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S1. Materials and Methods

The basic, underlying model structure, like the data, is largely as described in SI
Materials and Methods of Birrell et all. Here, we briefly outline the model dynamics in
order to introduce a slight change in notation, and then we proceed to detail some
model developments and detail two possible approaches to accommodating spatial

heterogeneity in transmission.

S1.1 The model of Birrell et all
A deterministic SEIR transmission model (to be more exact, an SEEIIR model, so that the

exposure (£) and infectious (/) states have Erlang distributed waiting times), outputs a
time series of numbers of newly infected individuals, which, in turn, act as input into a
disease reporting model. This model component describes the proportion of the new
infections that will appear in each of the various surveillance data streams, and the time

taken from the initial infection to the time of report of the symptomatic case.



In general, assume that a population has been divided up into /strata, and that we wish
to monitor an epidemic over Ktime intervals [t,,_,,t,) = [(n — 1)6t,nét),n =1, ..., T.
Denote the state vector to be v(t) = (S(t), E1(t), Eo(t),I;(¢), I;(£)), where each of the
components is a /-dimensional vector, e.g.,, S(t) = {S;(¢);j = 1, ...,J}. The evolution of
this state vector is then approximated by the below system of difference equations:

Si(ty) = Sj(tn—l)(l — Aj(tn—1)6t),
Eyj(ty) = Eyj(th—1) (1 — 06t) + S;(ty—1)4;(tn-1) 68,
E, ;(ty) = Ey;(t,—1)(1 — 06t) + Ey j(tn_1)08t, (S1)
I j(ty,) = I j(t,—1)(A — y8t) + E ;(t,_1)06t,
Ljj(ty) = I, j(ty,—1) (A —y&t) + I j(t,_,)yt.

where oand yare related to the mean durations of latent and infectious infection, di.
and d, via

o=2/d,y=2/d,
the infection hazard, 4;(t,_,), is found through the Reed-Frost formulation

J

3 = 1= | @ = Baeaysiteniaicn]

i=1
where B; ;(t,) is the ()™ entry of the time-varying (4% 4) matrix B(¢), the entries of
which give the infection rate of a susceptible individual in stratum jdue to a single
infectious individual in stratum Z We relate this infection rate matrix to the epidemic’s

reproductive number, Ry, through

B(®) = M(®) "/ (s2)
where M({) is a contact matrix describing the relative rates of contact between any two
individuals of different strata, and R is the dominant eigenvalue of the next generation
matrix M* which has entries M;; = N;M;;(0)d,, where /;is the size of the population in

stratum /.



There are two keys output time series from the model. The first is the seropositivity,
which is related to the levels of cumulative incidence in the population. This can be

written

Sj(tn)

Gt = 1 - L
The second is the number of new infections. Within stratum, j in the nth interval, these
are denoted

A (6) = Sj(tn-1)2j (tn-1)O. (S3)
These are the outputs of the transmission model that act as inputs into the disease
reporting model. The disease reporting model has as its outputs, time series composed
of the expected number of reported healthcare events (here, either a GP consultation or

a virological confirmation of illness). These are obtained through a convolution of a

fraction of the incident infections,

n
inf
e (t,) = 0pSVe (t,) Z £(K; Hevents 0&en) ™ (tn—i) (54)
k=0

where frepresents the proportion of infections that lead to febrile symptoms,
p](.event)(tn) is the, possibly time-varying, proportion of symptomatic cases that lead to a
particular healthcare event, and f;(k; tevent, 02,ene) is the probability that, assuming
that all infections and disease reporting occur at the same point in each time interval,

the time from the infection to the reporting of the healthcare event is kdt. It is then

assumed that the observed number of events has a probability distribution that is

centred on ,u§event) (t,).



S1.2 Model extensions
In this study, the daily counts of virologically confirmed cases in the early part of the

pandemic can be reasonably assumed to be distributed with mean as calculated by
Equation (S4), whereas the primary care consultations are very different. These counts
contain some significant contamination from individuals suffering non-pandemic
influenza like illness (ILI) - they have the symptoms, but not the infection, in which we
are interested. This level of ‘background’ infection is atypical of normal ‘flu’ seasons as
there is a heightened sensitivity amongst the public to the presence of symptoms, and
this sensitivity fluctuates rapidly due to, amongst other factors, the levels of media
reporting prevalent at any time. So the existence of relevant historical data is unlikely.
Furthermore, there is a strong within-week pattern in the reporting of primary care
consultations. There is little to no reporting of consultations at weekends, whilst many
delay their consultation until the following Monday (Supplementary Fig. S1). Therefore,
when considering daily data, we need to consider a way to account for this pattern.
Previously?, these factors were inadequately handled and so a large degree of
overdispersion was evident in the data, which had to be modelled using the negative
binomial distribution. How the model has since been adapted to account for these two
obscuring factors is outlined in the next two sub-sections, though we retain the negative
binomial distribution in the calculation of the likelihood of the primary care

consultation data.

$1.2.1 Background consultations In Birrell et a/l, posterior inference for the “background”
consultation rates in London (Bj (t)) was obtained via a log-linear generalised linear

model (glm) in a two-stage process. The first stage generated priors for the parameters

of the glm by applying a simple joint model for consultations and virological positivity



data to data from the English regions outside of London. In the second stage, posterior
distributions were obtained by including the glm as part of the epidemic model. In the
modelling of this paper, the data from within- and outside-London are unified as the
models considered incorporate a spatial dimension. This spatial aspect allows the
borrowing of strength across the regions and, as a result, there is sufficient information
to estimate background parameters without the requirement for external information
or modelling to generate an informative prior. As in Birrell ef a, within each stratum,
the background rates of consultation are assumed to be piecewise constant, remaining
constant over intervals that are approximately fortnightly in duration. If time is broken
into Kintervals, then, neglecting any spatial variation for the moment, the background
consultation rate is given by the glm

log{B;(t,)} = xgn,j[i'(B),n =1,.,T;i=1,..,A.
The precise nature of the design vectors x;, ; and hence the interpretation of the

parameters B is discussed once we formally introduce the spatial aspect of our

modelling in Supplementary Section S1.3.1.

Once the B;(t,) have been calculated, define p;(t,) = ,uEGP)(tn) + Bj(ty), then the
virological swabs taken within time interval [t,,_,, t,,), in stratum jhave positivity given

by

Bj(tn)
#;(tn)'

ay(t) = 1-
S1.2.2 Day of the week reporting effects: A highly evident artefact in the daily number of
reported primary care consultations is the within-week pattern of consultation

(Supplementary Fig. S1). Doctor surgeries are rarely open on weekends and are even



less likely to report/swab patients on these days. Patients whose illness may fall on a
weekend may delay their consultation until the following Monday. If we denote
d(t,) = 1,...,7 to be the day of the week on which the nth interval falls, then the day of

the week effects upon reporting can be accounted for by introducing scalars ¢z such that

7

() = Caqitj ) and | [eq=1 (55)
d=1

The second equation in Supplementary Equation (S5) is enforced to ensure identifiable

effects.

Despite the model adaptations listed above and therefore a much reduced degree of
dispersion, the primary care consultations are still assumed to have negative binomial
distribution with mean given by Supplementary Equation (S5) and variance

w;(t)(1 +ny,), wheren, > 0isa (possibly time-varying) dispersion factor.

$1.2.3 Multi-region modelling Epidemics of the type described by our SEEIIR model
(Supplementary Equation (S1)) are most effective when the studied population can be
stratified into groups within which transmission dynamics are homogeneous. There
was significant regional heterogeneity in the 2009 A/H1N1pdm outbreak?23. Initially,
Greater London and West Midlands were the only two regions with a sustained
spring/summer first wave of infection. If the pandemic was subsequently modelled at a
national level, the model ignores this heterogeneity, a phenomena compounded by the
fact that important virological swabbing data over-sampled the regions of high

incidence, leading to an over-pessimistic view of the spread of infection.



It is important, therefore, to stratify by region, to the finest spatial level that our data
will permit. Unfortunately, this stratification, in practical terms, is heavily constrained

by the sample sizes of the virological and serological data.

To handle this regional variation, we stratify the transmission dynamics according to
our region definitions. We consider two main approaches to account for spatial
variation in infection. In an approach that we label the ‘parallel-region’ model, each
region has its own epidemic and there is no inter-region transmission. The second
approach, we term the ‘meta-region’ model, we presume that census commuter data can

be used as a proxy for rates of contact between individuals of different regions.

These two modelling approaches will be discussed in detail in the next two subsections.

$1.3 Parallel-region model
S1.3.1 Parameterisation: The model of Birrell et al! is implemented in each of our four

regions, each with no external influence upon transmission in the other regions. It
differs in that many parameters are shared across the regions, whereas, for the
background levels of consultation, the regional differences in consultation rates are
modelled via log-linear regression. The transmission model is parameterised in terms of
the initial rate of epidemic growth within each region, 1,., and a further region specific
parameter, U,.. These parameters are a reparameterisation of the region-specific

reproductive number, R, obtained via the expression*

(MH)Z

e (S6)
1- a2
(5]



and the size of the initial seed of infection /4 -through?

d,e”TZ N
Ioy =<y (87)

Pi3 (Eo)Ro,
The region specific Ry - and Iy ,- ensure that different timings and epidemic growth rates
are possible in each of the regions. Parameters that describe viral properties are
typically held fixed over the regions but those that are more behavioural in nature are
allowed to vary. Column 3 of Table 1 gives the type of spatial variation used for each of
the parameter groups. SI 2.2.1 and 2.2.2 to Birrell et a/! describe two modelling
challenges, the parameterisation of the contact matrices and the propensity of the ILI
symptomatic to consult with a GP. These challenges are still relevant and, subject to a

slight change in notation, are handled in an identical fashion within each region in the

modelling presented here. The consultation propensity, p(GP) is now, however, region

specific, so that there are now 32, not 8, parameters of this type and pﬁgp) (t,,) gives the

value of the propensity in region rfor individuals of age group ain the nth time interval.

The one parameter grouping where the spatial variation is modelled to any extent is the
background consultation parameters. As discussed in Supplementary S1.2.1, the
background consultation rates are constant over approximately fortnightly intervals. If
we seek, therefore, to evaluate the background rate of GP consultation in region, r; in
time interval, [t,_4,t,) among age groups g, B, 4(t,,), we pick the fortnightly interval

T ¥ 7(t,) € {1, ..., T} that contains the interval [t,_1,t,,). The overall model was

implemented a number of times, initially starting with a saturated sub-model for

Br,a (tn):

10g (Bya(tn)) = m+ @y + Br + Va + 8yc + €ra + Sra + Treas



re{lL,W,N,S},t=1,..,Ty,a=1,..,A.
10g (Bra(ts)) = 1" + & + Bi + Vi + 81c + €10 + Sta + Thea
re{lLLW,N,S}; 1=Tx+1,..,T; a=1,..,A.
Here 7% indicates the time interval that concluded at the same time as the launch of the
National Pandemic Flu Service (NPFS) on July 23 2009, and the regions {L,W,N,S}
correspond to London, West Midlands, North and South respectively. Note that this
specification implies that there are separate and non-interacting models for the

background consultation rate in the pre- and post-NPFS eras.

Using the parallel-region model, and carrying out a crude model selection on the basis
of the posterior mean deviance, 2 log{L(¢)} given in Supplementary S1.5 Inference, the
model was repeatedly implemented with higher order terms systematically removed in
the hope of finding a more parsimonious parameterisation without incurring any
significant lack of fit to the data. Additionally, some age groups and regions were paired
together, to cover gaps where data denominators were too small to warrant extra
age/region effects. The final model settled upon, and the one that is applied over the
course of the rest of the analysis in the manuscript, is:

10g(B,o(t)) =+, + B +Ve+ 8+ €T €{LW,S1=1.Tx;a=2,..,4

log(B,o(t))=p +a;+Bi+va+€aur €{LW,SEt=Tx+1,...Ta=2,..,4

with sum-to-zero constraints implemented on all regression terms and with

By o(ty) = Bso(t,) and B 1(t,,) = B, ,(t,). These last two constraints equate the
background in the North and South (there is insufficient virological data in the North to
accurately estimate the background here) and the rates in the < 1 age group are

assumed to be the same as in the 1-4 age group (the QSurveillance datadon’t

10



distinguish between these age groups,® only the virological data do,® so there is a lack of

information to separately estimate the two).

S1.3.2 Mixing As there is no inter-regional transmission there is a separate system of
forward simulation Equations (1) for each region. The pattern of transmission is
determined by the (AxA) contact matrices M(¢), that are based on contact rates derived
from POLYMOD data from the United Kingdom?. This allows for a significant
computational speed-up as the calculation of the likelihood of the data in each region

can utilise parallel computation.

$1.3.3 Seeding Supplementary Equation (S7) gives the initial number of infectives in each
region. Within these regions, these infectives are distributed across the age-defined
strata according to the normalised eigenvector of the next generation matrix M*
corresponding to eigenvector R; (see Supplementary Equation (S2)). The relation
between the initial number of infectives and the numbers of individuals in each disease
state at & are determined from I, ., the initial rate of epidemic growth 1, and the mean
infectious and latent periods. There are, therefore, two parameters per region that

describe the initial condition of the epidemic, ¥, and v,..

S1.4 Meta-region model
S1.4.1 Parameterisation In the meta-region approach, the four regions are linked by

commuter flows. Together they can be regarded as one single region, the population
within being divided into strata defined by both age group and region. In Equations (1)
and (S1), the index jcould be related to the agea = 1,...,4,and regionr = 1,...,R, by

assigning strata to be j = a + A(r — 1). This means that we have the same system of

11



equations as in each of the parallel region models, but the number of strata has
increased such that j e (1,..., RA), where Rand A are the total number of regions and
age groups, respectively. This therefore leads to some fundamental differences between
the parallel-region approach and the meta-region approach:

« In the parallel-region approach, each region has its own exponential growth
rate 1,, while in the meta-region approach it is a global measure. By Supplementary
Equation (S6), which still holds within the meta-regional model and for which a detailed
proof is given in Supplementary Section 3, this holds also for regional reproductive
numbers R ;.

« The initial seed of infection in the parallel-region approach consists of a
number of infectious individuals in each region. Again, in the meta-region approach, this
is a global value, £A.

e In Equation (3) and Supplementary Equation (S2), the contact matrices M(t)
are (AxA) matrices for the parallel-region model. Now they are (R4x RA) matrices I1(t)
(see equation (4)), a consequence of the now possible interactions between age groups

in different regions.

S1.4.2 Density dependence and mixing among regions The last point above requires some
thought as to how the contact matrices are to be specified. Supplementary Table S1
gives commuting matrices C(a) for each of the four adult age groups describing the
proportion of individuals from each age group who move to other regions (or stay in
their native region) over the course of a specified day. We assume that individuals
younger than 16 years do not commute. Let’s presume that these commuter movements
cover a fraction of a commuter’s total time & In this proportion of time, transmission is
only possible between two individuals if they are in the same region. Assuming that

12



commuting movements all take place at the same time, an individual native to region r
of age group awill be in the same region as an individual native to region s of age group
bwith probability ¥X_, C,.,(a)Cs,(b). We assume that, once in a region, contacts
between any two individuals will occur in proportion to POLYMOD-estimated rates of
contact between members of their respective age groups.” Further, it is assumed that
there is some density dependent effects on transmission (i.e. contacts are more likely
between any two individuals when they are in a lower-populated region). Based on
these assumptions, we have a contact matrix IT giving rates of contact between
individuals of stratum (r, a) indexed by j = a + A(r — 1) and stratum (s, b) indexed by
i(= b+ A(s — 1)) to be as defined in Equation (3), where the ‘daytime’ populations for

each stratum are given by N2, = YR_, Cs,(a)Ng 4.

For the model fitting in this paper, we use a value for £ that assumes that individuals
commute for a half-day period, on five days out of seven in each week, so we set &= (1
/2) x (5/7) = 5/14. Transmission in this meta-region model, therefore, is directly
characterised by the interactions between regions arising from commuter flux as well as
within-region interactions. This is the approach of Keeling et a/,® though alternatives
exist in the methods of Eggo et al® and Gog et al1, where short-term migrations are

modelled via a diffusion process, e.g. the gravity model.

The denominators of Equation (3) give the prevalent degree of density dependence.
There are two things to consider here:
e The value of a. A value of = 0 corresponds to frequency dependent

transmission (two people are equally like to interact regardless of the population

13



size of their region), whereas a = 1 corresponds to a density dependent effect

upon transmission. Values of = 0, 0.5, and 1 will be considered.

» How density dependence should be incorporated. Equation (3) uses
dependence upon the population size of the strata of the uninfected individual in
an infectious contact. However, it is not obvious why it should be this and not the
population size of the region to which the infectious individual belongs, and,
furthermore, in the parallel-region model it is assumed that there are no density
dependent effects across the age groups. Therefore, as an alternative, it is
proposed to replace N, with the region-wide population size N = Y4_, N2,
and N, with N = ¥4_; NN,. This tests whether it is the population size of a
region that is important in density dependence, as opposed to the age-group

constitution of that population.

S1.4.3 Seeding The POLYMOD-based contact matrices used in the parallel-region model
lead to very rapid mixing and the disease-free equilibrium of infection is attained after
only a relatively short time. Therefore, fitted epidemic curves are not particularly

sensitive to the choice of the initial seeding of infection across the strata.

On the contrary, the spatial heterogeneity in population sizes and patterns of
movements in the meta-region model means that the initial seeding of infection will
affect the geographical spreading of the predicted epidemics.1- 12 As illustrated in the
main text, the expanded (RAx RA) contact matrix IT in the meta-region model has a
near-block diagonal structure that leads to very slow mixing. This renders doubtful the

validity of using an asymptotically-justified seeding as the disease-free equilibrium is

14



attained very slowly (if at all). Therefore, in addition to estimating the number of initial
infections, and unlike in the parallel-region model where the distribution of this seeding
among the seven age groups within each region is determined by the dominant
eigenvalue of the next-generation matrix, the initial distribution of infection has to be
estimated, or, as here, some practical alternatives for specifying the distribution need to
be formulated. We consider: the next-generation matrix-based seeding and label this
the ‘nextgen’ approach; an ‘empirical’ seeding, representing the distribution of an initial
number of confirmed cases observed prior to 15t May, 2009 which should hopefully be
indicative of the early pattern of infection; and an ‘extended empirical’ seeding, a hybrid
of the two previous approaches, where the empirical seeding is used to divide the initial
infective individuals among the regions, and within each region, the dominant
eigenvalue of the within-region contact matrix is used to determine the distribution
across the age groups - the distribution of the seeds that would be used were this region

to be considered in isolation, as in the parallel-region model and in Birrell et a/!

S1.4.4 Random Commuters vs. Fixed Commuters Individuals within each stratum are
assumed to be homogeneous of behaviour. That is, in any given interval, any individual
within a specific stratum is equally likely to be one who commutes. This may well prove
to be a gross simplification because:
e The bulk of commuting is done by a much smaller sub-population within a
stratum, each of whom commutes on a regular basis.
« Infectious individuals are still assumed to carry on with normal commuting
behaviour, whereas in reality, they may well be too ill to travel.
The first simplification we term to be an assumption of ‘commuting at random’. To

consider the possibility that there is a fixed sub-population within each stratum who

15



commute regularly, we further stratify the adult age-groups into ‘commuters’ and ‘non-
commuters’. Commuters are assumed not to stay in their native region during working
hours, whereas non-commuters stay in their native region with certainty. So, rather
than RA strata (in our example, this is 7x4 = 28), we partition further. Four of the seven
age groups are of adult-age individuals and can be further divided into commuters and
non-commuters classes. Therefore we now consider (4 + 4)xR = 44 strata. In this
example, the expanded matrix has an identical mathematical expression as before
(Equation (3), main text), once Cys(a) is replaced by C;s(a), where

(@) = {1, a belongs to a non-commuter class
0, a belongs to a commuter class

0, a belongs to a non-commuter class
Crs(a) = Crs(a)
1- Crr(a) '

a belongs to a commuter class

The assumption of commuting at random speeds up the spread of infection across the
four regions while the fixed commuting assumption increases the transiency of any
commuting effects and results in greater heterogeneity in the times of peak infection
across the regions. However, simulations have shown that the peak size and attack rate

are insensitive to the commuting assumption. We shall investigate whether the ‘fixed

commuters’ assumption can improve the model fit.

S1.5 Inference
The statistical model developed was implemented within the Bayesian framework.

Here, parameter inference is based upon posterior probability distributions derived for
the vector of parameters through the combination of the likelihood of the data and pre-
specified prior distributions for the parameter components. Posterior distributions are

not typically available in an easy-to-express analytic form. Instead, they have to be

16



approximated through sampling algorithms. Here Markov Chain Monte Carlo (MCMC)

has been used, implemented using bespoke C++ code.

Having obtained approximations to the posterior distributions, inference can be made
about other epidemic quantities of interest, where the quantity can be expressed as a
function of our parameters (such as the epidemic trajectory, epidemic attack rate etc.).
The Bayesian framework specifies how the uncertainty about parameters that is
encapsulated in their posterior distributions is propagated to functions of the

parameter vector, resulting in posterior distributions for the quantities of interest.

$1.5.1 Likelihood The likelihood function is merely an extension of that which is
expressed in Birrell et a/l If we denote the collection of all the model parameters by the
vector ¢, and
i. Wy, is a realisation of W,.,,, the random variable representing the number of
positive results in a sample of my,,, virologically tested swabs taken in region r
in the n" interval, [t,,_4,t,) from individuals in age group a. This data is assumed
to have binomial distribution.
ii. x4 is @ realisation of X,.,,,;, the random variable giving the number of reported
lab-confirmed cases in the interval [t,,_;,t,) in region r; amongst individuals in
age group a. This data is assumed to be Poisson distributed.
iii. y,-n, is a realisation of Y,.,,, the random variable giving the number of GP
consultations in the interval [¢t,,_;,t,) in region r, amongst individuals in age
group a. This data is assumed to have a negative-binomial distribution.
iv. Z,l1s a realisation of Z,,,, the random variable giving, in a test for the

presence of immunity-conferring A/H1N1pdm antibodies, the number of

17



positive results from m$,,, blood sera samples taken in the interval [t,,_,,t;,) in
region r; from individuals in age group a. This data is assumed to have binomial

distribution.

Conditional upon the model parameters, it is assumed that all observations are
independent. Therefore, the likelihood can simply be written:

L(p) = [17=1 TT5=1 [Ta=1 {L Wrna|Mina, @) XL (Xrna | @) XL (Vrna | 9) XL(Zrna [MFna, 9)3-
It is worth noting how the (region-specific) overdispersion parameter for the GP
consultation data, 7, helps to form the likelihood. The negative-binomial distribution
has mean u,,(t,,), analogous to the single region quantity expressed in Supplementary

Equation (S5), and variance given by pi;.q(t,,)(1 + 1., ). In this parameterisation, the

negative binomial likelihood is:

Trna Yrna
I'(Yrnat"rna) 1 Nr,
L(yrnalfp) = Y X < ) ( o ) ’

F(rrnadT Vrnat+1) \1+05¢, 140ty

where 7nq = prq(tn)/My,- The time dependence in the dispersion parameter exists

through a single change point at the time of the NPFS launch, reflecting a systematic

change in GP consultation behaviour of the population.

S1.5.2 Priors Supplementary Table S2 provides a summary list of all the model
parameters. Some are free parameters for which priors need to be specified, to enable
their estimation (in the form of posterior distributions), and others are fixed
parameters, assumed to be known. SI2.3.2 to Birrell et a/! details the justification
behind many of the prior distributions listed in the table. Here, some parameters have
an added dependency on the index 7, indicating regional variation. In this case,

parameters are independently and identically distributed across regions. There are two
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additional rows to the table corresponding to the parameters of the background
consultation rate and the day of the week reporting effects. Both of these sets of
parameters have multivariate normal prior distributions, of dimension 61 and 6
respectively. The covariance matrices V) and V(© are designed such that the rates of
background consultation, B, ,-(t,), and the within-week reporting effects, c4, are, a

priori, everywhere identically distributed.

S2. Further Results
Overall, our comparisons suggest that the choice of @ = 1, and the use of N, rather than

N, , in Equation (3) give a better model fitting as shown in Supplementary Table S3.
This points to a density-dependent effect upon transmission, but makes the somewhat
sensible choice that the density dependence is governed by the overall population size,
and not the size of specific strata. Of the seeding options, the empirically based seeds
performed most strongly, with the extended-empiricalbeing the preferred choice. The
distinction between commuters and non-commuters in the stratification typically led to
a mild improvement in fit under most parameterisations. However, when considering a
‘best’ model, i.e. with & = 1, regional density dependent effects and the extended
empirical seed, the improvement in the expansion to 44 strata is no longer evident. As
this model takes substantially longer to implement, the reduced stratification that does

not distinguish between commuters and non-commuters is preferred.

S2.1 The Estimated Epidemic and Goodness-of-fit
Figure 2 gives the temporal pattern of infections under both modelling approaches by

both age-group and region. Supplementary Table S4 additionally provides posterior
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means for the overall age-specific attack rates by both age-group and region, and
partitions this among the first and second waves of infection. Fig. 2 presents
qualitatively similar temporal patterns in each of the four regions. For example, the four
regions each attained two peaks triggered by the start of a school holiday in weeks 29
and 43, with the exception of the West Midlands which experienced a later second peak
in week 49. The occurrence of this later peak in the West Midlands could, perversely, be
attributable to the fact that a greater portion of its supply of susceptibles is drained by
the first wave, leading to very slow second wave growth that manages to persist over
the short autumn holiday period, whereas the epidemic has ‘burnt out’ in the other
regions by this time. The two models demonstrate, furthermore, that the temporal
patterns in the North and South are very much dominated by the second wave of
infections, whereas the peak of infection for London and West Midlands lie in the first
wave (even if their second waves may have a greater cumulative infection). Despite the
delayed second peak, the West Midlands still has the lowest attack rate during the

second wave.

There are two main differences in the results obtained under the two modelling
approaches. First, there is a shift towards second wave infection in the meta-region
model for London (demonstrably so from Fig. 2) and the North who have higher
second-wave attack rates, whereas under the parallel-region model, the attack rate is
higher in the first wave for these two regions, the opposite being true for West Midlands
and the South. As expected, the age groups with the highest rates of incidence are the 5-
14 year-olds (Supplementary Table S4), with attack rates over two waves centred upon
53% (58%), 53% (52%), 63% (62%), 63% (61%) in London, West Midlands, the North

and the South respectively, estimated under the parallel-region (and meta-region)
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model. The goodness of fit to the GP consultation data under both the parallel-region
and meta-region models (as presented in the main text) are presented in
Supplementary Figs. S2 and S3 respectively. The corresponding seropositivity and
virological positivity plots are showcased in Supplementary Figs. S4 and S5. To the eye,
all demonstrate a more than adequate fit to each of the datasets, with the fit to the
parallel-region model seeming to be slightly superior (as evidenced from the posterior
mean deviance statistics), particularly so for the GP consultation data where the
observations fall within the (rather tight) 95% credible intervals in a significantly

higher proportion of cases.

S3. The relationship between the exponential growth rate () and the

reproductive number (&) in a heterogeneously-mixing population
The mathematical induction method was applied to prove the relationship given in

Supplementary Equation (S6), i.e.

)
(P2 +1) ety

1- (%+ 1)_2 L @rtend

Ry = ¥4, (58)

holds within a heterogeneously-mixing population. Here d;(= 2/y) and d, (= 2/0) are

the expected infectious and latent periods, respectively.

We first prove Supplementary Equation (S8) holds when the population is composed of
one stratum (/= 1) so that mixing is homogeneous. We need to prove that
Supplementary Equation (S8) will hold for a population which is composed of /= n+1
strata provided it holds for a population of /= nstrata. For convenience, we write the
epidemic system using the set of differential equations that the system of difference

equations in Equation (1) seek to approximate; also we approximate the Reed-Frost
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formulation of the force of infection used in our model specification (Equation (2)) is

approximated by the mass action law.

1) /=1. A population is assumed to consist of only one stratum, and the SEEIIR

epidemic is described by,
ds(t)

T —A)S (D),

dE;t(t) = A()S(E) — oE, (D),
dE;t(t) = 6E,(£) — 0E, (D),
) — om -vn®,
T —vLo,

With force of infection
A1) =1—[1 - BO)]O=0 =~ B[, () + L, (D)],

where the infection rate £ (%) is related to the contact rate 77(%) through

B(t) = I1(t) NIKOYd,
In particular,
pO) =0

The equations governing the rate of change in the numbers within each infectious state

can be written:

; E, - 0 B L)\ /E E;
E, c -6 0 0 E, E,
de\ L 0 o -y 0 L 1(8) I

L 0 0 vy —-y/ \L I
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Here S(t) = S(t)S(t). Assume that the initial infections increase exponentially at a
growth rate y4, we have ©,v,(t) = y,v,(t), with v, (t) = (E1(t), E2(t), [, (£), I, (¢) )T,
Hence we can identify the characteristic equation at time = 0:

—0 -y, 0 B(0) 5(0)
B _ o —0—y, 0
|®1 er4| - O o _y_ y/r O

0 0 Y Y-V,

=a— bf(0).

Here a=(c+y,)*(y +w,)’ and b=05*(2y +v,). In the above expression, I+ represents

the identity matrix of dimension 4. We notice that

@ (o+ P+ Pp)?
b Qyt)d (59

A
is the eigenvalue of the contact matrix 3(0) (trivially so as this is a scalar quantity). The
next generation matrix (and its eigenvalue) at time £=0 is £(0)d; = Ad; = R,, as given

in Supplementary Equation (S8).

2) Assume that a population is divided into /= nstrata and the SEEIIR epidemic is

described by, for stratum j

ds;(t)
i\t _
T =X (®)S;(0),
dE; ;(t)
— = H(08;(0) — 0y (©),
dE, ;(t)
P T oEyj(t) — o, ;(¢), (510)
dly ;(t)
- ok, ;(t) — vl ;(¢),
dl, ;(t)
i vy, () — I, (t),
The force of infection acting upon stratum jis
N (@) = X1y B ([ (0) + L, (B)]. (511)
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Here B} ;(t) is the infection rate of a susceptible individual in stratum ;due to a single
infectious individual in stratum £ It is related to the (j/)th entry of the contact matrix

I1(t) which characterises the mixing rate at time #through
Ro
B;i(t) = 11; ;(t) R
0

Here R is the dominant eigenvalue of the next generation matrix IT* which has entries

IL; = N;IT; ;(0)d,;, where N; is the size of the population in stratum .

Equations governing the changing numbers within each infectious state can be written

as

d
Evn(t) = On(t)vn(t) (512)

Here v, (t) = (E1,1(t)' Ey (8, 11(2), 151 (t), E12(2), ..., Iz,n(t))T and

A1 (D) Ap(®) o Agp(D)
Gn(t): A2,1(t) A2,2(t) A2,n(t) (513)

An,l(t) An,Z (t) An,n (t)
Within the above expression, the block matrices are

—o 0  pB;;(©)S;t) B;;)S;(t) -0 0 B Bi®)

| o -0 0 0 | o -0 0 0
A ()= 0 o -y 0 o o —y 0
0 0 y —y 0 0 14 -y
and
0 0 B;;@®si@) B;:@)S;(t) 0 0 B;i(t) Bji(®

Aji(t)s 0 0 0 0 _(0 O 0 0 ,

’ 0 0 0 0 0 0 0 0

0 0 0 0 00 0 0

where j j€{1,2,...,n} and i# . Letting Ej’i (t)=p;()S;(t), we define the matrix

ﬁi’m(t) ,Li_’1,2(t) ﬁ:Ln(t)
B.(0) = B2i(t)  Bo2(t) oo Boa(t) (S14)

Bus(® Buz(® o PBun(®
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Assuming the initial infections increase exponentially at growth rate ys, we have
0,0V, () = y,v,(0),

giving rise to the characteristic equation at time =0

A (1) — v, L4 Aq2(8) A1 (1)
|®n(t) — v I4n| _ Ay (L) Ao (OD—w 1y ... Ay ()
Ana () Az® e Apn(® = w1y
This can be reduced to
bELE(O) —a _bng (0) b5:1,n(0)
|®n(t) — ‘/’rl4n| = (-1 bp,1(0) bB,,(0) —a .. bBx(0)
bBur(®)  BBa(® . bBun(®)—a

= (=1)"b"|Bn(0) — AL,
=0,
where A = a/b. This suggests expression (S9) as an eigenvalue of the matrix B,,(0), as
shown in (S14). The dominant eigenvalue of the next generation matrix IT* = B,,(0)d; is
then Ad; as in Supplementary Equation (S8).
3) We want to prove that this relationship still holds for the population of kA= n+1

strata. Again, we have:

d
at Vp1(t) = Opy (D) V41 (0)

T
Here v, (t) = (vn (), E1n+1(8), Ex i1 (), I g1 (0), I sa (t)) and

Al,n+1(t)

Ouia(1) = &0 A2
An,n+l(t)

An+1,1(t) An+1,2(t) An+1,n(t) An+1,n+1(t)

Using the assumption for the case of /= nstrata, its characteristic equation at t=0
(suppressing for ease of presentation any dependence on time) is:
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1011 — W Lanin| = (V+ 1) (0 + 1,)°18, — v, 1| — (2v + 1, )0%A, =0,

where,
Aig— wly - Aip Bin+1
A = : . : o
n o —_
An,l An,n V/rlél Bn,n+1
Bn+1,1 Bn+1,n .Bn+1,n+1

The block matrices A;; = A;;(t) are as defined previously and the vectors are:

Bn+1,i = §n+1,i(t) = (0 0 En+1,i(t) En+1,i(t)); [ = 1: - n

and
Bin+1(t)
—~ _ = _ 0
Bi,n+1 = Bi,n+1(t) - 0
0
This can be broken down as
o —0-y 0 0 0 0 0
0 o Al 0 0 0 0
0 0 4 i Sl A 0 0 0
An = (_1)n+2ﬁ1,n+1 0 0 ﬁnl Bn,l -0~ l/lr 0 ﬁn,n
0 0 0 0 o -0 =y 0
0 0 0 0 0 o Y-y,
0 0 0 0 0 0 14
0 0 ‘Bn+1,1 ﬁn+1,l 0 0 ﬁnJrl,n
0¥ 0 Em Eu 0 0 El,n
0 -0 -y 0 0 0 0 0
0 0 Y-, 0 0 0 0
0 0 y Al 0 0 0
2n+1p3 : :
+ et (_1) Bn,n+1 ’
0 0 0 0 A 0
0 0 0 0 0 o -y -,
0 0 0 0 0 14
0 0 ﬁn+1,1 ﬁn+1,1 0 0 ﬁn+1,n

+ B_n+1,n+1|®n - l//rlél-nl-

After some algebraic operations we have
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b,gz,1 bgz,z —a .. blgz,n

— (_1\n+2[2 I = ) _
An =GV Pinet| g bRy ban—a| T
bﬂn+1,1 blgn+1,2 bﬂn+1,n
bPii—a .. (2y+ l//r)ﬁ_l,n—l bPin
_Bn,n+1 bﬂ_n—l,l bﬂ_n—l,n—l —a bﬁ_n—l,n
bﬂn+1,1 bﬁn+1,n—1 bﬁn+1,n

+Bn+1,n+1 |®n - l//rl4n|'

Putting this back, we have
|On+1 - V/rl4(n+1)| = a|0n - er4n| —bA,

- (a - an+1,n+1) |0n - er4n|

bB,, bB,,—a .. bB,,
+H(=D"1DB b'[_;n,l bﬁzn,z bﬁnn —a
bﬁn+1,1 bEn+1,2 an+1,n
'bﬁl,{ —a .. bﬂ_l:n—l b,[?},n '
e (—1)2"bﬁ_n,n+1 bgn:—l,l bﬁ_n—l,:l—l —a bﬁ_n:—Ln
bBnsrs - bBn+1n-1 bBrsin
That is,
bha=a BBz DB
[©n11 = ¥ Lyneny| = (D)™ bﬁ:m b'BZ'Z: — bﬂzgnﬂ
bB_Tl.-l-l,l bgn-+1,2 bﬁ_n+1,1;+1 —a

= (=)™ D" [By 1 (0) = Al | = 0
Expression (S9) is therefore an eigenvalue of the matrix B,,;1(0). The next generation
matrix at the disease-free equilibrium,*1314IT* = B,,,,(0)d;, has dominant eigenvalue
Ad; which is the basic reproductive number of the epidemic system, given by

Supplementary Equation (S8).
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This completes the proof.
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Supplementary Tables
Supplementary Table S1: Commuter matrices. For each of the four adult age groups, cells
give the proportion of individuals resident in the row region, who move to (or stay in)

each of the four regions.

Matrix | London | WM | North | South London | WM | North | South
Crs(a) | Ages: 16-24 years Ages: 25-44 years
London | 93.50% | 0.11% | 0.30% | 6.12% | 92.10% | 0.11% | 0.26% | 7.54%
WM 0.43% | 95.60% | 2.29% | 1.64% | 0.52% | 94.80% | 2.95% | 1.71%
North 0.36% | 0.77% | 97.30% | 1.57% | 0.46% | 0.99% | 96.90% | 1.67%
South 5.09% | 0.22% | 0.45% | 94.20% | 9.29% | 0.30% | 0.53% | 89.90%
ages: 45-64 years ages: 65-74 years
London | 93.60% | 0.10% | 0.24% | 6.10% 85% | 0.11% | 0.23% | 14.60%
WM 0.37% 96% | 2.32% | 131% | 0.35% | 97.40% | 1.41% | 0.85%
North 0.35% | 0.83% | 97.80% | 1.06% | 0.34% | 0.47% | 98.50% | 0.65%
South 6.87% | 0.27% | 0.46% | 92.40% 4% | 0.19% | 0.33% | 95.50%
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Supplementary Table S2 Inputs for model parameters. For each parameter grouping, the

table specifies the prior distributions used or, where the parameter is not to be
estimated by the model, it's assumed fixed value.

Transmission model parameter Symbol Prior/Fixed Value
Exponential growth rates Yy ~I'(6.3,57)
Initial log-hazards of GP ~N(—19.15, 16.44)
consultation Ur
Mean Infectious Period d 2+7,72~1(518,357)
Mean Latent Period d, 2
Contact matrix parameters m; ~U[0,1] v/
. : : 1 (< 1years), 0.980 (1-4), 0.969 (5-14),
f;“;g‘é ‘g’;gsgr;o“ susceptible 7 0.845 (15-24), 0.920 (25-44), 0.865 (45-
64),0.762(65+)
Disease and Reporting model Prior/Fixed Value
parameters
Mean (s.d.) of gamma 1.6(1.8)
distributed incubation times
Proportion of infections 0 ~B(32.5,18.5)
symptomatic
Proportion of cases who f’) (t,) =log(p,:/(1 —p.1))
consult a GP, varying by age, N(—0.187,0.166) i = 1,2
time and region [Note / ) (t ) N(0.426 0'929) P = 3'4
=1,3,5,7 depending on time ra_ A Dia ~ P I
interval for child age classes ’ N(=0.319,0.263) L= 2,6
and 7 =2, 4, 6, 8 otherwise. N(-0.284,0.264) i = 7,8
Proportion of cases lab- (CC) ~B(1.03, 2.69)
confirmed Pr
Mean (s.d.) of gamma 2.0 (1.2)
distributed waiting time from
symptoms to GP
consultation
Mean (s.d.) of gamma 6.6 (3.7)
distributed waiting time from
symptoms to lab-confirmation
Mean (s.d.) of gamma 0.5 (0.5)
distributed reporting delay of
GP consultations
Reporting delay of Lab 0
confirmations
Regression parameters for the g® Ng;(0,V(B)
background consultation rates
Day of the week effects on the Ng(0,V(©)
reporting of ILI cases, log- log(c)
transformed
GP consultation data dispersion s ~1(0.01, 0.01)
i

parameters
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Supplementary Table S3: Model choice. Posterior mean (and standard deviation, s.d.)
deviance for some candidate parameterisations of the meta-region model, expressed as
a discrepancy from the deviance of the parallel-region model. The smallest values of the

posterior mean deviance represent the better fitting variants of model.

o Density-type Seed-type # Strata AD(o) (s.d.)
0.0 By strata nextgen 28 3,890 (34.23)
0.0 By strata nextgen 44 4,376 (33.83)
0.0 By strata empirical 28 4,548 (31.53)
0.0 By strata empirical 44 4,949 (32.21)
0.5 By strata nextgen 28 3,025 (34.21)
0.5 By strata nextgen 44 2,241 (32.13)
0.5 By strata empirical 28 3,191 (36.65)
0.5 By strata empirical 44 2,269 (31.90)
1.0 By strata nextgen 28 2,770 (30.23)
1.0 By strata nextgen 44 2,466 (30.05)
1.0 By strata empirical 28 2,578 (29.43)
1.0 By strata empirical 44 2,359 (29.39)
1.0 By region nextgen 28 449.2 (27.60)
1.0 By region nextgen 44 437.9 (27.21)
1.0 By region empirical 28 170.1 (28.47)
1.0 By region empirical 44 166.4 (29.76)
1.0 By region extended 28 57.89 (27.20)

empirical
Parallel-region model 0
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Supplementary Table S4 Age-specific attack rates. Table gives posterior median (and
95% Crls) for the age-specific attack rates in each region in both waves of the 2009
pandemic. A) presents the posterior statistics from fitting the parallel-region model;
and B) for the meta-region model. The last column gives attack rates averaged over four
regions, weighted in accordance with the respective population sizes.

A) Parallel region model

l(:tlcl;sgr:/(\;i‘gig) London West Midlands North South England
Overall 13.2(11.4,14.9) [9.8(8.5,11.2) 5.6(4.4,6.9) 3.6(2.94.5) 6.4(5.8,7.1)
<ly 18.7(16.2,21.1) |13.6(11.8,15.4) [8.0(6.4,10.0) 5.2(4.2,6.5) 9.7(8.7,10.6)
1-4y 29.4(25.4,33.1) |22.1(19.2,25.1) [13.2(10.4,16.5) [8.7(7.0,10.8) 15.3(13.6,17.1)
5-14y 28.4(25.0,31.4) |24.1(21.4,27.0) [13.0(10.4,16.0) |[9.0(7.2,11.0) 14.9(13.5,16.4)
15-24y 11.9(10.0,13.6) [9.2(7.8,10.7) 5.6(4.4,7.0) 3.4(2.7,4.2) 6.1(5.4,6.9)
25-44y 13.0(11.1,14.8) [9.6(8.3,11.2) 5.6(4.5,7.1) 3.7(2.9,4.5) 6.7(6.0,7.5)
45-64y 7.0(5.9,8.1) 5.2(44,6.1) 3.1(2.4,3.9) 2.0(1.6,2.4) 3.4(3.0,3.8)
65+y 3.5(2.9,4.0) 2.9(2.4,3.4) 1.6(1.3,2.1) 1.1(0.8,1.3) 1.8(1.5,2.0)
Second wave (Sep.-Dec.)
Overall 10.1(8.5,11.9) [10.6(9.0,12.2) 19.3(17.8,21.0) |19.6(18.3,21.0) |17.1(16.2,18.3)
<ly 13.7(11.5,16.2) [13.7(11.5,15.7) |25.6(23.6,27.6) |26.2(24.6,27.9) |22.3(21.1,23.7)
1-4y 17.1(14.1,20.7) |18.7(15.6,21.8) |34.8(31.8,37.9) [36.7(34.3,39.2) |30.7(28.9,32.8)
5-14y 24.9(21.0,29.3) |29.2(24.9,33.5) |50.4(46.8,53.9) |53.5(50.6,56.1) |45.6(43.5,47.7)
15-24y 9.5(7.9,11.2) 10.0(8.4,11.6) [19.4(17.6,21.3) |18.8(17.3,20.6) [16.7(15.5,18.2)
25-44y 9.5(7.9,11.2) 9.0(8.4,11.5) 18.6(16.9,20.4) |18.8(17.4,20.4) |16.0(15.0,17.4)
45-64y 5.4(4.5,6.4) 5.5(4.7,6.5) 10.7(9.7,11.8) ]10.5(9.7,11.6) |9.4(8.7,10.3)
65+y 3.4(2.8,4.0) 3.6(3.1,4.2) 6.9(6.3,7.6) 6.9(6.3,7.5) 6.1(5.7,6.7)

B) Meta-region model
l(:tlcl;sgr:/(\;i‘gig) London West Midlands North South England
Overall 9.9(8.9,11.0) 12.4(11.5,13.3) [4.7(4.2,5.2) 6.0(5.4,6.6) 6.8(6.1,7.4)
<ly 14.0(12.6,15.4) |16.9(15.7,18.1) |6.5(5.8,7.2) 8.4(7.6,9.3) 9.7(8.8,10.6)
1-4y 20.6(17.9,23.4) |25.4(22.6,28.0) [9.9(8.4,11.4) 12.7(11.0,14.5) [14.4(12.5,16.3)
5-14y 20.8(19.0,22.7) |29.6(27.6,31.6) [10.4(9.5,11.5) [13.8(12.6,15.1) |15.3(14.0,16.6)
15-24y 9.3(8.1,10.5) 12.2(11.2,13.3) [4.9(4.3,5.6) 6.0(5.4,6.8) 6.7(6.0,7.5)
25-44y 10.0(8.9,11.2) ]12.5(11.6,13.6) [4.9(4.3,5.4) 6.4(5.7,7.1) 7.1(6.4,7.9)
45-64y 5.4(4.8,6.1) 7.0(6.4,7.6) 2.7(2.4,3.1) 3.5(3.1,3.9) 3.8(3.4,4.3)
65+y 2.7(2.3,3.0) 4.0(3.6,4.3) 1.4(1.3,1.6) 1.9(1.7,2.2) 2.0(1.8,2.3)
Second wave (Sep.-Dec.)
Overall 16.2(14.9,17.6) |8.9(7.5,10.4) 20.6(19.6,21.7) |18.0(17.0,19.0) [17.8(16.7,18.9)
<ly 21.7(19.9,23.5) |11.1(9.4,13.0) |26.7(25.4,28.0) |23.5(22.1,24.8) |23.0(21.6,24.4)
1-4y 28.0(25.2,30.9) |15.1(12.5,18.0) |37.0(35.0,39.2) |32.6(30.4,34.8) |31.5(29.3,33.8)
5-14y 36.7(34.0,39.5) |22.0(18.8,25.5) [51.8(50.2,53.5) |46.7(44.7,48.6) |44.5(42.5,46.6)
15-24y 15.8(14.5,17.3) [9.0(7.6,10.6) 21.2(19.7,22.6) |17.9(16.7,19.3) [17.9(16.6,19.3)
25-44y 15.6(14.3,17.0) [8.7(7.3,10.2) 20.2(18.9,21.4) |17.7(16.5,18.9) [17.3(16.0,18.5)
45-64y 9.1(8.3,10.0) 5.0(4.2,5.9) 11.7(10.8,12.6) |10.2(9.4,11.0) [10.1(9.3,10.9)
65+y 5.6(5.1,6.2) 3.3(2.7,3.9) 7.6(7.0,8.1) 6.7(6.2,7.2) 6.5(6.0,7.1)
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Supplementary Figures

reporting pattem of GP consultations during a week

0.3

0.25

0.2

0.15
0.1
0.05
0 : . . . . | — |

Manday Tuseday “Wedesday Thursday Friday Saturday Sunday

proportions

Supplementary Figure S1: Daily reporting patterns of GP consultations within London.
The bars give the proportion of the total number of consultations that were reported on
each of the days of the week. As can be seen, consultations are typically not reported on
a Saturday or a Sunday.
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Supplementary Figure S2 Goodness-of-fit of the parallel-region model to the GP
consultation data, aggregated by age. Red +’s indicate the observed number of
consultations. The darker shaded area represent the 95% Crl for the expected number
of consultations, the wider, lighter grey interval gives a posterior predictive 95% CrlI for

the observed data - i.e. 95% of the data points should lie within this wider interval.
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Supplementary Figure S3 Goodness-of-fit of the meta-region model to the GP

consultation data, aggregated by age. See Supplementary Figure S2 for explanation.
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Supplementary Figure S4(a) Goodness-of-fit of the parallel-region model to the

seropositivity data, stratified by age and region. Data points are marked by the dots,

with blue dots being those that are omitted by the model predicted 95% credible

intervals (the vertical dashed lines).
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Supplementary Figure S5(a) Goodness-of-fit of the parallel-region model to the weekly-

aggregated viropositivity data, stratified by age in London. Data points are given by the

dots of variable with and colour. The width indicates the size of the denominator

relative to other points in the same plot. The colour of the points indicates the overall
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Supplementary Figure S5(b) Goodness-of-fit of the parallel-region model to the weekly-
aggregated viropositivity data, stratified by age in the West Midlands. See

Supplementary Figure S5(a) for greater detail.
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Supplementary Figure S5(c) Goodness-of-fit of the parallel-region model to the weekly-
aggregated viropositivity data, stratified by age in the North. See Supplementary Figure

S5(a) for greater detail.
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Supplementary Figure S5(d) Goodness-of-fit of the parallel-region model to the weekly-

aggregated viropositivity data, stratified by age in the South. See Supplementary Figure

S5(a) for greater detail.
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Supplementary Figure S5(e) Goodness-of-fit of the meta-region model to the

viropositivity data, stratified by age in London. See Supplementary Figure S5(a) for a

more in-depth explanation.
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Supplementary Figure S5(f) Goodness-of-fit of the meta-region model to the
viropositivity data, stratified by age in the West Midlands. See Supplementary Figure

S5(a) for a more in-depth explanation.
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Supplementary Figure S5(g) Goodness-of-fit of the meta-region model to the

viropositivity data, stratified by age in the North. See Supplementary Figure S5(a) for a

more in-depth explanation.
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Supplementary Figure S5(h) Goodness-of-fit of the meta-region model to the
viropositivity data, stratified by age in the South. See Supplementary Figure S5(a) for a

more in-depth explanation.
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