሺdemonstrably	so	from	Fig.	2ሻ	and	the	North	who	have	higher	

second‐wave	attack	rates,	whereas	under	the	parallel‐region	model,	the	attack	rate	is	

higher	in	the	first	wave	for	these	two	regions,	the	opposite	being	true	for	West	Midlands	

and	the	South.	As	expected,	the	age	groups	with	the	highest	rates	of	incidence	are	the	5‐

14	year‐olds	ሺSupplementary	Table	S4ሻ,	with	attack	rates	over	two	waves	centred	upon	

53%	ሺ58%ሻ,	53%	ሺ52%ሻ,	63%	ሺ62%ሻ,		63%	ሺ61%ሻ	in	London,	West	Midlands,	the	North	

and	the	South	respectively,	estimated	under	the	parallel‐region	ሺand	meta‐regionሻ	
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model.	The	goodness	of	fit	to	the	GP	consultation	data	under	both	the	parallel‐region	

and	meta‐region	models	ሺas	presented	in	the	main	textሻ	are	presented	in	

Supplementary	Figs.	S2	and	S3	respectively.	The	corresponding	seropositivity	and	

virological	positivity	plots	are	showcased	in	Supplementary	Figs.	S4	and	S5.	To	the	eye,	

all	demonstrate	a	more	than	adequate	fit	to	each	of	the	datasets,	with	the	fit	to	the	

parallel‐region	model	seeming	to	be	slightly	superior	ሺas	evidenced	from	the	posterior	

mean	deviance	statisticsሻ,	particularly	so	for	the	GP	consultation	data	where	the	

observations	fall	within	the	ሺrather	tightሻ	95%	credible	intervals	in	a	significantly	

higher	proportion	of	cases.	

	

S3.	The	relationship	between	the	exponential	growth	rate	ሺrሻ	and	the	
reproductive	number	ሺR0ሻ	in	a	heterogeneously‐mixing	population	
The	mathematical	induction	method	was	applied	to	prove	the	relationship	given	in	

Supplementary	Equation	ሺS6ሻ,	i.e.	

	

ܴ଴ ൌ ߰௥݀ூ
ቀ
߰௥݀௅
2 ൅ 1ቁ

ଶ

1 െ ቀ
߰௥݀ூ
2 ൅ 1ቁ

ିଶ ൌ ݀ூ
ሺ൅ ߰௥ሻଶሺ൅ ߰௥ሻଶ

ሺ2൅ ߰௥ሻ
ଶ ,	 ሺS8ሻ

holds	within	a	heterogeneously‐mixing	population.	Here	݀ூሺൌ ݀௅ሺൌ	and	ሻߛ/2 	are	ሻߪ/2

the	expected	infectious	and	latent	periods,	respectively.		

	

We	first	prove	Supplementary	Equation	ሺS8ሻ	holds	when	the	population	is	composed	of	

one	stratum	ሺJ	ൌ	1ሻ	so	that	mixing	is	homogeneous.	We	need	to	prove	that	

Supplementary	Equation	ሺS8ሻ	will	hold	for	a	population	which	is	composed	of	J	ൌ	n൅1	

strata	provided	it	holds	for	a	population	of	J	ൌ	n	strata.		For	convenience,	we	write	the	

epidemic	system	using	the	set	of	differential	equations	that	the	system	of	difference	

equations	in	Equation	ሺ1ሻ	seek	to	approximate;	also	we	approximate	the	Reed‐Frost	
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formulation	of	the	force	of	infection	used	in	our	model	specification	ሺEquation	ሺ2ሻሻ	is	

approximated	by	the	mass	action	law.		

	

1ሻ Jൌ1.	A	population	is	assumed	to	consist	of	only	one	stratum,	and	the	SEEIIR	

epidemic	is	described	by,	

݀ܵሺݐሻ

ݐ݀
ൌ െλሺݐሻܵሺݐሻ,	

ሻݐଵሺܧ݀

ݐ݀
ൌ λሺݐሻܵሺݐሻ െ σܧଵሺݐሻ,	

ሻݐଶሺܧ݀

ݐ݀
ൌ σܧଵሺݐሻ െ σܧଶሺݐሻ,	

ሻݐଵሺܫ݀

ݐ݀
ൌ σܧଶሺݐሻ െ γܫଵሺݐሻ,	

ሻݐଶሺܫ݀
ݐ݀

ൌ 	γܫଵሺݐሻ െ γܫଶሺݐሻ,	

	
With	force	of	infection	
	

ሻݐሺߣ ൌ 1 െ ሾ1 െ ሻሿூభሺ௧ሻାூమሺ௧ሻݐሺߚ ൎ ሻݐଵሺܫሻሾݐሺߚ ൅ 	,ሻሿݐଶሺܫ
	
where	the	infection	rate	βሺtሻ	is	related	to	the	contact	rate	ሺtሻ	through	

ሻݐሺߚ ൌ ሺݐሻ
ܴ଴

ܰሺ0ሻ݀ூ
.
	

In	particular,	

ሺ0ሻߚ ൌ
ܴ଴
ܰ݀ூ

.	

The	equations	governing	the	rate	of	change	in	the	numbers	within	each	infectious	state	

can	be	written:	

݀
ݐ݀
൮

ଵܧ
ଶܧ
ଵܫ
ଶܫ

൲ ൌ ൮

െσ 0 ሻݐሺߚ̅ ሻݐሺߚ̅
σ െσ 0 0
0 σ െγ 0
0 0 γ െγ

൲൮

ଵܧ
ଶܧ
ଵܫ
ଶܫ

൲ ൌ દଵሺݐሻ൮

ଵܧ
ଶܧ
ଵܫ
ଶܫ

൲.	
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Here ( ) ( ) ( )t t S t  .	Assume	that	the	initial	infections	increase	exponentially	at	a	

growth	rate	r,	we	have	દଵ࢜ଵሺtሻ ൌ ௥࢜ଵሺtሻ,	with	࢜ଵሺݐሻ ൌ ሺܧଵሺݐሻ, ,ሻݐଶሺܧ ,ሻݐଵሺܫ 		.ሻ்	ሻݐଶሺܫ

Hence	we	can	identify	the	characteristic	equation	at	time	t	ൌ	0:	

หદଵ െ ௥۷ସห ൌ ተ
ተ

െσ െ ௥ 0 ሺ0ሻߚ̅ ሺ0ሻߚ̅
σ െσ െ ௥ 0 0
0 σ െγെ௥ 0
0 0 γ െγ െ ௥

ተ
ተ ൌ ܽ െ 	.ሺ0ሻߚܾ̅

Here	 2
r

2
r )()(  a 	and	 )2( r

2  b .	In	the	above	expression,	I4	represents	

the	identity	matrix	of	dimension	4.	We	notice	that	

	


ܽ
ܾ
ൌ
ሺ൅ ߰௥ሻଶሺ൅ ߰௥ሻଶ

ሺ2൅ ߰௥ሻ
ଶ ሺS9ሻ

is	the	eigenvalue	of	the	contact	matrix	̅ߚሺ0ሻ	ሺtrivially	so	as	this	is	a	scalar	quantityሻ.	The	

next	generation	matrix	ሺand	its	eigenvalueሻ	at	time	t	ൌ0	is	ߚഥ ሺ0ሻ݀ூ ൌ ݀ூ ൌ ܴ଴,	as	given	

in	Supplementary	Equation	ሺS8ሻ.	

	

2ሻ Assume	that	a	population	is	divided	into	J	ൌ	n	strata	and	the	SEEIIR	epidemic	is	

described	by,	for	stratum	j,		

	 ݀ ௝ܵሺݐሻ

ݐ݀
ൌ െλ௝ሺݐሻ ௝ܵሺݐሻ,

ሻݐଵ,௝ሺܧ݀

ݐ݀
ൌ λ௝ሺݐሻ ௝ܵሺݐሻ െ σܧଵ,௝ሺݐሻ,	

ሻݐଶ,௝ሺܧ݀

ݐ݀
ൌ σܧଵ,௝ሺݐሻ െ σܧଶ,௝ሺݐሻ,	

ሻݐଵ,௝ሺܫ݀

ݐ݀
ൌ σܧଶ,௝ሺݐሻ െ γܫଵ,௝ሺݐሻ,	

ሻݐଶ,௝ሺܫ݀

ݐ݀
ൌ 	γܫଵ,௝ሺݐሻ െ γܫଶ,௝ሺݐሻ,	

ሺS10ሻ

The	force	of	infection	acting	upon	stratum	j	is	

	 λ௝ሺݐሻ ൌ ∑ ሻݐଵ,௜ሺܫሻൣݐ௝,௜ሺߚ ൅ ሻ൧ݐଶ,௜ሺܫ
௡
௜ୀଵ . ሺS11ሻ
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Here	ߚ௝,௜ሺݐሻ	is	the	infection	rate	of	a	susceptible	individual	in	stratum	j	due	to	a	single	

infectious	individual	in	stratum	i.	It	is	related	to	the	ሺj,iሻth	entry	of	the	contact	matrix	

ሺݐሻ	which	characterises	the	mixing	rate	at	time	t	through	

ሻݐ௝,௜ሺߚ ൌ ௝,௜ሺݐሻ
ܴ଴
ܴ଴
∗	

Here	ܴ଴
∗	is	the	dominant	eigenvalue	of	the	next	generation	matrix	*	which	has	entries	

௝,௜∗ ൌ ௝ܰ௝,௜ሺ0ሻ݀ூ,	where	 ௝ܰ	is	the	size	of	the	population	in	stratum	j.	

	

Equations	governing	the	changing	numbers	within	each	infectious	state	can	be	written	

as		

	 ݀
ݐ݀
࢜௡ሺݐሻ ൌ દ௡ሺݐሻ࢜௡ሺݐሻ ሺS12ሻ

Here	࢜௡ሺݐሻ ൌ 	 ቀܧଵ,ଵሺݐሻ, ,ሻݐଶ,ଵሺܧ ,ሻݐଵ,ଵሺܫ ,ሻݐଶ,ଵሺܫ ,ሻݐଵ,ଶሺܧ … , ሻቁݐଶ,௡ሺܫ
்
	and		

	

દ௡ሺݐሻ ൌ ൮

ଵ,ଵሺݐሻ ଵ,ଶሺݐሻ … ଵ,௡ሺݐሻ
ଶ,ଵሺݐሻ ଶ,ଶሺݐሻ … ଶ,௡ሺݐሻ
… … … …

௡,ଵሺݐሻ ௡,ଶሺݐሻ … ௡,௡ሺݐሻ

൲ ሺS13ሻ

Within	the	above	expression,	the	block	matrices	are	

௝,௝ሺݐሻ ൮

െߪ 0 ሻݐ௝,௝ሺߚ ௝ܵሺݐሻ ሻݐ௝,௝ሺߚ ௝ܵሺݐሻ
ߪ െߪ 0 0
0 ߪ െߛ 0
0 0 ߛ െߛ

൲ ൌ ൮

െߪ 0 ሻݐ௝,௝ሺߚ̅ ሻݐ௝,௝ሺߚ̅
ߪ െߪ 0 0
0 ߪ െߛ 0
0 0 ߛ െߛ

൲	

and

	
௝,௜ሺݐሻ ൮

0 0 ሻݐ௝,௜ሺߚ ௝ܵሺݐሻ ሻݐ௝,௜ሺߚ ௝ܵሺݐሻ
0 0 0 0
0 0 0 0
0 0 0 0

൲ ൌ ൮

0 0 ሻݐ௝,௜ሺߚ̅ ሻݐ௝,௜ሺߚ̅
0 0 0 0
0 0 0 0
0 0 0 0

൲,	

	
where	i,	j	ሼ1,2,…,nሽ	and	i	j.	Letting	̅ߚ௝,௜ሺݐሻߚ௝,௜ሺݐሻ ௝ܵሺݐሻ,	we	define	the	matrix	

	

઺ഥ௡ሺݐሻ ൌ

ۉ

ۈ
ۇ
ሻݐଵ,ଵሺߚ̅ ሻݐଵ,ଶሺߚ̅ … ሻݐଵ,௡ሺߚ̅

ሻݐଶ,ଵሺߚ̅ ሻݐଶ,ଶሺߚ̅ … ሻݐଶ,௡ሺߚ̅
… … … …

ሻݐ௡,ଵሺߚ̅ ሻݐ௡,ଶሺߚ̅ … یሻݐ௡,௡ሺߚ̅

ۋ
ۊ
	 	 ሺS14ሻ
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Assuming	the	initial	infections	increase	exponentially	at	growth	rate	r,	we	have	

દ௡ሺݐሻ࢜௡ሺݐሻ ൌ ௥࢜௡ሺݐሻ,	

giving	rise	to	the	characteristic	equation	at	time	t	ൌ	0	

หદ௡ሺݐሻ െ ௥۷ସ௡ห ൌ ተተ

ଵ,ଵሺݐሻ െ ௥۷ସ ଵ,ଶሺݐሻ … ଵ,௡ሺݐሻ
ଶ,ଵሺݐሻ ଶ,ଶሺݐሻെ௥۷ସ … ଶ,௡ሺݐሻ
… … … …

௡,ଵሺݐሻ ௡,ଶሺݐሻ … ௡,௡ሺݐሻ െ ௥۷ସ

ተተ	

This	can	be	reduced	to		

หદ௡ሺݐሻ െ ௥۷ସ௡ห ൌ ሺെ1ሻ௡ ተተ

ଵ,ଵሺ0ሻߚܾ̅ െ ܽ ଵ,ଶሺ0ሻߚܾ̅ … ଵ,௡ሺ0ሻߚܾ̅

ଶ,ଵሺ0ሻߚܾ̅ ଶ,ଶሺ0ሻߚܾ̅ െ ܽ … ଶ,௡ሺ0ሻߚܾ̅
… … … …

௡,ଵሺ0ሻߚܾ̅ ௡,ଶሺ0ሻߚܾ̅ … ௡,௡ሺ0ሻߚܾ̅ െ ܽ

ተተ	

ൌ ሺെ1ሻ௡ܾ௡ห઺ഥ௡ሺ0ሻ െ ۷௡ห	

ൌ 0,	

where	 ൌ ܽ/ܾ.	This	suggests	expression	ሺS9ሻ	as	an	eigenvalue	of	the	matrix	઺ഥ௡ሺ0ሻ,	as	

shown	in	ሺS14ሻ.	The	dominant	eigenvalue	of	the	next	generation	matrix	∗ ൌ ઺ഥ௡ሺ0ሻ݀ூ	is	

then	݀ூ	as	in	Supplementary	Equation	ሺS8ሻ.
	

3ሻ We	want	to	prove	that	this	relationship	still	holds	for	the	population	of	k	ൌ	n൅1	

strata.		Again,	we	have:	

݀
ݐ݀
࢜௡ାଵሺݐሻ ൌ 	દ௡ାଵሺݐሻ࢜௡ାଵሺݐሻ	

Here	࢜௡ାଵሺݐሻ ൌ ቀ࢜௡ሺݐሻ, ,ሻݐଵ,௡ାଵሺܧ ,ሻݐଶ,௡ାଵሺܧ ,ሻݐଵ,௡ାଵሺܫ ሻቁݐଶ,௡ାଵሺܫ
்
	and	

દ௡ାଵሺݐሻ ൌ

1, 1

2, 1

, 1

1,1 1,2 1, 1, 1

( )

( ) ( )

( )

( ) ( ) ( ) ( )

n

n n

n n

n n n n n n

t

t t

t

t t t t







    

 
 
 
 
 
 
 
 
 

Λ

Θ Λ

Λ

Λ Λ Λ Λ





	

Using	the	assumption	for	the	case	of	J	ൌ	n	strata,	its	characteristic	equation	at	t	ൌ	0	

ሺsuppressing	for	ease	of	presentation	any	dependence	on	timeሻ	is:	
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หદ௡ାଵ െ ௥۷ସሺ௡ାଵሻห ൌ ൫γ ൅ ௥൯
ଶ
൫ߪ ൅ ௥൯

ଶ
หદ௡ െ ௥۷ସ௡ห െ ൫2γ ൅ ௥൯ߪ

ଶۯ௡ ൌ 0,	

where,	

௡ۯ ൌ ተ
ተ

ଵ,ଵ െ ௥۷ସ ⋯ ଵ,௡ ઺෡ଵ,௡ାଵ
⋮ ⋱ ⋮ ⋮

௡,ଵ ⋯ ௡,௡ െ ௥۷ସ ઺෡௡,௡ାଵ
઺෩௡ାଵ,ଵ ⋯ ઺෩௡ାଵ,௡ ௡ାଵ,௡ାଵߚ̅

ተ
ተ	

The	block	matrices	௝,௜ ≡ ௝,௜ሺݐሻ	are	as	defined	previously	and	the	vectors	are:	

઺෩௡ାଵ,௜ ≡ ઺෩௡ାଵ,௜ሺݐሻ ൌ ൫0 0 ሻݐ௡ାଵ,௜ሺߚ̅ ݅			,ሻ൯ݐ௡ାଵ,௜ሺߚ̅ ൌ 1,… , ݊	

and		

઺෡௜,௡ାଵ ≡ ઺෡௜,௡ାଵሺݐሻ ൌ ൮

ሻݐ௜,௡ାଵሺߚ̅
0
0
0

൲.	

This	can	be	broken	down	as	

௡ۯ ൌ ሺെ1ሻ௡ାଶ̅ߚଵ,௡ାଵ

ተ

ተ

ተ

ߪ െߪ െ 
ݎ

0 0 ⋯ 0 0 0 0

0 ߪ െߛ െ 
ݎ

0 ⋯ 0 0 0 0

0 0 ߛ െߛ െ 
ݎ

⋯ 0 0 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

0 0 ߚ̅
݊,1

ߚ̅
݊,1

⋯ െߪ െ 
ݎ

0 ߚ̅
݊,݊

ߚ̅
݊,݊

0 0 0 0 ⋯ ߪ െߪ െ 
ݎ

0 0

0 0 0 0 ⋯ 0 ߪ െߛ െ 
ݎ

0

0 0 0 0 ⋯ 0 0 ߛ െߛ െ 
ݎ

0 0 ߚ̅
݊൅1,1

ߚ̅
݊൅1,1

⋯ 0 0 ߚ̅
݊൅1,݊

ߚ̅
݊൅1,݊

ተ

ተ

ተ

	

൅⋯൅ ሺെ1ሻଶ௡ାଵ̅ߚ௡,௡ାଵ

ተ

ተ

ተ

െߪ െ 
ݎ

0 ߚ̅
1,1

ߚ̅
1,1

⋯ 0 0 ߚ̅
1,݊

ߚ̅
1,݊

0 െߪ െ 
ݎ

0 0 ⋯ 0 0 0 0

0 0 െߛ െ 
ݎ

0 ⋯ 0 0 0 0

0 0 ߛ െߛ െ 
ݎ

⋯ 0 0 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

0 0 0 0 ⋯ ߪ െߪ െ 
ݎ

0 0

0 0 0 0 ⋯ 0 ߪ െߛ െ 
ݎ

0

0 0 0 0 ⋯ 0 0 ߛ െߛ െ 
ݎ

0 0 ߚ̅
݊൅1,1

ߚ̅
݊൅1,1

⋯ 0 0 ߚ̅
݊൅1,݊

ߚ̅
݊൅1,݊

ተ

ተ

ተ

൅ ௡ାଵ,௡ାଵหદ௡ߚ̅ െ ௥۷ସ௡ห.	

After	some	algebraic	operations	we	have	
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௡ۯ ൌ ሺെ1ሻ௡ାଶ̅ߚଵ,௡ାଵ ተተ

ଶ,ଵߚܾ̅ ଶ,ଶߚܾ̅ െ ܽ … ଶ,௡ߚܾ̅
⋮ ⋮ ⋱ ⋮

௡,ଵߚܾ̅ ௡,ଶߚܾ̅ … ௡,௡ߚܾ̅ െ ܽ

௡ାଵ,ଵߚܾ̅ ௡ାଵ,ଶߚܾ̅ … ௡ାଵ,௡ߚܾ̅

ተተ ൅ ⋯	

െ̅ߚ௡,௡ାଵ ተተ

ଵ,ଵߚܾ̅ െ ܽ … ൫2ߛ ൅ ௥൯̅ߚଵ,௡ିଵ ଵ,௡ߚܾ̅
⋮ ⋱ ⋮ ⋮

௡ିଵ,ଵߚܾ̅ … ௡ିଵ,௡ିଵߚܾ̅ െ ܽ ௡ିଵ,௡ߚܾ̅
௡ାଵ,ଵߚܾ̅ … ௡ାଵ,௡ିଵߚܾ̅ ௡ାଵ,௡ߚܾ̅

ተተ	

൅ߚഥ݊൅1,݊൅1 ቚદ݊െ۷4݊ݎቚ.	
	

Putting	this	back,	we	have	

หદ௡ାଵ െ ௥۷ସሺ௡ାଵሻห ൌ ܽหદ௡ െ ௥۷ସ௡ห െ 	௡ۯܾ

ൌ ቀܽ െ ഥ݊൅1,݊൅1ቁߚܾ หદ݊ െ۷4݊ݎห	

൅ሺെ1ሻ݊൅1ܾߚഥ1,݊൅1 ተ
ተ

ഥ2,1ߚܾ ഥ2,2ߚܾ െ ܽ … ݊,ഥ2ߚܾ
⋮ ⋮ ⋱ ⋮

ഥ݊,1ߚܾ ഥ݊,2ߚܾ … ݊,ഥ݊ߚܾ െ ܽ

ഥ݊൅1,1ߚܾ ഥ݊൅1,2ߚܾ … ݊,ഥ݊൅1ߚܾ

ተ
ተ
	

൅⋯൅ ሺെ1ሻଶ௡ܾ̅ߚ௡,௡ାଵ ተተ

ଵ,ଵߚܾ̅ െ ܽ … ଵ,௡ିଵߚܾ̅ ଵ,௡ߚܾ̅
⋮ ⋱ ⋮ ⋮

௡ିଵ,ଵߚܾ̅ … ௡ିଵ,௡ିଵߚܾ̅ െ ܽ ௡ିଵ,௡ߚܾ̅
௡ାଵ,ଵߚܾ̅ … ௡ାଵ,௡ିଵߚܾ̅ ௡ାଵ,௡ߚܾ̅

ተተ	

That	is,	

หદ௡ାଵ െ ௥۷ସሺ௡ାଵሻห ൌ ሺെ1ሻ௡ାଵ ተተ

ଵ,ଵߚܾ̅ െ ܽ ଵ,ଶߚܾ̅ … ଵ,௡ାଵߚܾ̅
ଶ,ଵߚܾ̅ ଶ,ଶߚܾ̅ െ ܽ … ଶ,௡ାଵߚܾ̅
⋮ ⋮ ⋱ ⋮

௡ାଵ,ଵߚܾ̅ ௡ାଵ,ଶߚܾ̅ … ௡ାଵ,௡ାଵߚܾ̅ െ ܽ

ተተ	

ൌ ሺെ1ሻ௡ାଵܾ௡ାଵห઺ഥ௡ାଵሺ0ሻ െ ۷௡ାଵห ൌ 0	

Expression	ሺS9ሻ	is	therefore	an	eigenvalue	of	the	matrix	઺ഥ௡ାଵሺ0ሻ.		The	next	generation	

matrix	at	the	disease‐free	equilibrium,4,13,14	∗ ൌ ઺ഥ௡ାଵሺ0ሻ݀ூ,	has	dominant	eigenvalue	

݀ூ	which	is	the	basic	reproductive	number	of	the	epidemic	system,	given	by	

Supplementary	Equation	ሺS8ሻ.	
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This	completes	the	proof.		
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Supplementary	Tables	
Supplementary	Table	S1:	Commuter	matrices.	For	each	of	the	four	adult	age	groups,	cells	
give	the	proportion	of	individuals	resident	in	the	row	region,	who	move	to	ሺor	stay	inሻ	
each	of	the	four	regions.	

Matrix	
Crs	ሺaሻ	

London	 WM	 North South London WM North	 South
Ages:	16‐24	years	 Ages:	25‐44	years

London	 93.50%	 0.11%	 0.30% 6.12% 92.10% 0.11% 0.26%	 7.54%

WM	 0.43%	 95.60%	 2.29% 1.64% 0.52% 94.80% 2.95%	 1.71%

North	 0.36%	 0.77%	 97.30% 1.57% 0.46% 0.99% 96.90%	 1.67%

South	 5.09%	 0.22%	 0.45% 94.20% 9.29% 0.30% 0.53%	 89.90%

	 ages:	45‐64	years	 ages:	65‐74	years
London	 93.60%	 0.10%	 0.24% 6.10% 85% 0.11% 0.23%	 14.60%

WM	 0.37%	 96%	 2.32% 1.31% 0.35% 97.40% 1.41%	 0.85%

North	 0.35%	 0.83%	 97.80% 1.06% 0.34% 0.47% 98.50%	 0.65%

South	 6.87%	 0.27%	 0.46% 92.40% 4% 0.19% 0.33%	 95.50%
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Supplementary	Table	S2	Inputs	for	model	parameters.	For	each	parameter	grouping,	the	
table	specifies	the	prior	distributions	used	or,	where	the	parameter	is	not	to	be	
estimated	by	the	model,	it’s	assumed	fixed	value.	

Transmission	model	parameter		 Symbol Prior/Fixed	Value
Exponential	growth	rates	 ߰௥ ሺ6.3,	57ሻ
Initial	log‐hazards	of	GP	
consultation		

߭௥
Nሺെ19.15,	16.44ሻ

Mean	Infectious	Period	 dI 2	൅	Z,	Z	 ሺ518,	357ሻ
Mean	Latent	Period	 dL 2
Contact	matrix	parameters		 mi  Uሾ0,	1ሿ	i

Initial	proportion	susceptible	
in	age	group	a		 a

1	ሺ൏	1	yearsሻ,	0.980	ሺ1‐4ሻ,	0.969	ሺ5‐14ሻ,	
0.845	ሺ15‐24ሻ,	0.920	ሺ25‐44ሻ,	0.865	ሺ45‐
64ሻ,	0.762ሺ65൅ሻ

	
Disease	and	Reporting	model	
parameters	

Prior/Fixed	Value

Mean	ሺs.d.ሻ	of	gamma	
distributed	incubation	times		

1.6ሺ1.8ሻ

Proportion	of	infections	
symptomatic	   βሺ32.5,	18.5ሻ

Proportion	of	cases	who	
consult	a	GP,	varying	by	age,	
time	and	region	ሾNote	i	
ൌ1,3,5,7	depending	on	time	
interval	for	child	age	classes	
and	i	ൌ	2,	4,	6,	8	otherwise.		

(GP) ( )ra np t 	

(GP) ( )ra np t ൌ	log൫݌௥,௜ ൫1 െ ⁄௥,௜൯݌ ൯	

௜,௔݌ ∼ ൞

ܰሺെ0.187,0.166ሻ	݅ ൌ 1,2
ܰሺ0.426,0.929ሻ				݅ ൌ 3,4
ܰሺെ0.319,0.263ሻ	݅ ൌ 5,6
ܰሺെ0.284,0.264ሻ	݅ ൌ 7,8

	

Proportion	of	cases	lab‐
confirmed	 ௥݌

ሺେେሻ  βሺ1.03,	2.69ሻ

Mean	ሺs.d.ሻ	of	gamma	
distributed	waiting	time	from	
symptoms	to	GP	
consultation	

2.0	ሺ1.2ሻ

Mean	ሺs.d.ሻ	of	gamma	
distributed	waiting	time	from	
symptoms	to	lab‐confirmation	

6.6	ሺ3.7ሻ

Mean	ሺs.d.ሻ	of	gamma	
distributed	reporting	delay	of	
GP	consultations		

0.5	ሺ0.5ሻ

Reporting	delay	of	Lab	
confirmations		

0

Regression	parameters	for	the	
background	consultation	rates	 ሺ୆ሻࢼ ଺ܰଵሺ૙, ܸሺ୆ሻሻ

Day	of	the	week	effects	on	the	
reporting	of	ILI	cases,	log‐
transformed		

logሺcdሻ
଺ܰሺ૙, ܸሺେሻሻ

GP	consultation	data	dispersion	
parameters	

௥,௜ߟ
 ሺ0.01,	0.01ሻ
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Supplementary	Table	S3:	Model	choice.	Posterior	mean	ሺand	standard	deviation,	s.d.ሻ	
deviance	for	some	candidate	parameterisations	of	the	meta‐region	model,	expressed	as	
a	discrepancy	from	the	deviance	of	the	parallel‐region	model.	The	smallest	values	of	the	
posterior	mean	deviance	represent	the	better	fitting	variants	of	model.		

	 Density‐type Seed‐type #	Strata Dሺሻ	ሺs.d.ሻ	
0.0	 By	strata	 nextgen 28 3,890	ሺ34.23ሻ	
0.0	 By	strata	 nextgen 44 4,376	ሺ33.83ሻ	
0.0	 By	strata	 empirical 28 4,548	ሺ31.53ሻ	
0.0	 By	strata	 empirical 44 4,949	ሺ32.21ሻ	
0.5	 By	strata	 nextgen 28 3,025	ሺ34.21ሻ	
0.5	 By	strata	 nextgen 44 2,241	ሺ32.13ሻ	
0.5	 By	strata	 empirical 28 3,191	ሺ36.65ሻ	
0.5	 By	strata	 empirical 44 2,269	ሺ31.90ሻ	
1.0	 By	strata	 nextgen 28 2,770	ሺ30.23ሻ	
1.0	 By	strata	 nextgen 44 2,466	ሺ30.05ሻ	
1.0	 By	strata	 empirical 28 2,578	ሺ29.43ሻ	
1.0	 By	strata	 empirical 44 2,359 ሺ29.39ሻ	
1.0	 By	region	 nextgen 28 449.2	ሺ27.60ሻ	
1.0	 By	region	 nextgen 44 437.9	ሺ27.21ሻ	
1.0	 By	region	 empirical 28 170.1	ሺ28.47ሻ	
1.0	 By	region	 empirical 44 166.4	ሺ29.76ሻ	
1.0	 By	region	 extended	

empirical
28 57.89	ሺ27.20ሻ	

Parallel‐region	model 0	
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Supplementary	Table	S4	Age‐specific	attack	rates.	Table	gives	posterior	median	ሺand	
95%	CrIsሻ	for	the	age‐specific	attack	rates	in	each	region	in	both	waves	of	the	2009	
pandemic.	Aሻ	presents	the	posterior	statistics	from	fitting	the	parallel‐region	model;	
and	Bሻ	for	the	meta‐region	model.	The	last	column	gives	attack	rates	averaged	over	four	
regions,	weighted	in	accordance	with	the	respective	population	sizes.	

Aሻ	Parallel	region	model		

First	wave	
ሺto	end‐Augሻ	

London West	Midlands North South	 England

Overall	 13.2ሺ11.4,14.9ሻ	 9.8ሺ8.5,11.2ሻ 5.6ሺ4.4,6.9ሻ 3.6ሺ2.9,4.5ሻ	 6.4ሺ5.8,7.1ሻ
൏1y	 18.7ሺ16.2,21.1ሻ	 13.6ሺ11.8,15.4ሻ 8.0ሺ6.4,10.0ሻ 5.2ሺ4.2,6.5ሻ	 9.7ሺ8.7,10.6ሻ
1‐4	y	 29.4ሺ25.4,33.1ሻ	 22.1ሺ19.2,25.1ሻ 13.2ሺ10.4,16.5ሻ 8.7ሺ7.0,10.8ሻ	 15.3ሺ13.6,17.1ሻ
5‐14y	 28.4ሺ25.0,31.4ሻ	 24.1ሺ21.4,27.0ሻ 13.0ሺ10.4,16.0ሻ 9.0ሺ7.2,11.0ሻ	 14.9ሺ13.5,16.4ሻ
15‐24y	 11.9ሺ10.0,13.6ሻ	 9.2ሺ7.8,10.7ሻ 5.6ሺ4.4,7.0ሻ 3.4ሺ2.7,4.2ሻ	 6.1ሺ5.4,6.9ሻ
25‐44y	 13.0ሺ11.1,14.8ሻ	 9.6ሺ8.3,11.2ሻ 5.6ሺ4.5,7.1ሻ 3.7ሺ2.9,4.5ሻ	 6.7ሺ6.0,7.5ሻ
45‐64y	 7.0ሺ5.9,8.1ሻ 5.2ሺ4.4,6.1ሻ 3.1ሺ2.4,3.9ሻ 2.0ሺ1.6,2.4ሻ	 3.4ሺ3.0,3.8ሻ
65൅y	 3.5ሺ2.9,4.0ሻ 2.9ሺ2.4,3.4ሻ 1.6ሺ1.3,2.1ሻ 1.1ሺ0.8,1.3ሻ	 1.8ሺ1.5,2.0ሻ
Second	wave	ሺSep.‐Dec.ሻ	
Overall	 10.1ሺ8.5,11.9ሻ	 10.6ሺ9.0,12.2ሻ 19.3ሺ17.8,21.0ሻ 19.6ሺ18.3,21.0ሻ	 17.1ሺ16.2,18.3ሻ
൏1y	 13.7ሺ11.5,16.2ሻ	 13.7ሺ11.5,15.7ሻ 25.6ሺ23.6,27.6ሻ 26.2ሺ24.6,27.9ሻ	 22.3ሺ21.1,23.7ሻ
1‐4	y	 17.1ሺ14.1,20.7ሻ	 18.7ሺ15.6,21.8ሻ 34.8ሺ31.8,37.9ሻ 36.7ሺ34.3,39.2ሻ	 30.7ሺ28.9,32.8ሻ
5‐14y	 24.9ሺ21.0,29.3ሻ	 29.2ሺ24.9,33.5ሻ 50.4ሺ46.8,53.9ሻ 53.5ሺ50.6,56.1ሻ	 45.6ሺ43.5,47.7ሻ
15‐24y	 9.5ሺ7.9,11.2ሻ	 10.0ሺ8.4,11.6ሻ 19.4ሺ17.6,21.3ሻ 18.8ሺ17.3,20.6ሻ	 16.7ሺ15.5,18.2ሻ
25‐44y	 9.5ሺ7.9,11.2ሻ	 9.0ሺ8.4,11.5ሻ 18.6ሺ16.9,20.4ሻ 18.8ሺ17.4,20.4ሻ	 16.0ሺ15.0,17.4ሻ
45‐64y	 5.4ሺ4.5,6.4ሻ 5.5ሺ4.7,6.5ሻ 10.7ሺ9.7,11.8ሻ 10.5ሺ9.7,11.6ሻ	 9.4ሺ8.7,10.3ሻ
65൅y	 3.4ሺ2.8,4.0ሻ 3.6ሺ3.1,4.2ሻ 6.9ሺ6.3,7.6ሻ 6.9ሺ6.3,7.5ሻ	 6.1ሺ5.7,6.7ሻ
	
	

Bሻ	Meta‐region	model	

First	wave	
ሺto	end‐Augሻ	

London West	Midlands North South	 England

Overall	 9.9ሺ8.9,11.0ሻ	 12.4ሺ11.5,13.3ሻ 4.7ሺ4.2,5.2ሻ 6.0ሺ5.4,6.6ሻ	 6.8ሺ6.1,7.4ሻ
൏1y	 14.0ሺ12.6,15.4ሻ	 16.9ሺ15.7,18.1ሻ 6.5ሺ5.8,7.2ሻ 8.4ሺ7.6,9.3ሻ	 9.7ሺ8.8,10.6ሻ
1‐4	y	 20.6ሺ17.9,23.4ሻ	 25.4ሺ22.6,28.0ሻ 9.9ሺ8.4,11.4ሻ 12.7ሺ11.0,14.5ሻ	 14.4ሺ12.5,16.3ሻ
5‐14y	 20.8ሺ19.0,22.7ሻ	 29.6ሺ27.6,31.6ሻ 10.4ሺ9.5,11.5ሻ 13.8ሺ12.6,15.1ሻ	 15.3ሺ14.0,16.6ሻ
15‐24y	 9.3ሺ8.1,10.5ሻ	 12.2ሺ11.2,13.3ሻ 4.9ሺ4.3,5.6ሻ 6.0ሺ5.4,6.8ሻ	 6.7ሺ6.0,7.5ሻ
25‐44y	 10.0ሺ8.9,11.2ሻ	 12.5ሺ11.6,13.6ሻ 4.9ሺ4.3,5.4ሻ 6.4ሺ5.7,7.1ሻ	 7.1ሺ6.4,7.9ሻ
45‐64y	 5.4ሺ4.8,6.1ሻ	 7.0ሺ6.4,7.6ሻ 2.7ሺ2.4,3.1ሻ	 3.5ሺ3.1,3.9ሻ	 3.8ሺ3.4,4.3ሻ
65൅y	 2.7ሺ2.3,3.0ሻ	 4.0ሺ3.6,4.3ሻ 1.4ሺ1.3,1.6ሻ 1.9ሺ1.7,2.2ሻ	 2.0ሺ1.8,2.3ሻ
Second	wave	ሺSep.‐Dec.ሻ	
Overall	 16.2ሺ14.9,17.6ሻ	 8.9ሺ7.5,10.4ሻ 20.6ሺ19.6,21.7ሻ 18.0ሺ17.0,19.0ሻ	 17.8ሺ16.7,18.9ሻ
൏1y	 21.7ሺ19.9,23.5ሻ	 11.1ሺ9.4,13.0ሻ 26.7ሺ25.4,28.0ሻ 23.5ሺ22.1,24.8ሻ	 23.0ሺ21.6,24.4ሻ
1‐4	y	 28.0ሺ25.2,30.9ሻ	 15.1ሺ12.5,18.0ሻ 37.0ሺ35.0,39.2ሻ 32.6ሺ30.4,34.8ሻ	 31.5ሺ29.3,33.8ሻ
5‐14y	 36.7ሺ34.0,39.5ሻ	 22.0ሺ18.8,25.5ሻ 51.8ሺ50.2,53.5ሻ 46.7ሺ44.7,48.6ሻ	 44.5ሺ42.5,46.6ሻ
15‐24y	 15.8ሺ14.5,17.3ሻ	 9.0ሺ7.6,10.6ሻ 21.2ሺ19.7,22.6ሻ 17.9ሺ16.7,19.3ሻ	 17.9ሺ16.6,19.3ሻ
25‐44y	 15.6ሺ14.3,17.0ሻ	 8.7ሺ7.3,10.2ሻ 20.2ሺ18.9,21.4ሻ 17.7ሺ16.5,18.9ሻ	 17.3ሺ16.0,18.5ሻ
45‐64y	 9.1ሺ8.3,10.0ሻ	 5.0ሺ4.2,5.9ሻ 11.7ሺ10.8,12.6ሻ 10.2ሺ9.4,11.0ሻ	 10.1ሺ9.3,10.9ሻ
65൅y	 5.6ሺ5.1,6.2ሻ 3.3ሺ2.7,3.9ሻ 7.6ሺ7.0,8.1ሻ 6.7ሺ6.2,7.2ሻ	 6.5ሺ6.0,7.1ሻ
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Supplementary	Figures		
	

	

Supplementary	Figure	S1:	Daily	reporting	patterns	of	GP	consultations	within	London.	
The	bars	give	the	proportion	of	the	total	number	of	consultations	that	were	reported	on	
each	of	the	days	of	the	week.	As	can	be	seen,	consultations	are	typically	not	reported	on	
a	Saturday	or	a	Sunday.	
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Supplementary	Figure	S2	Goodness‐of‐fit	of	the	parallel‐region	model	to	the	GP	

consultation	data,	aggregated	by	age.	Red	൅’s	indicate	the	observed	number	of	

consultations.	The	darker	shaded	area	represent	the	95%	CrI	for	the	expected	number	

of	consultations,	the	wider,	lighter	grey	interval	gives	a	posterior	predictive	95%	CrI	for	

the	observed	data	–	i.e.	95%	of	the	data	points	should	lie	within	this	wider	interval.	
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Supplementary	Figure	S3	Goodness‐of‐fit	of	the	meta‐region	model	to	the	GP	

consultation	data,	aggregated	by	age.	See	Supplementary	Figure	S2	for	explanation.	
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Supplementary	Figure	S4ሺaሻ	Goodness‐of‐fit	of	the	parallel‐region	model	to	the	

seropositivity	data,	stratified	by	age	and	region.	Data	points	are	marked	by	the	dots,	

with	blue	dots	being	those	that	are	omitted	by	the	model	predicted	95%	credible	

intervals	ሺthe	vertical	dashed	linesሻ.	
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Supplementary	Figure	S4ሺbሻ	Goodness‐of‐fit	of	the	meta‐region	model	to	the	

seropositivity	data,	stratified	by	age	and	region.	See	Supplementary	Figure	S4ሺaሻ	for	

explanation.	

	 	



39 
 

						
	
					
	

Supplementary	Figure	S5ሺaሻ	Goodness‐of‐fit	of	the	parallel‐region	model	to	the	weekly‐

aggregated	viropositivity	data,	stratified	by	age	in	London.	Data	points	are	given	by	the	

dots	of	variable	with	and	colour.	The	width	indicates	the	size	of	the	denominator	

relative	to	other	points	in	the	same	plot.	The	colour	of	the	points	indicates	the	overall	

size	of	the	denominator,	with	dark	red	points	being	those	of	largest	sample	size.	The	

light	grey	vertical	lines	give	a	containing	95%	CrI	for	the	data	points	under	the	model.	
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Supplementary	Figure	S5ሺbሻ	Goodness‐of‐fit	of	the	parallel‐region	model	to	the	weekly‐

aggregated	viropositivity	data,	stratified	by	age	in	the	West	Midlands.	See	

Supplementary	Figure	S5ሺaሻ	for	greater	detail.	
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Supplementary	Figure	S5ሺcሻ	Goodness‐of‐fit	of	the	parallel‐region	model	to	the	weekly‐

aggregated	viropositivity	data,	stratified	by	age	in	the	North.	See	Supplementary	Figure	

S5ሺaሻ	for	greater	detail.	
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Supplementary	Figure	S5ሺdሻ	Goodness‐of‐fit	of	the	parallel‐region	model	to	the	weekly‐

aggregated	viropositivity	data,	stratified	by	age	in	the	South.	See	Supplementary	Figure	

S5ሺaሻ	for	greater	detail.	
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Supplementary	Figure	S5ሺeሻ	Goodness‐of‐fit	of	the	meta‐region	model	to	the	

viropositivity	data,	stratified	by	age	in	London.	See	Supplementary	Figure	S5ሺaሻ	for	a	

more	in‐depth	explanation.	
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Supplementary	Figure	S5ሺfሻ	Goodness‐of‐fit	of	the	meta‐region	model	to	the	

viropositivity	data,	stratified	by	age	in	the	West	Midlands.	See	Supplementary	Figure	

S5ሺaሻ	for	a	more	in‐depth	explanation.	
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Supplementary	Figure	S5ሺgሻ	Goodness‐of‐fit	of	the	meta‐region	model	to	the	

viropositivity	data,	stratified	by	age	in	the	North.	See	Supplementary	Figure	S5ሺaሻ	for	a	

more	in‐depth	explanation.	 	



46 
 

	

Supplementary	Figure	S5ሺhሻ	Goodness‐of‐fit	of	the	meta‐region	model	to	the	

viropositivity	data,	stratified	by	age	in	the	South.	See	Supplementary	Figure	S5ሺaሻ	for	a	

more	in‐depth	explanation.	


