
 

19 20 21

22 23

25 26 27

24
10 11 12

13 14

16 17 18

15

27

Old or Young

version
Identity

S
e

x

S
ki
n
 t
o
n
e

A

C

B Stimulus (number)

 

 

0

1

S
ti
m

u
lu

s

0 10 20

Dimension #

3

3-dimensional space used for analysis

Dataset 1

[n = 15]

G

F Stimulus

 

0

1

S
ti
m

u
lu

s

0 10 20

Dimension #

3

3-dimensional space used for analysis

Identity

T
h

ic
k
n

e
s
sS

ki
n
 t
o
n
e

E
Dataset 2

[n = 19]

1

27

1
11 2727

Dimension 1

Dimension 2

D
im

e
n
s
io

n
 3

0

25

50

M
e

a
n

 s
c
a

le
d

d
is

s
im

ila
rity

 ra
tin

g

M
e

a
n

 s
c
a

le
d

d
is

s
im

ila
rity

 ra
tin

g

0

10

20

V
a

ri
a

n
c
e

 e
x
p

la
in

e
d

 [
%

]

30

Dimension 1

Dimension 2

D
im

e
n
s
io

n
 3

1 2 3

4 5

7 8 9

6

Stim. Numbers

5 10... ... ...

27

D Stimulus

 

 

0

1

S
ti
m

u
lu

s

H Stimulus

 

0

1

S
ti
m

u
lu

s

1

27

1
11 2727

D
is

ta
n

c
e

 in

3
-D

 M
D

S
 s

p
a

c
e

D
is

ta
n

c
e

 in

3
-D

 M
D

S
 s

p
a

c
e

MDS Dim 1 2 3 MDS Dim 1 2 3



Figure S1.  Related to Figure 1.  Stimuli  and perceptual  similarity  analysis.  (A)  The 27 face 

stimuli  used  in  the  first  fMRI  experiment  (n=15)  were  generated  using  GenHead  v1.2 

(Genemation). Three primary stimulus axes were defined, corresponding to variation in internal 

facial  features,  skin  tone,  and  gender.  Three  points  were  defined  along  each  axis.  A fourth 

dimension of stimulus variation was the age of the face, which could be set to slightly older or 

younger (shown inset). The manipulation of the apparent age of the faces during scanning was 

effectively  orthogonal  to  sequential  similarity  of  the  faces.  Across  the  sequence  of  faces 

presented during scanning, the manipulation of age was correlated at r=0.06 or less with any of 

the other dimensions of variation in the faces. (B) Average perceptual similarity ratings across 

subject  for  all  pairings  of  the  27  faces.  Following  fMRI  scanning,  each  subject  rated  the 

similarity of all pair-wise comparisons of the faces (numbering as in panel E, inset), with the 

pairings presented in a random order. Face pairs were presented together on a laptop LCD screen 

and remained until the subject supplied a rating. Ratings were given on a scale of 1 to 10 (1 

being identical,  10 being completely  different).  Ratings  were standardized within subject  by 

subtracting the mean rating and dividing by the standard deviation of ratings. The standardized 

ratings were then averaged across subject, scaled between 0 and 1 for display, and presented here 

as a diagonally symmetric matrix. Similarity ratings provided by different subjects were strongly 

concordant (the average correlation of the set of ratings from one subject to the average of the 

remainder of the group was 0.75). Perceptual similarity ratings were also obtained in different 

subjects for the old and young face sets. The resulting across-subject perceptual dissimilarity 

matrices were very similar  for  the old and young face sets  (r=0.95).  (C)  The across-subject 

similarity ratings were submitted to a multidimensional scaling (MDS) analysis in MATLAB 

(Mathworks,  Natick,  MA).  The  proportion  of  the  variance  explained  by  each  additional 



dimension of the MDS solution is shown. The vertical bar indicates the cutoff of 3 dimensions 

included, which together explained 70% of the variance in the behavioral data. (D) Reconstituted 

distance matrix for the pair-wise dissimilarity of the faces within the 3-dimensional MDS 

solution, and for each of the first three dimensions separately. (E)  The corresponding measures 

for a second stimulus set. The same procedure was used to generate stimuli, although in this case 

the 3 primary stimulus axes were identity, skin tone, and face thickness. Inset legend indicates 

the stimulus  numbers  for  dissimilarity  matrices  (panels  B,  D,  E,  G).  (F)  The across-subject 

(n=19)  perceptual  dissimilarity  matrix  for  the  second  stimulus  set.  Again,  there  was  a  high 

average correlation of  the  ratings  from any one subject  to  the  average of  all  other  subjects 

(r=0.77).  (G)  MDS analysis  of  across-subject  perceptual  dissimilarity  ratings  for  the  second 

stimulus set. The first three dimensions explained 75% of the variance. (H) Above: reconstituted 

distance matrix for the pair-wise dissimilarity of the faces within the 3-dimensional MDS 

solution, and for each of the first three dimensions separately.  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Figure S2. Related to Figure 2. Model robustness evaluated by simulation. We created a forward 

model  of  BOLD  fMRI  signals  and  evaluated  the  performance  of  the  measure  of  temporal 

integration.  We began with the sequence of presented faces studied in Dataset  1.  Given this 

sequence,  we  created  a  model  of  evoked  neural  activity.  This  model  had  parameters  that 

controlled: the relative amplitude of the “main effect” (the mean response to all face stimuli as 

compared to the blank trials; α); the standard deviation of noisy variation in the amplitude of 

neural response evoked by each face (σ); an additional, additive effect of a stimulus following a 

blank trial (fixed at α/10 for all simulations); the amplitude of the modulatory effect of integrated 

stimulus history (γ). Three different functions were available for stimulus history integration: 

linear,  power-law,  and  exponential.  The  time-scale  of  the  integration  for  each  function  was 

controlled with a  single parameter  (μ).  Once the neural  response vector  was created,  it  was 

optionally subject to a compressive power-law non-linearity [S1], with the exponent (ε) serving 

as  a  parameter  that  controlled  the  degree  of  compression.  Finally,  the  neural  vector  was 

convolved  with  a  standard  double-gamma  HRF,  with  the  time-to-peak  serving  as  a  final 

parameter  of  the  simulation  (τ).  The  simulated  time-series  created  by  this  model  was  then 

subjected to the analysis described in the main manuscript, which in all cases assumed a fixed 

value of six seconds for the time-to-peak of the HRF, a linear transformation of neural activity to 

HRF response (i.e., no compressive non-linearity), and an exponential temporal integrator. The 

analysis estimated the exponential temporal integration parameter of the simulated time-series 

(μexponential).  (A)  In  the  first  simulation  we tested  our  ability  to  recover  the  true  exponential 

temporal integration value in the presence of variation in the amplitude of main effects (α; other 

parameters: γ=0.5, τ=6, σ=0, ε=1). The plot gives the measured temporal integration parameter 

obtained for a range of modeled μ values for various values of main effects. The close position of 



the results from each simulation along the diagonal indicates that we can reliably recover the 

underlying temporal integration constant in the setting of variations in the relative amplitude and 

even direction of the main and modulatory effects. (B) Variation in the time-to-peak of the HRF 

used to generate the simulated data (τ; other parameters: γ=0.5, α=1.0, σ=0, ε=1). Deviation of 

up to 2 seconds of the assumed from the actual time to peak of the HRF had minimal effect upon 

the accuracy of the measured temporal integration value. (C) Variation in the degree of noisy 

variance in the amplitude of evoked response between the face stimuli (σ;  other parameters: 

γ=0.5, α=1.0, τ=6, ε=1). (D) Variation in the degree of compressive non-linearity imposed on the 

transform of neural activity to BOLD fMRI response (ε; other parameters: γ=0.5, α=1.0, τ=6, 

σ=0). (E) We created simulated data using a linear integration of stimulus history, f(x) = (1-

μlinear)·x, where the model parameter μlinear was varied systematically. The analysis continued to 

assume an exponential temporal integration function (other parameters: γ=0.5, α=1.0, τ=6, σ=0, 

ε=1). (F) Data simulated using a power-law temporal integration function, f(x) = x^(1000(1-

μpower)/μpower).  The analysis continued to assume an exponential temporal integration function 

(other parameters: γ=0.5, α=1.0, τ=6, σ=0, ε=1). (G) We generated simulated data combining 

two time-scales of the stimulus integration (μ=0 and μ=1) and used the cross-validation analysis 

procedure described in the main text to compare the variance explained (R2) by the both dual 

and single mechanism models (top panel). To determine whether the cross-validation procedure 

over-penalize model complexity under high noise conditions, we added uncorrelated Gaussian 

noise  to  the  simulated  neural  responses  with  different  amounts  of  variance  (σ2noise;  other 

parameters: γμ=0=0.5, γμ=1=0.5, α=1.0, τ=6, σ=0, ε=1). Increasing the level of noise worsens the 

estimation of the variance explained by a one or two mechanism model, but does not bias the 

expectation (bottom panel).
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Figure S3. Related to Figure 2. Fusiform face area (FFA), region of interest analyses analysis. 

(A) The FFA was defined for each hemisphere in Dataset 1 by a group (n=15) contrast of the 

main effect of stimuli versus blank screen, cropped using a FreeSurfer mask for the fusiform 

gyrus, and narrowed to the top 400 vertices (approximately 400 mm2 of surface area). Shown 

below is the stimulus similarity matrix used in the analyses presented in panels B and C. (B) 

Average across-subject fits to Dataset 1 for the range of models within the FFA (right hemisphere 

in black, left hemisphere in red). The plot for the right hemisphere is the same as that in Figure 

2B of the main text. (C) The data from panel B, now re-plotted with the x-axis reflecting the 

half-life (in stimuli) of the modeled exponential integration function. (D)  The FFA defined in 

each hemisphere for Dataset 2 by group (n=19) contrast  of  the  main  effect  of  stimuli  versus 

blank screen, cropped using a FreeSurfer mask for the fusiform gyrus, and narrowed to the top 

400 vertices (approximately 400 mm2 of surface area). (E) Average across-subject fits to Dataset 

2 for the range of models within the FFA (right hemisphere in black, left hemisphere in red). (F) 

The data from panel e, now re-plotted with the x-axis reflecting the half-life (in stimuli) of the 

modeled exponential integration function. (G) Average across-subject fits for Dataset 1 as in B, 

presented  for  three  different  stimulus  similarity  spaces  underlying  the  temporal  integration 

models. Each stimulus space is shown to the left of the resulting data. Top: This analysis assumed 

a perceptual space based on all dimensions of the MDS reconstruction (which is the same as the 

across-subject average perceived similarity). The proportion of variance explained by the single 

mechanism  model  was  greater  than  the  variance  explained  by  the  dual  model  in  the  left 

hemisphere (variance explained by a single mechanism model: 1.28% ± 0.21% SEM; variance 

explained  by  the  dual  model:  1.02%  ±  0.19%  SEM;  difference  paired  t-test:  t(14)=2.94, 

p=0.0107), as well as in the right hemisphere (variance explained by a single mechanism model: 



1.27% ± 0.22% SEM; variance explained by the dual model: 0.98% ± 0.20% SEM; difference 

paired t-test: t(14)=3.63, p=0.0027). When tests were conducted as the number of subjects with a 

better fitting model, in both hemispheres, the single mechanism model explains more variance 

than the  combined model  in  13 out  of  the  15 subjects  (one-sided binomial  test:  p=0.0037). 

Middle: The assumed stimulus similarity space was derived from pixel-wise similarity of the raw 

stimulus images. This similarity model performs poorly in accounting for modulatory effects in 

the FFA. Bottom: The assumed stimulus similarity space was derived from the correlation of 

multi-voxel  patterns  of  evoked  response  within  the  FFA  (a  “representational  similarity 

analysis” [S2]). The average response to each of the 27 stimuli was obtained for each voxel 

within the FFA in each hemisphere. A stimulus similarity matrix was constructed as 1 minus the 

Pearson correlation coefficients for the patterns evoked by each face pair. While the resulting 

similarity matrices corresponded between hemispheres (r=0.85), they were weakly related to the 

measured perceptual similarity of the stimuli (r=0.00 and 0.05 for left and right hemispheres, 

respectively). This similarity matrix explained little positive variance in the data, consistent with 

prior  observations  that  the  voxel-wise  structure  derived  from higher  visual  areas  poorly  fits 

within-category image variation [S3] (H) Analyses with alternate stimulus similarity spaces for 

Dataset 2, following the same conventions described for panel G. Top:  The  proportion  of 

variance  explained  by  the  single  mechanism  model  was  not  significantly  greater  than  the 

variance explained by the dual model in the left  hemisphere (variance explained by a single 

mechanism model: 1.03% ± 0.23% SEM; variance explained by the dual model: 0.92% ± 0.26% 

SEM; difference paired t-test: t(18)=1.35, p=0.1942), but was in the right hemisphere (variance 

explained by a single mechanism model: 0.83% ± 0.22% SEM; variance explained by the dual 

model: 0.79% ± 0.23% SEM; difference paired t-test: t(18)=2.55, p=0.0202). When tests were 



conducted as the number of subjects with a better fitting model, in the left hemisphere, the single 

mechanism model explains more variance than the combined model in 11 out of the 19 subjects 

(one-sided  binomial  test:  p=0.3238);  in  the  right  hemisphere,  the  single  mechanism  model 

explains  more  variance  than  the  combined  model  in  13  out  of  the  19  subjects  (one-sided 

binomial test: p=0.0835). Middle, Bottom: As these models provide little explanatory power for 

positive modulations in the FFA, we do not perform model comparisons using them.  



Figure  S4.  Related  to  Figure  4.  Stimulus  history  effects  on  the  cortical  surface.  (A)  The 

percentage of variance explained in Dataset 1 by the best fitting temporal integration model at 

each vertex, thresholded at 0.2%. Shown inset in green are regions with absolute, across subject 

echoplanar signal values below 500, corresponding to areas with high magnetic susceptibility 

and  thus  poorly  studied  with  BOLD  fMRI.  (B) LEFT: Number of vertices binned by their 

measured temporal integration parameter (µ) and their average, across-subject percentage 

variance explained. RIGHT: Number of vertices binned by their measured temporal integration 

parameter (µ) and their average, across-subject main effect of visual stimulation. In both panels, 

only vertices in which the variance explained by stimulus history was 0.2% or greater are shown. 

There is little systematic relationship across the cortex between the timescale of temporal 

integration and the variance explained. (C, D) The corresponding measures for Dataset 2.  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