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Supporting Information (Appendix)

Neyman-type conservative variance estimate
We have given a Neyman-type conservative estimate of the variance in the main text which can be used to construct a
conservative confidence interval for the ATE. In this section, we will study the asymptotic behavior of this variance estimate.
Recall that

σ̂2
e(a) =

1

nA − df (a)

∑
i∈A

(
ai − āA − (xi − x̄A)T β̂

(a)

Lasso

)2
, (S1)

σ̂2
e(b) =

1

nB − df (b)

∑
i∈B

(
bi − b̄B − (xi − x̄B)T β̂

(b)

Lasso

)2
, (S2)

where df (a) and df (b) are degrees of freedom defined by

df (a) = ŝ(a) + 1 = ||β̂
(a)

Lasso||0 + 1; df (b) = ŝ(b) + 1 = ||β̂
(b)

Lasso||0 + 1.

Condition S0.1. For the Gram matrix Σ defined in Condition 5, the largest eigenvalue is bounded away from ∞, that is,
there exists a constant Λmax <∞ such that

λmax (Σ) ≤ Λmax.

Recall that the variance estimate of
√
n(ÂTELasso −ATE) is defined as follows:

σ̂2
Lasso =

n

nA
σ̂2
e(a) +

n

nB
σ̂2
e(b) . (S3)

Theorem S1. Assume conditions in Theorem 1 and condition S0.1 hold. Then σ̂2
Lasso converges in probability to

1

pA
lim
n→∞

σ2
e(a) +

1

1− pA
lim
n→∞

σ2
e(b) ,

which is greater than or equal to the asymptotic variance of
√
n(ÂTELasso −ATE). The difference is

lim
n→∞

1

n

n∑
i=1

[
ai − bi −ATE − (xi − x̄)T (β(a) − β(b))

]2
.

Remark 6. The Neyman-type conservative variance estimate for the unadjusted estimator is given by

σ̂2
unadj =

n

nA

1

nA − 1

∑
i∈A

(ai − āA)2 +
n

nB

1

nB − 1

∑
i∈B

(
bi − b̄B

)2
,

which, under second moment conditions of potential outcomes a and b, converges in probability to

1

pA
lim
n→∞

1

n

n∑
i=1

(ai − ā)2 +
1

1− pA
lim
n→∞

1

n

n∑
i=1

(bi − b̄)2.

Therefore, for the β(a) and β(b) defined in [18], the limit of σ̂2
Lasso is no greater than that of σ̂2

unadj and the difference is

− lim
n→∞

1

n

n∑
i=1

1

pA

[
(xi − x̄)T (β(a))

]2
+

1

1− pA

[
(xi − x̄)T (β(b))

]2
.

Remark 7. With the conservative variance estimate in Theorem S1, the Lasso adjusted confidence interval is also valid for
the PATE (Population Average Treatment Effect) if there is a super population of size N with N > n.
Remark 8. The extra Condition S0.1 is used to obtain the following bounds for the number of selected covariates by the Lasso:
max (ŝ(a), ŝ(b)) = op(min (nA, nB)). Condition S0.1 can be removed from Theorem S1 if we redefine σ̂2

e(a)
and σ̂2

e(b)
without

adjusting the degrees of freedom, i.e.,

(σ̂∗)2e(a) =
1

nA

∑
i∈A

(
ai − āA − (xi − x̄A)T β̂

(a)

Lasso

)2
,

(σ̂∗)2e(b) =
1

nB

∑
i∈B

(
bi − b̄B − (xi − x̄B)T β̂

(b)

Lasso

)2
,

and define (σ̂∗)2Lasso = n
nA

(σ̂∗)2
e(a)

+ n
nB

(σ̂∗)2
e(b)

. It follows from the bounds for max (ŝ(a), ŝ(b)) that (σ̂2
e(a)

, σ̂2
e(b)

) and ((σ̂∗)2
e(a)

, (σ̂∗)2
e(b)

)

have the same asymptotic property.
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Theorem S2. Assume the conditions in Theorem 1 hold. Then (σ̂∗)2Lasso converges in probability to

1

pA
lim
n→∞

σ2
e(a) +

1

1− pA
lim
n→∞

σ2
e(b) .

Remark 9. Though (σ̂∗)2Lasso has the same limit as σ̂2
Lasso, our simulation experience shows that, in finite samples, the

confidence intervals based on (σ̂∗)2Lasso may yield low coverage probabilities (e.g., the coverage probability for 95% confidence
interval can be only 80%). Hence, we recommend readers to use σ̂2

Lasso in practice.

Simulation
In this section we carry out simulation studies to evaluate the finite sample performance of ÂTELasso estimator. We also

present results for the ÂTEOLS estimator when p < n and the two-step estimator ÂTELasso+OLS which adopts Lasso to select
covariates and then uses OLS to refit the regression coefficients, see [1, 2, 3, 4] for statistical properties of Lasso+OLS estimator
in linear regression model.

Let β̂
(a)

be the Lasso estimator defined in 1 (we omit the subscript “Lasso” for the sake of simplicity) and let Ŝ(a) = {j :

β̂
(a)

j 6= 0} be the support of β̂
(a)

. The Lasso+OLS adjustment vector β̂
(a)
Lasso+OLS for treatment group A is defined by

β̂
(a)

Lasso+OLS = arg min
β: βj=0, ∀j /∈Ŝ(a)

1

2nA

∑
i∈A

(
ai − āA − (xi − x̄A)Tβ

)2
.

We can define the Lasso+OLS adjustment vector β̂
(b)

Lasso+OLS for control group B similarly. Then ÂTELasso+OLS is given by

ÂTELasso+OLS =
[
āA − (x̄A − x̄)T β̂

(a)

Lasso+OLS

]
−
[
b̄B − (x̄B − x̄)T β̂

(b)

Lasso+OLS

]
.

We use the R package “glmnet” to compute the Lasso solution path. We select the tuning parameters λa and λb by 10-fold
Cross Validation (CV) and denote the corresponding adjusted estimators as cv(Lasso) and cv(Lasso+OLS) respectively. We
should mention that for the cv(Lasso+OLS) adjusted estimator, we compute the CV error for a given value of the λa (or
λb) based on the whole Lasso+OLS estimator instead of the Lasso estimator, see Algorithm 1 for details. Therefore, the
cv(Lasso+OLS) adjusted estimator and the cv(Lasso) adjusted estimator may select different covariates to do the adjustment.
This type of cross validation for cv(Lasso+OLS) requires more computation effort than the cross validation based on just the
Lasso estimator since it needs to compute the OLS estimator for each fold and for each λa (or λb), but it can give better
prediction and covariates selection performance.

The potential outcomes ai and bi are generated from the following nonlinear model: for i = 1, ..., n,

ai =

s∑
j=1

xijβ
(a1)
j + exp

(
s∑
j=1

xijβ
(a2)
j

)
+ ε

(a)
i ,

bi =

s∑
j=1

xijβ
(b1)
j + exp

(
s∑
j=1

xijβ
(b2)
j

)
+ ε

(b)
i ,

where ε
(a)
i and ε

(b)
i are independent error terms. We set n = 250, s = 10, p = 50 and 500. For p = 50, we can compute

OLS estimator and compare it with the Lasso. The covariates vector xi is generated from a multivariate normal distribution
N (0,Σ). We consider two different Toeplitz covariance matrices Σ which control the correlation among the covariates:

Σii = 1; Σij = ρ|i−j| ∀i 6= j,

where ρ = 0, 0.6. The true coefficients β
(a1)
j , β

(a2)
j , β

(b1)
j , β

(b2)
j are generated independently according to

β
(a1)
j ∼ t3; β

(a2)
j ∼ 0.1 ∗ t3, j = 1, ..., s,

β
(b1)
j ∼ β(a1)

j + t3; β
(b2)
j ∼ β(a2)

j + 0.1 ∗ t3, j = 1, ..., s,

where t3 denotes the t distribution with three degrees of freedom. This ensures that the treatment effects are not constant

across individuals, and that the linear model does not hold in this simulation. The error terms ε
(a)
i and ε

(b)
i are generated

according to the following linear model with hidden covariates zi:

ε
(a)
i =

s∑
j=1

zijβ
(a1)
j + ε̃

(a)
i ,

ε
(b)
i =

s∑
j=1

zijβ
(b1)
j + ε̃

(b)
i ,
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where ε̃
(a)
i and ε̃

(b)
i are drawn independently from a standard normal distribution. The vector zi is independent of xi and is

also drawn independently from the multivariate normal distribution N (0,Σ). The values of xi, β
(a1), β(a2), β(b1), β(b2), zi,

ε̃
(a)
i , ε̃

(b)
i , ai and bi are generated once and then kept fixed.

After the potential outcomes are generated, a completely randomized experiment is simulated 25000 times, assigning nA =
100, 125, 150 subjects to treatment A and the remainder to control B. There are 12 different combinations of (p, ρ, nA) in total.

Figures S4, S5, S6 show boxplots of different ATE estimators with their standard deviations (computed from 25000 replicates
of randomized experiments) presented on top of each box. Regardless of whether the design is balanced (nA = 125) or not
(nA = 100, 150), the regression based estimators have much smaller variances and than that of the unadjusted estimator and
therefore improve the estimation precision.

To further compare the performance of these estimators, we present the bias, the standard deviation (SD) and the root-mean

square error (
√

MSE) of the estimates in Table S1. Bias is reported as the absolute difference from the true treatment effect.
We find that the bias of each method is substantially smaller (more than 10 times smaller) than the SD. The cv(Lasso) and

cv(Lasso+OLS) adjusted estimators perform similar in terms of SD and
√

MSE: reducing those of the OLS adjusted estimator
and the unadjusted estimator by 10%− 15% and 15%− 31% respectively. We also compare the number of selected covariates
by cv(Lasso) and cv(Lasso+OLS) for treatment group and control group separately, see Table S2. It is easy to see that the
cv(Lasso+OLS) adjusted estimator uses many fewer (more than 44%) covariates in the adjustment to obtain similar improve-

ment of SD and
√

MSE of ATE estimate as the cv(Lasso) adjusted estimator. Moreover, we find that the covariates selected
by the cv(Lasso+OLS) are more stable across different realizations of treatment assignment than the covariates selected by
the cv(Lasso). Overall, the cv(Lasso+OLS) adjusted, the cv(Lasso) adjusted, the OLS adjusted and the unadjusted estimators
perform from best to worst.

We move now to study the finite sample performance of Neyman-type conservative variance estimates. For each simulation

example and each one of the 25000 completely randomized experiments, we calculate the ATE estimates (ÂTE) and the Neyman

variance estimates (σ̂) and then form the 95% confidence intervals [ÂTE − 1.96 · σ̂/
√
n, ÂTE + 1.96 · σ̂/

√
n]. Figures S1, S2,

S3 present the boxplot of the interval length with the coverage probability noted on top of each box for the unadjusted, OLS
adjusted (only computed when p = 50), cv(Lasso) adjusted and cv(Lasso+OLS) adjusted estimators. More results are showed
in Table S3. We find that all the confidence intervals for the unadjusted estimator are conservative. The cv(Lasso) adjusted
and the cv(Lasso+OLS0 adjusted estimators perform very similar: although their coverage probability (at least 92%) may be
slightly less than the pre-assigned confidence level (95%), their mean interval length is much shorter (26%− 37%) than that of
the unadjusted estimator. The OLS adjusted estimator has comparable interval length with the cv(Lasso) and cv(Lasso+OLS)
adjusted estimator, but has slightly worse coverage probability (90%− 93%).

To further investigate how good the Neyman standard deviation (SD) estimate is, we compare them in Figure S7 with the
“true” SD presented in Table S1 (the SD of the ATE estimates over 25000 randomized experiments). We find that Neyman SD
estimate is very conservative for the unadjusted estimator (its mean is 5%−14% larger than the “true” SD); while for the OLS
adjusted estimator, the mean of Neyman SD estimate can be 6%− 100% smaller than the “true” SD which may be because of
over-fitting. For the cv(Lasso) and cv(Lasso+OLS) adjusted estimator, the mean of Neyman SD estimator is within 1± 7% of
the “true” SD. Although the Neyman variance estimate is asymptotically conservative, in small samples the variance estimate
may be too small and hence the confidence intervals are too narrow. However, if we increase the sample size n to 1000, almost
all the confidence intervals are conservative.

We conduct more simulation examples to evaluate the conditions assumed for asymptotic normality of the Lasso adjusted
estimator. We use the same simulation setup as above, but for simplicity, we generate the potential outcomes from a linear

model (set β(a2) = β(b2) = 0) and remove the effects of the hidden covariates zi in generating the error terms ε
(a)
i and ε

(b)
i and

set ρ = 0, nA = 125. We find that the distribution of the cv(Lasso) adjusted estimator may be non-normal when:

(1). The covariates are generated from Gaussian distribution and the error terms do not satisfy second moment condition, e.g.,
being generated from t distribution with one degree of freedom, see the upper two subplots of Figure 1 (in the main text) for
the histograms of unadjusted the cv(Lasso) adjusted estimators (the corresponding p-values of Kolmogorov–Smirnov testing
for normality are less than 2.2e− 16).

(2). The covariates do not have bounded fourth moments, e.g., being generated from t distribution with three degrees of freedom,
see the lower two subplots of Figure 1 (in the main text) for the histograms of unadjusted the cv(Lasso) adjusted estimators
(again, the corresponding p-values of Kolmogorov–Smirnov testing for normality are less than 2.2e− 16).

These findings indicate that our moment condition (Condition 2 and Remark 1) cannot be dramatically weakened. However,

we also find that the cv(Lasso) adjusted estimator still has smaller SD and
√

MSE than the unadjusted estimator even when
these moment conditions do not hold.

The design matrix of the PAC data
In the PAC data, there are 59 covariates (main effects) including 50 indicators which may be correlated with the outcomes.
One of the main effects (called interactnew) has heavy tail, so we perform the transform: x → log(|x| + 1) to make it more
normally distributed. We then centralize and standardize the non-indicator covariates. The quadratic terms (9 in total)
of non-indicator covariates and two-way interactions between main effects (1711 in total) may also help predict the potential
outcomes, so we included them in the design matrix. The quadratic terms and the interactions between non-indicator covariates
and the interactions between indicator covariates and non-indicator covariates are also centered and standardized. Some of the
interactions are identical to other effects and we only retain one of them. We also remove the interactions which are highly
correlated (with correlation larger than 0.95) with the main effects and remove the indicators with very sparse entries (where
the number of 1’s is less than 20). Finally, we form a design matrix X with 1172 columns (covariates) and 1013 rows (subjects).

Footline Author PNAS Issue Date Volume Issue Number 3
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Estimation of constants in the conditions
Let S(a) = {j : β

(a)
j 6= 0} and S(b) = {j : β

(b)
j 6= 0} denote the sets of relevant covariates for treatment group and control

group respectively. Denote S = S(a)⋃S(b) = {j : β
(a)
j 6= 0 or β

(b)
j 6= 0}. We use bootstrap to get an estimation of the relevant

covariates sets S(a), S(b) and then the approximation errors e(a) and e(b) are estimated by regressing the observed potential
outcomes a and b on the covariates in S respectively. We only present how to estimate S(a) and e(a) in detail and the estimation
of S(b) and e(b) are similar.

Let A, B be the set of treated subjects (using PAC) and control subjects (without using PAC) respectively. Denote ai, i ∈ A
the potential outcomes (quality-adjusted life years (QALYs)) under treatment and xi ∈ R1172 the covariates vector of the ith
subject. For each d = 1, ..., 1000, we draw a bootstrap sample {(a∗i (d), x∗i (d)) : i ∈ A} with replacement from the data points

{(ai, xi) : i ∈ A}. We then compute the LassoOLS(CV) adjusted vector β̂(d) based on each bootstrap sample {(a∗i (d), x∗i (d)) :

i ∈ A}. Let τj be the selection fraction of non-zero β̂j(d) in the 1000 bootstrap estimators, i.e., τj = (1/1000)
∑1000
d=1 I{β̂j(d)6=0},

where I is the indicator function. We form the relevant covariates S(a) by the covariates whose selection fraction are larger
than 0.5: S(a) = {j : τj > 0.5}.

To estimate the approximation error e(a), we regress ai on the relevant covariates xij , j ∈ S(a) and compute OLS estimate

and the corresponding residual. That is, let T (a) denote the complement set of S(a),

β
(a)
OLS = arg min

β: βj=0, ∀j∈T (a)

1

2nA

∑
i∈A

(
ai − āA − (xi − x̄A)Tβ

)2
.

e
(a)
i = ai − āA − (xi − x̄A)Tβ

(a)
OLS, i ∈ A.

The maximal covariance δn is estimated as:

max

{
max
j

∣∣∣∣∣ 1

nA

∑
i∈A

(xij − (x̄)j)
(
e
(a)
i − ē

(a)
A

)∣∣∣∣∣ , max
j

∣∣∣∣∣ 1

nB

∑
i∈B

(xij − (x̄)j)
(
e
(b)
i − ē

(b)
B

)∣∣∣∣∣
}
.

Proofs of Theorems 1, S1, S2 and Corollary 1
In this section, we will prove Theorem s1, S1, S2, and Corollary 1 under weaker sparsity conditions than those given in the
main text.
Definition 1. We define an approximate sparsity measure. Given the regularization parameter λa, λb and β(a) and β(b), the

sparsity measures for treatment and control groups, s
(a)
λa

and s
(b)
λb

are defined as

s
(a)
λa

=

p∑
j=1

min

{
|β(a)
j |
λa

, 1

}
, s

(b)
λb

=

p∑
j=1

min

{
|β(b)
j |
λb

, 1

}
, (S4)

respectively. We will allow s
(a)
λa

and s
(b)
λb

to grow with n, though the notation does not explicitly show this. Note that this is

weaker than strict sparsity, as it allows β(a) and β(b) to have many small non-zero entries.
Condition (*). Suppose there exist β(a), β(b), λa and λb such that the conditions 1, 2, 3 and the following statements 1, 2, 3
hold simultaneously.

• Statement 1. Decay and scaling. Let sλ = max
{
s
(a)
λa
, s

(b)
λb

}
,

δn = o

(
1

sλ
√

log p

)
, (S5)

(sλ log p)/
√
n = o(1). (S6)

• Statement 2. Cone invertibility factor. Define the Gram matrix as Σ = n−1∑n
i=1(xi− x̄)(xi− x̄)T . There exist constants

C > 0 and ξ > 1 not depending on n, such that

‖hS‖1 ≤ Csλ‖Σh‖∞, ∀h ∈ C, (S7)

with C = {h : ‖hSc‖1 ≤ ξ‖hS‖1}, and

S = {j : |β(a)
j | > λa or |β(b)

j | > λb}. (S8)

• Statement 3. Let τ = min
{

1/70, (3pA)2/70, (3 − 3pA)2/70
}

. For constants 0 < η < ξ−1
ξ+1

and 0 < M < ∞, assume the

regularization parameters of the Lasso belong to the sets

λa ∈ (
1

η
,M ]×

(
2(1 + τ)L1/2

pA

√
2 log p

n
+ δn

)
, (S9)
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λb ∈ (
1

η
,M ]×

(
2(1 + τ)L1/2

pB

√
2 log p

n
+ δn

)
. (S10)

It is easy to verify that Condition (*) is implied by Conditions 1 - 6 of the main text. We will prove Theorems 1, S1, S2,

and Corollary 1 under the weaker Condition (*). For ease of notation, we will omit the subscript of β̂
(a)

Lasso, β̂
(b)

Lasso, sλ, s
(a)
λa

and

s
(b)
λb

. Note that we can assume, without loss of generality, that

ā = 0, b̄ = 0, x̄ = 0. (S11)

Otherwise, we can consider ăi = ai − ā, b̆i = bi − b̄ and x̆i = xi − x̄. Thus, we assume ATE = ā− b̄ = 0 and the definition of

ÂTELasso becomes

ÂTELasso =
[
āA − (x̄A)T β̂

(a)
]
−
[
b̄B − (x̄B)T β̂

(b)
]
. (S12)

We will rely heavily on the following Massart concentration inequality for sampling without replacement.
Lemma S1. Let {zi, i = 1, ..., n} be a finite population of real numbers. Let A ⊂ {i, . . . , n} be a subset of deterministic size
|A| = nA that is selected randomly without replacement. Define pA = nA/n, σ

2 = n−1∑n
i=1(zi − z̄)2. Then, for any t > 0,

P (z̄A − z̄ ≥ t) ≤ exp

{
− pAnAt

2

(1 + τ)2σ2

}
, (S13)

with τ = min
{

1/70, (3pA)2/70, (3− 3pA)2/70
}

.
Remark. Massart showed in his paper [5] that for sampling without replacement, the following concentration inequality holds:

P (z̄A − z̄ ≥ t) ≤ exp

{
−pAnAt

2

σ2

}
.

His proof required that n/nA must be an integer. We extend the proof to allow n/nA to be a non-integer but with a slightly
larger constant factor (1 + τ)2.

Proof. Assume z̄ = 0 without loss of generality. For nA ≤ n/2, let m ≥ 2 and r ≥ 0 be integers satisfying n− nAm = r < nA.
Let u ≥ 0, we first prove that

E exp

(
u
∑
i∈A

zi

)
≤ E exp

(
uδ
∑
i∈B

zi/{m(m+ 1)}+ u2nσ2/4

)
(S14)

for a random subset B ⊂ {1, . . . , n} of fixed size |B| ≤ n/2 and a certain fixed δ ∈ {−1, 1}. Let P1 be the probability under
which {i1, . . . , in} is a random permutation of {1, . . . , n}. Given {i1, . . . , in}, we divide the sequence into consecutive blocks
B1, . . . , BnA with |Bj | = m + 1 for j = 1, . . . , r and |Bj | = m for j = r + 1, ..., nA. Let z̄k be the mean of {zi : i ∈ Bk} and
P2 be a probability conditionally on {i1, . . . , in} under which wk is a random element of {zi : i ∈ Bk}, k = 1, . . . , nA. Then
{w1, . . . , wnA} is a random sample from {z1, . . . , zn} without replacement under P = P1P2. Let ∆k = maxi∈Bk zi−mini∈Bk zi
and denote E2 the expectation under P2. The Hoeffding inequality gives

E2 exp

(
u

nA∑
k=1

wk

)
≤ exp

(
u

nA∑
k=1

z̄k + (u2/8)

nA∑
k=1

∆2
k

)
. (S15)

As ∆2
i ≤ 2

∑
i∈Bk

(zi − z̄k)2 ≤ 2
∑
i∈Bk

z2i ,

E2 exp

(
u

nA∑
k=1

wk

)
≤ exp

(
u

nA∑
k=1

z̄k + u2nσ2/4

)
(S16)

Let B = ∪rk=1Bk. As z̄ = 0,
nA∑
k=1

z̄k =
∑
i∈B

zi/{m(m+ 1)}. (S17)

This yields (S14) with δ = 1 when |B| ≤ n/2. Otherwise, (S14) holds with δ = −1 when B is replaced by Bc, as
∑
i∈B zi =

−
∑
i∈Bc zi due to z̄ = 0.

Now, as m(m+ 1) ≥ 6, repeated application of (S14) yields

E exp

(
u
∑
i∈A

zi

)
≤ E exp

[
uδ′

∑
i∈B′

zi/{m(m+ 1)m′(m′ + 1)}+
(
1 + {m(m+ 1)}−2)u2nσ2/4

]
≤ exp

[(
1 + {m(m+ 1)}−2(1 + 1/36 + 1/362 + · · · )

)
u2nσ2/4

]
= exp

[(
1 + (36/35){m(m+ 1)}−2)u2nσ2/4

]
≤ exp

[
(1 + τ)2 u2nσ2/4

]
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with τ = (18/35){m(m+ 1)}−2. The upper bound for τ follows from 2 ≤ m < n/nA < m+ 1.
As z̄ = 0, we also have

E exp

(
u
∑
i∈A

zi

)
≤ exp

[
(1 + τ)2 u2nσ2/4

]
(S19)

for nA > n/2. This yields (S13) via the usual

P {z̄A − z̄ > t} ≤ exp
[
−ut+ (1 + τ)2u2nσ2/(4n2

A)
]

= exp

[
−2

pAnAt
2

(1 + τ)2σ2
+

pAnAt
2

(1 + τ)2σ2

]
(S20)

with u = 2pAnAt/{σ(1 + τ)}2.

Proof of Theorem 1.

Proof. Recall the decompositions of the potential outcomes:

ai = ā+ (xi − x̄)Tβ(a) + e
(a)
i = xTi β

(a) + e
(a)
i , (S21)

bi = b̄+ (xi − x̄)Tβ(b) + e
(b)
i = xTi β

(b) + e
(b)
i . (S22)

If we define h(a) = β̂
(a)
− β(a), h(b) = β̂

(b)
− β(b), by substitution, we have

√
n(ÂTELasso −ATE) =

√
n
[
ē
(a)
A − ē

(b)
B

]
︸ ︷︷ ︸

∗

−
√
n
[
(x̄A)T h(a) − (x̄B)T h(b)

]
︸ ︷︷ ︸

∗∗

.

We will analyze these two terms separately, showing that (∗) is asymptotically normal with mean 0 and variance given by
(17), and that (∗∗) is op (1).

Asymptotic normality of (∗) follows from the Theorem 1 in [6] with a and b replaced by e(a) and e(b) respectively. To bound
(∗∗), we will apply Hölder’s inequality to each of the terms. We will focus on the term involving the treatment group A, but
exact same analysis is applied to the control group B. We have the bound∣∣∣(x̄A)T h(a)

∣∣∣ ≤ ‖x̄A‖∞ ‖h(a)‖1. (S23)

We bound the two terms on the right hand side of (S23) by the following Lemma S2 and Lemma S3, respectively.

Lemma S2. Under the moment condition of [6], if we let cn = (1+τ)L1/4

pA

√
2 log p
n

, then as n→∞,

P
(
‖x̄A‖∞ > cn

)
→ 0

Thus, ‖x̄A‖∞ = Op

(√
log p
n

)
.

Lemma S3. Assume the conditions of Theorem 1 hold. Then ‖h(a)‖1 = op
(

1√
log p

)
.

The proofs of these two Lemmas are below. Using these two Lemmas, it is easy to show that (∗∗)=
√
n · Op

(√
log p
n

)
·

op
(

1√
log p

)
= op (1).

Proof of Corollary 1.

Proof. By Theorem 1 in [6], the asymptotic variance of
√
n ÂTEunadj is 1−pA

pA
limn→∞ σ

2
a + pA

1−pA
limn→∞ σ

2
b + 2 limn→∞ σab,

so the difference is

1− pA
pA

lim
n→∞

(
σ2
e(a) − σ

2
a

)
+

pA
1− pA

lim
n→∞

(
σ2
e(b) − σ

2
b

)
+ 2 lim

n→∞
(σe(a)e(b) − σab) .

We will analyze these three terms separately. Since Xβ(a) and Xβ(b) are the orthogonal projections of a and b onto the same
subspace, we have

(Xβ(a))T e(a) = (Xβ(a))T e(b) = (Xβ(b))T e(a) = (Xβ(b))T e(b) = 0.

Simple calculations yield

σ2
e(a) − σ

2
a = ||e(a)||22 − ||a||22 = −||Xβ(a)||22, (S24)

σ2
e(b) − σ

2
b = ||e(b)||22 − ||b||22 = −||Xβ(b)||22, (S25)
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σe(a)e(b) − σab = (e(a))T (e(b))− aT b = −(Xβ(a))T (Xβ(b)) (S26)

Combining (S24), (S25) and (S26), we obtain the corollary.

Proof of Theorem S1.

Proof. To prove Theorem S1, it is enough to show that

σ̂2
e(a)

p→ lim
n→∞

σ2
e(a) , (S27)

σ̂2
e(b)

p→ lim
n→∞

σ2
e(b) . (S28)

We will only prove the statement (S27) and omit the proof of the statement (S28) since it is identical.
We first state the following two lemmas. Lemma S4 bounds the number of selected covariates (covariates with a nonzero

coefficient), while Lemma S5 establishes conditions under which the subsample mean (without replacement) converges in
probability to the population mean.

Lemma S4. Under conditions in Theorem S1, there exists a constant C, such that the following holds with probability going
to 1:

ŝ(a) ≤ Cs; ŝ(b) ≤ Cs. (S29)

The proof of Lemma S4 can be found below.

Lemma S5. Let {zi, i = 1, ..., n} be a finite population of real numbers. Let A ⊂ {i, . . . , n} be a subset of deterministic size
|A| = nA that is selected randomly without replacement. Suppose that the population mean of the zi has a finite limit and that
there exist constants ε > 0 and L <∞ such that

1

n

n∑
i=1

|zi|1+ε ≤ L. (S30)

If nA
n
→ pA ∈ (0, 1), then

z̄A
p→ lim
n→∞

z̄. (S31)

By definition (S1) and simple calculations,

σ̂2
e(a) =

1

nA − df (a)

∑
i∈A

(
ai − āA − (xi − x̄A)T β̂

(a)
)2

=
1

nA − df (a)

∑
i∈A

(
ai − āA − (xi − x̄A)Tβ(a) + (xi − x̄A)T (β(a) − β̂

(a)
)
)2

=
1

nA − df (a)

∑
i∈A

(
ai − xTi β

(a) − (āA − (x̄A)Tβ(a)) + (xi − x̄A)T (β(a) − β̂
(a)

)
)2

=
nA

nA − df (a)

1

nA

∑
i∈A

(
e
(a)
i − ē

(a)
A + (xi − x̄A)T (β(a) − β̂

(a)
)
)2

=
nA

nA − df (a)

{
1

nA

∑
i∈A

(
e
(a)
i − ē

(a)
A

)2
+

1

nA

∑
i∈A

(
(xi − x̄A)T (β(a) − β̂

(a)
)
)2}

+
nA

nA − df (a)

{
1

nA

∑
i∈A

(e
(a)
i − ē

(a)
A )(xi − x̄A)T (β(a) − β̂

(a)
)

}
.

The second to last equality is due to the decomposition of potential outcome a:

ai = xTi β
(a) + e

(a)
i ; āA = (x̄A)Tβ(a) + ē

(a)
A .

It is easy to see that
1

nA

∑
i∈A

(
e
(a)
i − ē

(a)
A

)2
=

1

nA

∑
i∈A

(e
(a)
i )2 − (ē

(a)
A )2. (S32)

By the 4th moment condition on the approximation error e(a) (see (7)), and applying Lemma S5 gives

1

nA

∑
i∈A

(e
(a)
i )2

p→ lim
n→∞

σ2
e(a) ; ē

(a)
A

p→ lim
n→∞

ē(a) = 0.

Therefore,
1

nA

∑
i∈A

(
e
(a)
i − ē

(a)
A

)2 p→ lim
n→∞

σ2
e(a) . (S33)
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By simple algebra,

1

nA

∑
i∈A

(
(xi − x̄A)T (β(a) − β̂

(a)
)
)2

= (β(a) − β̂
(a)

)T
[

1

nA

∑
i∈A

(xi − x̄A)(xi − x̄A)T
]

(β(a) − β̂
(a)

)

≤ ||β(a) − β̂
(a)
||21 · ||

1

nA

∑
i∈A

(xi − x̄A)(xi − x̄A)T ||∞. (S34)

We next show that (S34) converges to 0 in probability. By Lemma S3 and Lemma S7, we have

||β(a) − β̂
(a)
||1 = ‖h(a)‖1 = op

(
1√

log p

)
, (S35)

|| 1

nA

∑
i∈A

(xi − x̄A)(xi − x̄A)T ||∞ = Op(1). (S36)

Therefore,
1

nA

∑
i∈A

(
(xi − x̄A)T (β(a) − β̂

(a)
)
)2 p→ 0. (S37)

By Cauchy-Schwarz inequality,

| 1

nA

∑
i∈A

(e
(a)
i − ē

(a)
A )(xi − x̄A)T (β(a) − β̂

(a)
)|

≤

[
1

nA

∑
i∈A

(
e
(a)
i − ē

(a)
A

)2] 1
2
[

1

nA

∑
i∈A

(
(xi − x̄A)T (β(a) − β̂

(a)
)
)2] 1

2

(S38)

which converges to 0 in probability because of (S33) and (S37).
By Lemma S4 and Condition 4, we have

nA
nA − df (a)

=
nA

nA − ŝ(a) − 1

p→ 1. (S39)

Combining (S33), (S37), (S38) and (S39), we conclude that

σ̂2
e(a)

p→ lim
n→∞

σ2
e(a) .

The remaining part of the proof is to study the difference between the conservative variance estimate and the true asymptotic
variance: (

1

pA
lim
n→∞

σ2
e(a) +

1

1− pA
lim
n→∞

σ2
e(b)

)
−
(

1− pA
pA

lim
n→∞

σ2
e(a) +

pA
1− pA

lim
n→∞

σ2
e(b) + 2 lim

n→∞
σe(a)e(b)

)
= lim

n→∞
σ2
e(a) + lim

n→∞
σ2
e(b) − 2 lim

n→∞
σe(a)e(b)

= lim
n→∞

σ2
e(a)−e(b)

= lim
n→∞

1

n

n∑
i=1

(
ai − bi − xTi (β(a) − β(b))

)2
. (S40)

Proof of Theorem S2.

Proof. By Lemma S4, max (ŝ(a), ŝ(b)) = op(min (nA, nB)). Therefore, (σ̂2
e(a)

, σ̂2
e(b)

) and ((σ̂∗)2
e(a)

, (σ̂∗)2
e(b)

) have the same limits.
The conclusion follows from Theorem S1.
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Proofs of Lemmas
In this section, we will drop the superscript on h, e and β̂ and focus on the proof for treatment group A, as the same analysis
can be applied to control group B.

Proof of Lemma S2.

Proof. Let cn = (1+τ)L1/4

pA

√
2 log p
n

. By the union bound,

P
(
‖x̄A‖∞ > cn

)
= P

(
max

j=1,...,p

∣∣∣∣∣ 1

nA

∑
i∈A

xij

∣∣∣∣∣ > cn

)
≤

p∑
j=1

P

(∣∣∣∣∣ 1

nA

∑
i∈A

xij

∣∣∣∣∣ > cn

)
. (S41)

By Cauchy-Schwarz inequality, we have

1

n

n∑
i=1

x2ij ≤

(
1

n

n∑
i=1

x4ij

) 1
2
(

1

n

n∑
i=1

12

) 1
2

≤
√
L. (S42)

Substituting the concentration inequality (S13) into (S41),

P
(
‖x̄A‖∞ > cn

)
≤ 2 exp

{
log p− pAnAc

2
n

(1 + τ)2L1/2

}
= 2 exp {− log p} → 0.

Proof of Lemma S3.

Proof. We start with the KKT condition, which characterizes the solution to the Lasso. Recall the definition of the Lasso

estimator β̂:

β̂ = arg min
β

1

2nA

∑
i∈A

(
ai − āA − (xi − x̄A)Tβ

)2
+ λa ‖β‖1 .

The KKT condition for β̂ is
1

nA

∑
i∈A

(xi − x̄A)
(
ai − āA − (xi − x̄A)T β̂

)
= λaκ, (S43)

where κ is the subgradient of ||β||1 taking value at β = β̂, i.e.,

κ ∈ ∂||β||1
∣∣∣β=β̂ with

{
κj ∈ [−1, 1] for j s.t. β̂j = 0

κj = sign(β̂j) otherwise
(S44)

Substituting ai by the decomposition (3), (S43) becomes

1

nA

∑
i∈A

(xi − x̄A)(xi − x̄A)T (β − β̂) +
1

nA

∑
i∈A

(xi − x̄A)(ei − ēA) = λaκ. (S45)

Multiplying both sides of (S45) by −hT = (β − β̂)T , we have

1

nA

∑
i∈A

(
(xi − x̄A)Th

)2
− hT

1

nA

∑
i∈A

(xi − x̄A)(ei − ēA)

= λa(β − β̂)Tκ ≤ λa
(
‖β‖1 − ‖β̂‖1

)
where the last inequality is because

βTκ ≤ ||β||1||κ||∞ ≤ ||β||1 and β̂
T
κ = ||β̂||1.

Rearranging and by Hölder’s inequality, we have

1

nA

∑
i∈A

(
(xi − x̄A)Th

)2
≤ λa

(
‖β‖1 − ‖β̂‖1

)
+ hT

1

nA

∑
i∈A

(xi − x̄A)(ei − ēA)

≤ λa
(
‖β‖1 − ‖β̂‖1

)
+ ‖h‖1

∥∥∥∥∥ 1

nA

∑
i∈A

(xi − x̄A)(ei − ēA)

∥∥∥∥∥
∞︸ ︷︷ ︸

∗

To control the term (∗), we define the event L = {∗ ≤ ηλa}. The following Lemma S6 shows that, with λa defined appropriately,
L holds with probability approaching 1. We will prove this Lemma later.
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Lemma S6. Define L =
{∥∥∥ 1

nA

∑
i∈A(xi − x̄A)(ei − ēA)

∥∥∥
∞
≤ ηλa

}
. Then under the conditions of Theorem 1, P (L)→ 1.

On L
1

nA

∑
i∈A

(
(xi − x̄A)Th

)2
≤ λa

(
‖β‖1 − ‖β̂‖1 + η ‖h‖1

)
. (S46)

By substituting the definition of h, and several applications of the triangle inequality, we have

‖β‖1 − ‖β̂‖1 ≤ ‖hS‖1 − ‖hSc‖1 + 2 ‖βSc‖1 .

Therefore,

1

nA

∑
i∈A

(
(xi − x̄A)Th

)2
≤ λa

(
‖hS‖1 − ‖hSc‖1 + 2 ‖βSc‖1 + η ‖h‖1

)
≤ λa

(
(η − 1) ‖hSc‖1 + (1 + η) ‖hS‖1 + 2 ‖βSc‖1

)
.

Because 1
nA

∑
i∈A

(
(xi − x̄A)Th

)2 ≥ 0, we obtain

(1− η) ‖hSc‖1 ≤ (1 + η) ‖hS‖1 + 2 ‖βSc‖1 ≤ (1 + η) ‖hS‖1 + 2sλa. (S47)

where the last inequality is because of the definition of s in (S4) and S in (S8).
Consider the following two cases:
(I) If (1 + η)‖hS‖1 + 2sλa ≥ (1− η)ξ‖hS‖1 then by (S47),

‖h‖1 = ‖hS‖1 + ‖hSc‖1 ≤
(

1 + η

1− η + 1

)
‖hS‖1 +

2sλa
1− η ≤

2sλa
1− η

(
2

(1− η)ξ − (1 + η)
+ 1

)
.

By the definition of λa and the scaling assumptions (S5), (S6), we have that sλa = o
(

1√
log p

)
.

(II) If (1+η)‖hS‖1+2sλa < (1−η)ξ‖hS‖1 then by (S47) we have ‖hSc‖1 ≤ ξ‖hS‖1. Applying the cone invertibility condition
on the design matrix (S7),

‖h‖1 = ‖hS‖1 + ‖hSc‖1 ≤ (1 + ξ)‖hS‖1 ≤ (1 + ξ)Cs

∥∥∥∥ 1

n
XTXh

∥∥∥∥
∞

(S48)

Before applying this inequality we will revisit the KKT condition (S44), but this time we will take the l∞-norm, yielding∥∥∥∥∥ 1

nA

∑
i∈A

(xi − x̄A)(xi − x̄A)Th

∥∥∥∥∥
∞

≤ λa +

∥∥∥∥∥ 1

nA

∑
i∈A

(xi − x̄A)(ei − ēA)

∥∥∥∥∥
∞

≤ (1 + η)λa (S49)

where the latter inequality holds on the set L. The final step is to control the deviation of the subsampled covariance matrix

from the population covariance matrix, so that we can apply (S48). We define another event with constant C1 = 2(1+τ)L1/2

pA

M =

{∥∥∥∥∥ 1

nA

∑
i∈A

(xi − x̄A)(xi − x̄A)T − 1

n
XTX

∥∥∥∥∥
∞

≤ C1

√
log p

n

}

Lemma S7. Assume stability of treatment assignment probability condition 1 and moment condition 6 hold. Then P (M)→ 1.

We will prove Lemma S7 later. Continuing our inequalities, on the event L ∩M,

s

∥∥∥∥ 1

n
XTXh

∥∥∥∥
∞
≤ C1s

√
log p

n
‖h‖1 + s

∥∥∥∥∥ 1

nA

∑
i∈A

(xi − x̄A)(xi − x̄A)Th

∥∥∥∥∥
∞

≤ o(1) ‖h‖1 + s(1 + η)λa,

where we have applied the scaling assumption (S6) and (S49) in the second line. Hence, by (S48),

‖h‖1 ≤ (1 + ξ)C
[
o(1) ‖h‖1 + s(1 + η)λa

]
.

Again, applying the scaling assumptions (S5) and (S6), we get ‖h‖1 = op
(

1√
log p

)
.

10 www.pnas.org — — Footline Author



i
i

“appendices” — 2016/4/7 — 10:02 — page 11 — #11 i
i

i
i

i
i

Proof of Lemma S4.

Proof. In the proof of Lemma S3, we have shown that, on L defined in Lemma S6,

1

nA

∑
i∈A

(
(xi − x̄A)T (β − β̂)

)2
≤ λa

(
‖β‖1 − ‖β̂‖1 + η||β − β̂||1

)
.

≤ λa(1 + η)||β − β̂||1. (S50)

Let xj be the j-th column of the design matrix X and x̄jA = n−1
A

∑
i∈A xij . Again, by KKT conditon, we have∣∣∣∣∣ 1

nA

∑
i∈A

(xij − x̄jA)
(
ai − āA − (xi − x̄A)T β̂

)∣∣∣∣∣ = λa, if β̂j 6= 0.

Substituting ai by the decomposition (3) yields∣∣∣∣∣ 1

nA

∑
i∈A

(xij − x̄jA)(ei − ēA) +
1

nA

∑
i∈A

(xij − x̄jA)(xi − x̄A)T (β − β̂)

∣∣∣∣∣ = λa.

Combining with the definition of the event L, we have if β̂j 6= 0

∆j :=

∣∣∣∣∣ 1

nA

∑
i∈A

(xij − x̄jA)(xi − x̄A)T (β − β̂)

∣∣∣∣∣ ≥ (1− η)λa. (S51)

Let Z = (z1, ..., zn) ∈ Rp×n with zi = xi − x̄A ∈ Rp and denote w = ZT (β − β̂), then

1

nA
||wA||22 =

1

nA

∑
i∈A

(
(xi − x̄A)T (β − β̂)

)2
≤ λa(1 + η)||β − β̂||1.

Let ZA = (zi : i ∈ A), since the largest eigenvalues of ZTAZA and ZAZ
T
A are the same,

1

n2
A

wT
AZ

T
AZAwA ≤ 1

n2
A

λmax(ZTAZA)||wA||22

≤ 1

nA
λmax(ZAZ

T
A)λa(η + 1)||β − β̂||1

≤ Λmax
n

nA
λa(1 + η)||β − β̂||1.

The last inequality holds because

λmax(ZAZ
T
A) = max

u:||u||2=1
uTZAZ

T
Au

= max
u:||u||2=1

uT
∑
i∈A

(xi − x̄A)(xi − x̄A)Tu

= max
u:||u||2=1

uT
∑
i∈A

xix
T
i u− nAuT (x̄A)(x̄A)Tu

≤ max
u:||u||2=1

uT
∑
i∈A

xix
T
i u ≤ nΛmax. (S52)

On the other hand,

1

n2
A

wT
AZ

T
AZAwA =

p∑
j=1

∆2
j ≥

∑
j:β̂j 6=0

∆2
j ≥ (1− η)2λ2

aŝ. (S53)

Combining (S51), (S53) and the fact that with probability going to 1 (see the proof of Lemma S3)

||β − β̂||1 ≤ Cs(1 + η)λa,

where C is a constant. We conclude that with probability going to 1

ŝ ≤ 1

(1− η)2
1

λ2
a

Λmax
n

nA
λa(1 + η)Cs(1 + η)λa ≤

C(1 + η)2

pA(1− η)2
s.
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Proof of Lemma S5.

Proof. For any t > 0, we have

P (|z̄A − lim
n→∞

z̄| > t) ≤ P (|z̄A − z̄| > t/2) + P (|z̄ − lim
n→∞

z̄| > t/2). (S54)

The second term in the right hand side of (S54) obviously converges to 0 as n→∞. To bound the first term, we apply the
concentration inequality (S13). By (S30), it is easy to show

1

n

n∑
i=1

z2i =
1

n

n∑
i=1

|zi|1−ε|zi|1+ε ≤ (nL)
1−ε
1+ε

1

n

n∑
i=1

|zi|1+ε ≤ L
2

1+ε n
1−ε
1+ε .

Concentration inequality (S13) yields

P (|z̄A − z̄| > t/2) ≤ 2 exp

{
− pAnAt

2

4(1 + τ)2L
2

1+ε n
1−ε
1+ε

}
→ 0.

Proof of Lemma S6.

Proof. It is easy to verify that
1

nA

∑
i∈A

(xi − x̄A)(ei − ēA) =
1

nA

∑
i∈A

xiei − (x̄A)(ēA).

Hence,

|| 1

nA

∑
i∈A

(xi − x̄A)(ei − ēA)||∞ ≤ ||
1

nA

∑
i∈A

xiei||∞ + ||(x̄A)(ēA)||∞. (S55)

We analyze these two terms on the right hand side of the inequality separately. For the first term, by triangle inequality and
the definition of δn in (9),

|| 1

nA

∑
i∈A

xiei||∞ ≤ ||
1

nA

∑
i∈A

xiei −
1

n

n∑
i=1

xiei||∞ + || 1
n

n∑
i=1

xiei||∞

≤ || 1

nA

∑
i∈A

xiei −
1

n

n∑
i=1

xiei||∞ + δn. (S56)

We will again bound (S56) by the concentration inequality (S13) in Lemma S1. By Cauchy-Schwarz inequality, we have for
any j = 1, .., p,

1

n

n∑
i=1

x2ije
2
i ≤

(
1

n

n∑
i=1

x4ij

) 1
2
(

1

n

n∑
i=1

e4i

) 1
2

≤ L.

Let tn = (1+τ)L1/2

pA

√
2 log p
n

, then by the union bound and the concentration inequality (S13),

P

(
|| 1

nA

∑
i∈A

xiei −
1

n

n∑
i=1

xiei||∞ > tn

)
≤ 2 exp

{
log p− pAnAt

2
n

(1 + τ)2L)

}
= 2 exp {− log p} → 0.

Taking this back to (S56), we have

P

(
|| 1

nA

∑
i∈A

xiei||∞ ≤ tn + δn

)
→ 1. (S57)

For the second term, by Lemma S2, we have shown that,

P

(
‖x̄A‖∞ ≤

(1 + τ)L1/4

pA

√
2 log p

n

)
→ 1.

Similar proof yields

P

(
‖ēA‖∞ ≤

(1 + τ)L1/4

pA

√
2 log p

n

)
→ 1.

Hence, under the scaling condition (S6),

P

(
‖(x̄A)(ēA)‖∞ ≤

(1 + τ)L1/2

pA

√
2 log p

n

)
→ 1. (S58)
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Combining (S57) and (S58) yields

P

(
|| 1

nA

∑
i∈A

(xi − x̄A)(ei − ēA)||∞ ≤
2(1 + τ)L1/2

pA

√
2 log p

n
+ δn

)
→ 1.

The conclusion follows from the condition λa ∈ ( 1
η
,M ]×

(
2(1+τ)L1/2

pA

√
2 log p
n

+ δn

)
.

Proof of Lemma S7.

Proof. It is easy to see that
1

nA

∑
i∈A

(xi − x̄A)(xi − x̄A)T =
1

nA

∑
i∈A

xix
T
i − (x̄A)(x̄A)T .

Then, by triangle inequality,

|| 1

nA

∑
i∈A

(xi − x̄A)(xi − x̄A)T − 1

n
XTX||∞ (S59)

≤ || 1

nA

∑
i∈A

xix
T
i −

1

n

n∑
i=1

xix
T
i ||∞︸ ︷︷ ︸

∗

+ ||(x̄A)(x̄A)T ||∞︸ ︷︷ ︸
∗∗

. (S60)

We control the first term (∗) again using the concentration inequality (S13) and the union bound. By Cauchy-Schwarz
inequality, for j, k = 1, ..., p,

1

n

n∑
i=1

x2ijx
2
ik ≤

(
1

n

n∑
i=1

x4ij

) 1
2
(

1

n

n∑
i=1

x4ik

) 1
2

≤ L.

Then,

P

(
|| 1

nA

∑
i∈A

xix
T
i −

1

n

n∑
i=1

xix
T
i ||∞ ≥

(1 + τ)L1/2

pA

√
3 log p

n

)

≤ 2 exp

{
2 log p− 3pAnA(1 + τ)2L log p

(1 + τ)2Lp2An

}
= 2 exp {− log p} → 0. (S61)

The second term (∗∗) is bounded by again observing that, by Lemma S2 and the scaling condition (S6),

(∗∗) ≤ ||x̄A||2∞ = op(

√
log p

n
). (S62)

Combining (S61) and (S62) yields the conclusion.

Tables and Figures
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Fig. S1. Boxplot of the interval length with coverage probability (%) on top of each box for the unadjusted, OLS adjusted (only computed when p = 50), cv(Lasso)

adjusted and cv(Lasso+OLS) adjusted estimators with nA = 100.
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Fig. S2. Boxplot of the interval length with coverage probability (%) on top of each box for the unadjusted, OLS adjusted (only computed when p = 50), cv(Lasso)

adjusted and cv(Lasso+OLS) adjusted estimators with nA = 125.
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Fig. S3. Boxplot of the interval length with coverage probability (%) on top of each box for the unadjusted, OLS adjusted (only computed when p = 50), cv(Lasso)

adjusted and cv(Lasso+OLS) adjusted estimators with nA = 150.
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Fig. S4. Boxplot of the unadjusted, OLS adjusted (only computed when p = 50), cv(Lasso) and cv(Lasso+OLS) adjusted estimators with their standard deviations

presented on top of each box for nA = 100.
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Fig. S5. Boxplot of the unadjusted, OLS adjusted (only computed when p = 50), cv(Lasso) and cv(Lasso+OLS) adjusted estimators with their standard deviations

presented on top of each box for nA = 125.

(50,0) (50,0.6) (500,0) (500,0.6)

−
4

−
2

0
2

4
6

8

Boxplot with Standard Deviation on top (nA=150)

(p, ρ)

A
T

E
 −

 A
T

E

0.85

1.19

0.85

1.19

0.76

0.960.66

0.82

0.72

0.84

0.67

0.82

0.71

0.84

Unadjusted OLScv(Lasso) cv(Lasso+OLS)

Fig. S6. Boxplot of the unadjusted, OLS adjusted (only computed when p = 50), cv(Lasso) and cv(Lasso+OLS) adjusted estimators with their standard deviations

presented on top of each box for nA = 150.
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Algorithm 1 K-fold Cross Validation (CV) for the Lasso+OLS estimator

Input: Design matrix X, response Y and a sequence of tuning parameter λ1, ..., λJ ; Number of folds K.

Output: The optimal tuning parameter selected by CV: λoptimal.

1: Divide randomly the data z = (X,Y ) into K roughly equal parts zk, k = 1, ...,K;

2: For each k = 1, ...,K, denote Ŝ(k)(λ0) = ∅ and β̂
(k)
Lasso+OLS(λ0) = 0.

• Fit the model with parameters λj , j = 1, ..., J to the other K−1 parts z−k = z \zk of the data, giving the Lasso solution

path β̂(k)(λj), j = 1, ..., J and compute the selected covariates set Ŝ(k)(λj) = {l : β̂
(k)
l (λj) 6= 0}, j = 1, ..., J on the path;

• For each j = 1, ..., J , compute the Lasso+OLS estimator:

β̂
(k)
Lasso+OLS(λj) =


arg min

β: βj=0, ∀j /∈Ŝ(k)(λj)

 1

2|z−k|
∑
i∈z−k

(yi − xTi β)2

 , if Ŝ(k)(λj) 6= Ŝ(k)(λj−1),

β̂
(k)
Lasso+OLS(λj−1), otherwise;

(S63)

• Compute the error in predicting the kth part of the data PE(k) :

PE(k)(λj) =
1

|zk|
∑
i∈zk

(
yi − xTi β̂

(k)
Lasso+OLS(λj)

)2
;

3: Compute cross validation error CV (λj), j = 1, ..., J :

CV (λj) =
1

K

K∑
k=1

PE(k)(λj);

4: Compute the optimal λ selected by CV;
λoptimal = argmin

λj : j=1,...,J
CV (λj);

5: return λoptimal.
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Fig. S7. Boxplot of Neyman SD estimate with the “true” SD presented as red dot.
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Fig. S8. Adjustment (fitted) value comparison for cv(Lasso) and cv(Lasso+OLS).
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Fig. S9. Fourth moment of each covariate. The covariates with the largest two fourth moments (37.3 and 34.9 respectively) are quadratic term interactnew2 and

interaction term IMscorerct : systemnew respectively. Neither of them are selected by the Lasso to do the adjustment. All the fourth moments of the main effects are

less than 7.
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Table S1. Bias, standard deviation (SD) and root-mean square error
√

MSE of ATE estimates

(p, ρ)
Statistic Method (50,0) (50,0.6) (500,0) (500,0.6)

nA = 100
Unadjusted 0.003(0.004)∗ 0.005(0.005) 0.002(0.003) 0.003(0.005)

bias OLS 0.014(0.005) 0.013(0.006) - -
cv(Lasso) 0.007(0.004) 0.014(0.005) 0.006(0.004) 0.005(0.004)
cv(Lasso+OLS) 0.011(0.004) 0.013(0.005) 0.009(0.004) 0.003(0.004)
Unadjusted 0.79(0.08) 1.17(0.11) 0.79(0.07) 1.17(0.11)

SD OLS 0.72(0.07) 0.96(0.09) - -
cv(Lasso) 0.62(0.06) 0.82(0.08) 0.67(0.06) 0.84(0.08)
cv(Lasso+OLS) 0.63(0.06) 0.82(0.08) 0.65(0.06) 0.84(0.08)
Unadjusted 0.79(0.08) 1.17(0.11) 0.79(0.07) 1.17(0.11)√

MSE OLS 0.72(0.07) 0.97(0.09) - -
cv(Lasso) 0.63(0.06) 0.82(0.08) 0.67(0.06) 0.85(0.08)
cv(Lasso+OLS) 0.63(0.06) 0.82(0.08) 0.65(0.06) 0.84(0.08)

nA = 125
Unadjusted 0.008(0.005) 0.011(0.007) 0.006(0.004) 0.01(0.007)

bias OLS 0.008(0.004) 0.005(0.005) - -
cv(Lasso) 0.005(0.003) 0.012(0.005) 0.007(0.004) 0.004(0.004)
cv(Lasso+OLS) 0.012(0.004) 0.012(0.005) 0.011(0.004) 0.003(0.003)
Unadjusted 0.80(0.08) 1.15(0.11) 0.8(0.08) 1.15(0.11)

SD OLS 0.69(0.06) 0.90(0.09) - -
cv(Lasso) 0.62(0.06) 0.79(0.07) 0.67(0.06) 0.82(0.08)
cv(Lasso+OLS) 0.62(0.06) 0.79(0.07) 0.65(0.06) 0.81(0.08)
Unadjusted 0.80(0.07) 1.15(0.11) 0.8(0.07) 1.15(0.11)√

MSE OLS 0.69(0.07) 0.90(0.09) - -
cv(Lasso) 0.62(0.06) 0.80(0.08) 0.67(0.06) 0.82(0.08)
cv(Lasso+OLS) 0.62(0.06) 0.79(0.07) 0.65(0.06) 0.81(0.08)

nA = 150
Unadjusted 0.004(0.004) 0.000(0.005) 0.002(0.003) 0.005(0.005)

bias OLS 0.002(0.003) 0.006(0.005) - -
cv(Lasso) 0.003(0.003) 0.002(0.004) 0.01(0.005) 0.002(0.003)
cv(Lasso+OLS) 0.011(0.004) 0.006(0.004) 0.017(0.005) 0.001(0.003)
Unadjusted 0.85(0.08) 1.19(0.11) 0.85(0.08) 1.19(0.11)

SD OLS 0.76(0.07) 0.96(0.09) - -
cv(Lasso) 0.66(0.06) 0.82(0.08) 0.72(0.07) 0.84(0.08)
cv(Lasso+OLS) 0.67(0.06) 0.81(0.07) 0.71(0.07) 0.84(0.08)
Unadjusted 0.85(0.08) 1.19(0.11) 0.85(0.08) 1.19(0.11)√

MSE OLS 0.76(0.07) 0.96(0.09) - -
cv(Lasso) 0.66(0.06) 0.82(0.08) 0.72(0.07) 0.84(0.08)
cv(Lasso+OLS) 0.67(0.06) 0.82(0.08) 0.71(0.07) 0.84(0.08)

∗The numbers in parentheses are the corresponding standard errors estimated by using the bootstrap with B = 500 resamplings of the ATE estimates.
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Table S2. Mean number of selected covariates for treated and control group

(p, ρ)
Group Method (50,0) (50,0.6) (500,0) (500,0.6)

nA = 100
treated cv(Lasso) 16 13 22 22

cv(Lasso+OLS) 6 6 7 7
control cv(Lasso) 20 11 32 28

cv(Lasso+OLS) 8 6 7 7

nA = 125
treated cv(Lasso) 17 13 25 24

cv(Lasso+OLS) 7 6 6 6
control cv(Lasso) 19 11 32 27

cv(Lasso+OLS) 8 6 9 8

nA = 150
treated cv(Lasso) 18 13 29 26

cv(Lasso+OLS) 8 7 6 6
control cv(Lasso) 19 12 30 25

cv(Lasso+OLS) 8 6 11 8

Table S3. Coverage probability (%) and mean interval length (in parentheses) for 95% confidence interval

(p, ρ)
Methods (50,0) (50,0.6) (500,0) (500,0.6)

nA = 100
Unadjusted 97.3(3.54)∗ 95.8(4.79) 97.3(3.54) 95.8(4.79)
OLS 92.2(2.55) 90.0(3.19) - -
cv(Lasso) 95.8(2.58) 94.5(3.20) 94.3(2.61) 92.4(3.07)
cv(Lasso+OLS) 95.6(2.57) 94.4(3.17) 94.8(2.60) 93.0(3.11)

nA = 125
Unadjusted 97.4(3.56) 96.0(4.74) 97.3(3.56) 95.9(4.74)
OLS 93.3(2.54) 91.6(3.14) - -
cv(Lasso) 96.0(2.56) 95.0(3.15) 94.1(2.59) 92.9(3.02)
cv(Lasso+OLS) 95.7(2.55) 94.9(3.12) 94.4(2.58) 93.6(3.06)

nA = 150
Unadjusted 97.1(3.72) 95.8(4.88) 97.1(3.72) 95.8(4.88)
OLS 91.4(2.64) 90.4(3.21) - -
cv(Lasso) 95.4(2.66) 94.9(3.23) 92.9(2.68) 92.6(3.08)
cv(Lasso+OLS) 94.7(2.63) 94.8(3.19) 92.0(2.63) 93.1(3.11)
∗The numbers in parentheses are the corresponding mean interval lengths.

Table S4. Statistics for the PAC illustration

No. of selected covariates

Methods ÂTE σ̂ATE 95% confidence interval treated control
Unadjusted -0.13 0.081 [-0.69,0.43] - -
OLS -0.31 0.054 [-0.77,0.14] - -
cv(Lasso) -0.33 0.052 [-0.77,0.12] 24 8
cv(Lasso+OLS) -0.36 0.053 [-0.82,0.09] 4 5
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Table S5. Statistics for the PAC synthetic data set

No. of selected covariates

Bias SD
√

MSE Coverage (%) Length treated control
unadjusted 0.001(0)∗ 0.20(0.02) 0.20(0.02) 99 1.06 - -
OLS 0.002(0) 0.18(0.02) 0.18(0.02) 99 0.95 - -
cv(Lasso) 0.001(0) 0.17(0.02) 0.17(0.02) 99 0.94 25(23) 15(14)
cv(Lasso+OLS) 0.000(0) 0.17(0.02) 0.17(0.02) 99 0.95 6(6) 4(3)
∗The numbers in parentheses are the corresponding standard errors estimated by using the bootstrap with B = 500 resamplings of the ATE estimates.
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