# **Science** Advances

AAAS

advances.sciencemag.org/cgi/content/full/2/7/e1600264/DC1

# Supplementary Materials for

# In situ pneumococcal vaccine production and delivery through a hybrid biological-biomaterial vector

Yi Li, Marie Beitelshees, Lei Fang, Andrew Hill, Mahmoud Kamal Ahmadi, Mingfu Chen, Bruce A. Davidson, Paul Knight III, Randall J. Smith Jr., Stelios T. Andreadis, Anders P. Hakansson, Charles H. Jones, Blaine A. Pfeifer

Published 1 July 2016, *Sci. Adv.* **2**, e1600264 (2016) DOI: 10.1126/sciadv.1600264

#### This PDF file includes:

- fig. S1. Dosing and toxicity assessment of hybrid and bacterial vectors.
- fig. S2. Histological intranasal toxicity evaluation of hybrid devices.
- fig. S3. The pLF consolidation design and organization.
- fig. S4. Challenge levels of D39.
- fig. S5. Bacterial burden assessed for hybrid vector vaccination with the consolidated antigens against pneumococcal challenge strains that included D39, A66.1, WU2, and TIGR4 in either a sepsis or pneumonia model.
- fig. S6. Probability of mutations occurring in *S. pneumoniae* genes (*glpO*, *pncO*, *dexB*, and *stkP*) through cellular division.
- fig. S7. Synthetic scheme for PBAE D4A4-Man.
- table S1. DexB, GlpO, StkP, and PncO antigen description and analysis.
- table S2. Antigen cloning summary.
- table S3. Consolidated plasmid (pLF) cloning summary.
- table S4. S. pneumoniae strains used in the current study.
- Reference (23)



fig. S1. Dosing and toxicity assessment of hybrid and bacterial vectors. (A) Hybrid vectors expressing PspA were administered at 12 doses ( $10^1$  to  $10^{12}$ ; X-axis of each individual plot) either IP, SQ, or IN and challenged with three levels of D39 in a sepsis model. (**B**) Bacterial and hybrid vectors were administered over 13 doses ( $10^8$  to  $10^{20}$ ; X-axis of each individual plot) IP, SQ, and IN and mouse subjects monitored for viability.



fig. S2. Histological intrasanal toxicity evaluation of hybrid devices. Specifically, mice were unvaccinated (left column) or vaccinated on days 0 and 14 by IN administration of  $10^{13}$  hybrid devices containing the consolidated antigens (right column). On day 28, the mice were challenged with a sham injury (IN instillation of 50 µL normal saline), sacrificed 24 hours later by exsanguination, the lung vasculature flushed, and the lungs fixed. The hematoxylin-eosin-stained 5 µm sections above are from the right cranial lobe of the lungs. The boxes in the 1× images represent the areas that were subsequently acquired at 10×, 20×, and 40×. Scale bars represent 2 mm for 1×, 200 µm for 10×, 100 µm for 20×, and 60 µm for 40×. Both samples display normal histology with no evidence of tissue damage or inflammatory reaction. The bronchial and bronchiolar mucosa and alveoli are intact with typical architecture and no indication of necrosis, edema, or inflammatory infiltrate. Images represent typical findings from all lung lobes from two mice in each group.



fig. S3. The pLF consolidation design and organization. MCS: multiple cloning site; Cm<sup>R</sup>:

chloramphenicol resistance; P<sub>T7</sub>: T7 promoter; rbs: ribosomal binding site; T<sub>T7</sub>: T7 terminator.



fig. S4. Challenge levels of D39. Hybrid vectors expressing antigens PspA, GlpO, PncO, StkP, and

DexB were administered IP, SQ, or IN and challenged with four levels of D39 in sepsis (A) or

pneumonia (**B**) models.



**fig. S5.** Bacterial burden assessed for hybrid vector vaccination with the consolidated antigens against pneumococcal challenge strains that included D39 (**A**), A66.1 (**B**), WU2 (**C**), and TIGR4 (**D**) in either a sepsis or pneumonia model. Dotted line represents limit of detection for bacterial counts; \*\*\*P < 0.001.



fig. S6. Probability of mutations occurring in *S. pneumoniae* genes (*glpO*, *pncO*, *dexB*, and *stkP*) through cellular division. Probability of at least one mutation simultaneously occurring in *glpO* (blue); *pncO* (red); *glpO* and *pncO* (green); *glpO*, *pncO*, and *dexB* (purple); and *glpO*, *pncO*, *dexB*, and *stkP* (orange) over  $10^8$  cellular divisions (**A**). Critical number of cellular divisions required to achieve a 10%, 50%, and 90% probability that at least one mutation will occur in each gene (**B**). A rate of  $4.8 \times 10^{-4}$  beneficial mutations per genome per duplication (*23*) and a genome size of 2.1 Mbp were used in these calculations.



**fig. S7. Synthetic scheme for PBAE D4A4-Man.** Once generated, D4A4-Man was used as the coating of the hybrid vector. <sup>1</sup>H-NMR characterization data is provided below and was used to calculate purity of the final D4A4-Man polymer by comparing the hydrogen content of mannose signals in the 3.55-3.7 ppm region to backbone polymer signals in the 1.3-1.5, 2.55-2.8, and 3.9-4.15 ppm regions (similar to the approach used in reference 19); resulting polymer purity was calculated at 96%.

**fig. S7 (cont.).** NMR spectra: compounds were characterized in d-DMSO by <sup>1</sup>H-NMR spectroscopy using a Varian INOVA-500 (500 MHz) spectrometer maintained at 25°C.

Legend: br: broad; d: doublet; t: triplet; q: quartet; m: multiple



#### ADM:

3.2-3.35 (H, m, C*H* at 3 position)

3.35-3.5 (4H, m, CH at 4 and 5 positions and CHCH<sub>2</sub>OH)

3.5-3.75 (4H, q, 3×CHO*H* and CHCH<sub>2</sub>O*H*)

3.85-4.2 (3H, m, CH at 2 position and CHOCH<sub>2</sub>CH=CH<sub>2</sub>)

4.6-4.7 (H, d, C*H* at 1 position: C*H*OCH<sub>2</sub>CH=CH<sub>2</sub>)

5.0-5.3 (2H, m, CHOCH<sub>2</sub>CH=CH<sub>2</sub>)

5.8-6.0 (H, m, CHOCH<sub>2</sub>CH=CH<sub>2</sub>)



#### **D4A4:**

1.3-1.45 (4H, br, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OH)

1.5-1.7 (4H, br, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>(COO)CH<sub>2</sub>CH<sub>2</sub>NCH<sub>2</sub>CH<sub>2</sub>(COO))

 $2.25-2.45 (6H, br, NCH_2CH_2CH_2CH_2OH and CH_2CH_2CH_2CH_2(COO)CH_2CH_2NCH_2CH_2(COO))$ 

 $2.55\text{-}2.75 \hspace{0.1cm} (4H, \hspace{0.1cm} t, \hspace{0.1cm} CH_2CH_2CH_2(COO)CH_2CH_2NCH_2CH_2(COO)) \\$ 

3.3-3.4 (2H, br, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OH)

#### 3.9-4.05 (4H, br, $CH_2CH_2CH_2CH_2(COO)CH_2CH_2NCH_2CH_2(COO)$ )

4.2-4.55 (H, br, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OH)



#### D4A4-Man:

1.3-1.5 (4H, br, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OH)

1.55-1.7 (6H, m, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>(COO)CH<sub>2</sub>CH<sub>2</sub>NCH<sub>2</sub>CH<sub>2</sub>(COO) and NHCH<sub>2</sub>CH<sub>2</sub>NHCH<sub>2</sub>CH<sub>2</sub>)

2.0-2.1 (H, br, N**H**)

2.3-2.4 (6H, br, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OH) and CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>(COO)CH<sub>2</sub>CH<sub>2</sub>NCH<sub>2</sub>CH<sub>2</sub>(COO))

2.4-2.55 (6H, m, NHCH2CH2NHCH2CH2)

 $2.55-2.8~(4H,~t,~CH_2CH_2CH_2CH_2(COO)CH_2CH_2NCH_2CH_2(COO))$ 

3.3-3.4 (5H, br, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OH, NHCH<sub>2</sub>CH<sub>2</sub>NHCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>, and CH at 3 position of mannose)

3.4-3.5 (4H, m, CH at 4 and 5 position and CHCH2OH of mannose)

3.55-3.7 (4H, q, 3×CHOH and CHCH<sub>2</sub>OH of mannose)

3.9-4.15 (4H, m, CH2CH2CH2CH2CH2(COO)CH2CH2NCH2CH2(COO) and CH at 2 position of mannose)

4.3-4.4 (H, br, NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OH)

4.6-4.7 (H, d, CH at 1 position of mannose)

## table S1. DexB, GlpO, StkP, and PncO antigen description and analysis.

|      |              |                                                   | Virulent Gene Expression<br>(log2) Relative to |         |                             |                       | Strain Conservation (% Homology) |                                  |                                   |
|------|--------------|---------------------------------------------------|------------------------------------------------|---------|-----------------------------|-----------------------|----------------------------------|----------------------------------|-----------------------------------|
| Gene | Size<br>(bp) | Function                                          | Planktonic                                     | Biofilm | Average log2<br>Fold Change | Surface<br>Accessible | Full Protein                     | Surface<br>Accessible<br>Regions | Surface<br>Accessible<br>Epitopes |
| dexB | 1,608        | Glucan 1,6-α-glucosidase                          | 1.5                                            | 1.5     | 1.5                         | No                    | 98%                              | N/A                              | N/A                               |
| glpO | 1,827        | $\alpha$ -glycerophosphate oxidase                | 9                                              | 5.9     | 7.4                         | Yes                   | 99%                              | 98%                              | 98%                               |
| stkP | 1,980        | Serine/threonine protein kinase                   | 0.7                                            | 0.7     | 0.7                         | Yes                   | 99%                              | 99%                              | 99.4%                             |
| pncO | 690          | Bacteriocin ABC transporter transmembrane protein | 8.5                                            | 4.8     | 6.6                         | Yes                   | 95%                              | 93%                              | 97%                               |

## table S2. Antigen cloning summary.

| Antigen | Primers                                      | Source   | Restriction | Plasmid | Name  |
|---------|----------------------------------------------|----------|-------------|---------|-------|
| Gene    |                                              |          | Sites       |         |       |
|         | F: TAAGCACATATGCAAGAAAAATGGTGGCATAATGCCGTAG  | D20      | Ndel/Xhol   | pET21c  | pCJ05 |
| UexD    | R: TAAGCACTCGAGTTCCACACAGAAAGCATCCCA         | D39      |             |         |       |
|         | F: TAAGCAGAGCTCGAATTTTCAAAAAAAACACGTGAATTGTC | D20      | Sacl/Xhol   | pET21c  | pCJ07 |
| gipO    | R: TAAGCACTCGAGATTTTTTAATTCTGCTAAATCGTTGTTAG | D39      |             |         |       |
| stkP    | F: TAAGCACATATGATCCAAATCGGCAAGATTTT          | Dao      | Ndel/Notl   | pET21c  | pCJ08 |
|         | R: TAAGCAGCGGCCGCAGGAGTAGCTGAAGTTGTTTTA      | D39      |             |         |       |
| pncO    | F: TAAGCACATATGAAAAAGTATCAACTTCTATT          | F F 2020 |             | »ET04.  | pCJ10 |
|         | R: TAAGCACTCGAGCCCCAAGACCCTATGTAGAAAA        | EF3030   | NUEI/XNOI   | p=1210  |       |

# table S3. Consolidated plasmid (pLF) cloning summary.

| Antigen | Primers                                         | Source  | Restriction |
|---------|-------------------------------------------------|---------|-------------|
| Gene    |                                                 |         | Sites       |
| dovB    | F: GCGGGATCCCAAGAAAAATGGTGGCATAATGCCGTAG        | nC 105  | BamHI/Ascl  |
| UEXD    | R: ATAGGCGCGCCTTATAGTAATTCCACACAG               | pC305   |             |
| arlin O | F: GCGGTCGACAAGGAGATATAATGGAATTTTCAAAAAAAAA     | -C 107  | Sall/Notl   |
| gipO    | R: GCGGCGGCCGCTTAATTTTTAATTCTGC                 | ροσογ   |             |
| stkP    | F: GCGCATATGATCCAAATCGGCAAGATTTTTG              | ~C 100  | Ndel/Munl   |
|         | R: GCGCAATTGTTAAGGAGTAGCTGAAGTTGTTTTAG          | pC308   |             |
|         | F: ATAGGCCGGCCAAGGAGATATAATGGAAGAATCTCCCGTAGCCA |         |             |
| pspA    | R: ATACTCGAGTTATTCTGGGGGCTGGAGTTTCTGGA          | PUAB055 | rsei/Xnoi   |

# table S4. S. pneumoniae strains used in the current study. Green highlighted strains are not currently

included in commercial vaccine formulations.

| Strain                     | Capsule Type<br>(Serotype) | Virulence<br>Pattern | Included in<br>Current Vaccines | This Study<br>Protection % |  |
|----------------------------|----------------------------|----------------------|---------------------------------|----------------------------|--|
| D39                        | 2                          | 1                    | Yes                             | 100%                       |  |
| DBL2                       | 2                          | 2                    | Yes                             | 66%                        |  |
| A66.1                      | 3                          | 1                    | Yes                             | 100%                       |  |
| WU2                        | 3                          | 1                    | Yes                             | 100%                       |  |
| ATCC6303                   | 3                          | 2                    | Yes                             | 100%                       |  |
| 3JYP2670                   | 3                          | 2                    | Yes                             | 33%                        |  |
| TIGR4                      | 4                          | 2                    | Yes                             | 100%                       |  |
| DBL5                       | 5                          | 2                    | Yes                             | 100%                       |  |
| WCH16 - Heat Released      | 6A                         | 4                    | Yes                             | 50%                        |  |
| DBL6A                      | 6B                         | 2                    | Yes                             | 100%                       |  |
| ATCC-6312 - Heat Released  | 12F                        | 4                    | No                              | 100%                       |  |
| ATCC-10354 - Heat Released | 15B                        | 4                    | No                              | 100%                       |  |
| EF3030                     | 19F                        | 3                    | Yes                             | 100%                       |  |
| EF3030 - Heat Released     | 19F                        | 4                    | Yes                             | 100%                       |  |
| ATCC-6324 - Heat Released  | 24                         | 4                    | No                              | 100%                       |  |
| ATCC-6327 – Heat Released  | 27                         | 4                    | No                              | 33%                        |  |

| Virulence<br>Classification | Pattern | Carriage | Lung Infection | Sepsis | Comments                                                                                                                  |
|-----------------------------|---------|----------|----------------|--------|---------------------------------------------------------------------------------------------------------------------------|
| 1                           |         | -        | ++             | +++    | Bacteria carries poorly and transitions to the blood wherever placed                                                      |
| 2                           |         | ±        | ++             | ++     | Bacteria causes strong infection<br>wherever placed; occasionally will<br>transition to the blood and cause<br>death      |
| 3                           |         | ++       | +++            | ±      | Bacteria carries well and infects<br>locally but unlikely to kill; rarely<br>transitions to the blood and causes<br>death |
| 4                           |         | ++       | +++            | ++     | Bacteria carries well and causes<br>strong infection wherever placed<br>and can transition to the blood                   |