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1 Coarse-grained simulations and analytical results

1.1 Simulation algorithm

We simulate range expansions using a metapopulation model on a lattice, similar to the Eden model. Initially,
the central site of an empty lattice is filled with a single cell. In each time step, a cell with at least one empty
neighboring lattice site is randomly chosen to divide into one of the empty sites in its 4-site neighborhood. If
there are mutants in the colony with a selective advantage s, the algorithm first randomly chooses whether to
forward the wildtype or mutant population, where the mutants are chosen with probability

p(MT) =
(1+ s)NMT

(1+ s)NMT +NWT
= 1− p(WT), (A1)

where NMT and NWT are the number of mutant and wild type site having empty neighbors.
Standing variation. The colony is first grown to a radius Ri (by running the simulation T = πR2

i steps;
for Fig. 2, T = 106) of only wild types. Then, filled lattice sites are randomly populated with wild types and
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Figure A1: Sketch of the expansion of a sector in a linear (left) and a radial range expansion (right). While
sectors have a constant opening angle ϕ in a linear expansion, their boundaries form logarithmic spirals in the
radial expansion case, enclosing an angle ϕ that increases logarithmically with the radius Rf (cf. Eq. (A9)).

mutants at a specified ratio Pi. The colony is grown a total of 8πR2
i time steps, i.e., to a final radius of about

2.8×Ri. This corresponds roughly to the radial increase in our experiments.
For the scaling function below, Pi was varied between 0.02 and 0.005 to minimize interaction between

sectors. Sectors were counted by identifying all mutant clones that have at least one member with at least one
empty neighboring lattice site at the end of the simulation.

De novo mutations. Instead of starting from a mixture of wild type and mutant sites, we can allow for
spontaneous mutations. Populations are grown from a single individual, and every new individual has a chance
µ of converting to the mutant type, having an advantage s. Here, we do not consider back mutations.

Long range jumps. To interpolate between the well-mixed and the colony case, we simulate long range
jumps by following Ref. [1]. A random number Y between 0 and 1 is drawn and transformed to a jump length
r by computing

r = (Y [Lµ −Cµ ]−Cµ)−1/µ . (A2)

Here, L and C specify the maximum and minimum jump length. The new variable r is distributed as a truncated
power-law with a power-law tail, i.e., p(r)∼ r−µ . To allow for long range jumps, we employ periodic boundary
conditions. In addition, an angle ϕ is drawn between 0 and 2π . In every step, a random lattice site (xi,yi) is
chosen and the jump attempted to the lattice site located closest to (xi+ r cosϕ,yi+ r sinϕ); if the site is empty,
it is filled, otherwise a new site is chosen. Only successful jumps forward the time variable, such that exactly
one jump happens in each time step. After Ti steps, mutants are introduced by randomly mutating each filled
lattice with a probability equal to the desired ratio of wild type to mutant cells. Thus, the initial frequency of
mutants is stochastic, mimicking the situation in real experiments.

1.2 Final mutant frequency

In the following, we refine the scaling arguments given in the main text to explain the increased adaptation
gain in range expansions. To reach the same final population size, a larger number of generations at the front
of a range expansion is necessary, allowing selection to act for longer, compared to exponentially growing
populations. Yet, selection is weaker at the advancing front in the sense that a selective advantage s does not
lead to an exponential increase in frequency like it does in well-mixed populations. Nevertheless, we argue
below that the former effect is in general stronger than the latter, leading to a net increase in adaptation gain.
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Well-mixed population

Starting from Ni initial cells, of which a fraction Pi are mutants, the number of mutant cells M(t) at time t
(in generations) is M(t) = PiNi2(1+s)t . To reach final population size Nf, it takes t = log2(Nf/Ni) generations,
hence, M(t) = PiNi(Nf/Ni)

1+s. The final mutant frequency thus becomes

Pf =
M(t)

Nf
= Pi

(
Nf

Ni

)s

= Pi(1+η)s, (A3)

where we have defined the fold change η = Nf/Ni− 1 of the total population size. The adaptation gain in a
well-mixed population can be quantified through the fold change RWM of the mutant frequency

RWM =
Pf

Pi
−1 = (1+η)s−1≈ s log(1+η) (A4)

for s� 1. For small η , this reduces to RWM ≈ ηs.

Flat front range expansion

Start from a region of (constant) height L and width w0, containing Ni = Lw0 individuals (see sketch in Fig. A1,
left). We assume that the width grows at speed v, and sector size increases with perpendicular velocity v⊥ =√

s(s+2)v [5]. The final mutant population size is composed of the size of (roughly triangular) beneficial
sectors times their number, plus the neutral contribution, i.e.,

M(t) = vv⊥t2Nsec +PiNf, (A5)

where we have ignored fluctuations of the sector boundaries as well as the typically small number of mutants
in non-surfing clones. The number of generations to reach final size Nf is t = (Nf−Ni)/vL = ηNi/vL. Plugging
this into M(t) and dividing by Nf to find the final mutant frequency, we get

Pf =
v⊥η2Ni

(1+η)vL2 Nsec +Pi. (A6)

The number of sectors can be estimated as Nsec = LPiu(s), where u(s) is the (unknown) probability to form a
sector per individual at the front, i.e., the surfing probability. Hence, we obtain the fold change RFF = Pf/Pi−1
in the flat front case as

RFF =
v⊥η2Niu(s)
(1+η)vL

=

√
s(2+ s)η2Nfu(s)
(1+η)2L

≈
√

s(2+ s)Nfu(s)
L

(A7)

for η � 1. Thus, for a final population size much larger than the initial population size (as is the case in our
experiments), the size of the adaptation gain RFF depends critically on the surfing probability u(s). This indi-
cates that a purely deterministic treatment is not appropriate to understand adaptation during range expansions.
Adaptation crucially hinges on sector formation. Nevertheless, for some fixed s, Eq. (A7) shows that in the long
run, range expansions will always produce a larger adaptive outcome than exponentially growing populations
as the linear scaling of RFF with Nf will eventually overtake the logarithmic scaling of RWM.
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Radial expansions

The situation is less straightforward in a radial expansion, as the shape of sectors is influenced by both inflation
and selection. Their shape and size can be understood from simple geometrical arguments [5, 6], which we
replicate and extend here.

Mutants grow faster into the expanding territory by a factor of 1+s (see sketch in Fig. A1, right). This speed
difference together with the requirement of continuity of the colonial edge enforces a fixed speed at which
mutants expand (wild-types retract) along the colony edge. The transverse expansion speed v⊥ =

√
s(s+2) (in

units of the wild-type front speed) follows from equating the speed of radial growth in both compartments (1
vs. 1+ s). As a consequence of the transverse expansion of the two sector boundaries, the opening angle ϕ of
the sector increases with radial distance according to

dϕ = 2v⊥ dr/r = 2
√

s(2+ s)dr/r. (A8)

Integration yields a logarithmic increase with radius,

ϕ(Rf|Ri) =

Rf∫
Ri

dϕ = 2
√

s(2+ s) log(Rf/Ri), (A9)

as was already shown in Ref. [6]. Assuming large sectors such that the initial period of sector formation is
negligible, the final frequency of the sector is obtained by integration,

P∗f ≈ (πR2
f )
−1

Rf∫
Ri

drrϕ(r) =

√
s(2+ s)
2πR2

f

(
R2

i −R2
f +2R2

f log
(

Rf

Ri

))
. (A10)

Defining the fold change in the population size η through Nf = πR2
f = (1+η)πR2

i = (1+η)Ni, we get

P∗f ≈
√

s(2+ s)
2π

(
log(1+η)− η

1+η

)
≈
√

s(2+ s)
2π

log(1+η), (A11)

where we have assumed η � 1 in the final step. We again define Nsec ≡ LPiu(s), where here L = 2πRi, and
obtain the fold change in mutant frequency for radial expansions as

RRE = (P∗f /Pi)Nsec = P∗f 2πRiu(s)≈
√

s(2+ s) log(1+η)Riu(s). (A12)

Comparing this to the well-mixed result we obtain

RRE

RWM
≈
√

2
s

Riu(s) (A13)

for 0 < s � 1. As in the flat front case, the surfing probability enters in determining the adaptation gain
increase of the range expansion compared to well-mixed population. The crucial difference to the flat front
case lies in the fact that RRE/RWM is independent of Nf. It is thus ultimately the number of sectors that elevates
the adaptation gain in the radial range expansion over the well-mixed one. Therefore, a detailed understanding
of the establishment of sectors is necessary. Previous calculations of the surfing probability in boundary-limited
radial range expansions have predicted u(s)∼

√
s [5], which would remove the dependence of RRE/RWM on s.

As we have seen in Fig. 1I, this is not the case in our experiments, where we find instead u(s)∼ s. This linear
dependence is reminiscent of the classical Haldane result, but we show below that this similarity is fortuitous
and can in reality be traced back to surface growth properties of colonies.
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Figure A2: Validating the minimal model with experimental results. (a) Final mutant frequency Pf in S. cere-
visiae colonies, as a function of Nsec

√
s(2+ s), which exhibits the predicted linear scaling (see eq. (A12),

dashed line). Each dot corresponds to a colony with mutant selective advantage given by the color legend.
Black dots are average values over mutant frequency bins of width 0.04. (b) The ratio between RRE and RWM,
normalized by the surfing probability of a single clone, as a function of s is consistent with the predicted

√
s

scaling (Eq. (A13), dashed line). (c) Final mutant frequency Pf in E. coli DH5α colonies, as a function of
Nsec

√
s(2+ s). Black dots are average values over mutant frequency bins of width 0.1.

Validating the minimal model

Our result thus far neglects the fact that the mutant sectors have a larger area than a wild-type sector of the same
opening angle because it bulges outward at the colony rim. Numerical estimates of the correction show that
this contribution is not always negligible, especially for large s. To improve the calculation, one could account
for the fractional area of the circular cap associated with a mutant sector of given opening angle and selective
effect. In addition, the sector shape computed above is only valid far from the inoculum, where initial stochastic
effects of sector formation no longer impact the shape of the sector. Lastly, in some of our experiments, sectors
collide and hence cover a slightly smaller area than if they had grown undisturbed.

Nevertheless, we can compare our experimental data to the theoretical prediction. Fig. A2 (left) shows the
final mutant frequency P∗f as a function of the number of sectors, for each colony, multiplied by the

√
s(2+ s).

The averaged data (black dots), fall on a line, as predicted by Eq. (A12).
In addition, our results predict that the ratio RRE/RWM of the adaptation gain from a range expansion and

uniform growth should scale as u(s)/
√

s. Normalizing by the experimentally measured surfing probability
u(s)≈ Nsec/2πRi, we recover the predicted scaling

√
s, see Eq. (A13) and Fig. A2 (right).

1.3 Number of surfing clones

The deterministic calculations for the adaptation gain in range expansions hinge on the likelihood of the forma-
tion of sectors. Computing the number of sectors, or ”surfing clones”, is a stochastic problem that involves the
fluctuation statistics of growing microbial colonies. While these fluctuations are complicated to derive micro-
scopically, their overall scaling behavior is well understood, allowing us to derive the relationship between the
number of sectors, the selective advantage and the initial conditions of the population.

Linear fronts, standing variation

Consider first the case of a linear front with a small initial fraction Pi� 1 of mutant sites. As the population
edge advances, the extinction and growth of a mutant sector will be dominated by genetic drift as long as the
lateral size l⊥ of the sector is smaller than some characteristic size lsel.

⊥ . Once a sector has reached this size
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Figure A3: Number of sectors in Eden simulations with standing variation follows a scaling form. Left: Scaling
function starting from a droplet of radius r0. Here, we chose the initial mutant frequency as Pi = 0.02 like in
the experiments. Lines are guide to the eye, showing the predicted constant and linear regimes. At large s,
deviations from a linear scaling become visible, because sectors inevitably begin to interact. Right: Scaling
function for Pi = 0.005, this time grown from a single cell to a population of (average) radius r0, then inserting
mutants at ratio Pi, for a wide range of r0. The scaling function is virtually indistinguishable from that for flat
initial conditions. The plot legend explains the color code for the selective differences.

lsel.
⊥ , selection takes over and it is unlikely that the sector goes extinct (at the front). Thus, we may call lsel.

⊥
the establishment size for surfing. If we knew lsel.

⊥ we could estimate the surfing probability by a martingale
argument, as follows. Since the dynamics of a sector below size lsel.

⊥ is neutral, all of the lsel.
⊥ front ancestors have

the same chance to generate a clone that drifts up to size lsel.
⊥ or larger. Thus, we can estimate the probability

u(s) of a mutant clone to surf as

u(s)∼ 1
lsel.
⊥

. (A14)

Since we begin with a fraction of Pi initially mutated sites, we expect a number Nmutu(s)∼PiL/lsel.
⊥ of successful

surfing events, where L is the length of the front. Note that one has a simple linear dependence on Pi only for
small Pilsel.

⊥ � 1. For larger Pi, sectors may overlap when they are still smaller then their establishment length,
leading to (predictable) deviations from the observed scaling: The actual number of surfing events will be
smaller than estimated.

The establishment length lsel.
⊥ , and consequently the number of surfers, is controlled by a competition be-

tween selection and genetic drift. The smaller s, the larger the sector needs to become, by chance, for selection
to take over genetic drift. Genetic drift in our colonies depends on the roughness properties of the colony edge:
The rougher the front, the larger the stochastic evolutionary outcomes are. To estimate the establishment length
lsel.
⊥ , we need to invoke the universal fractal properties of Eden fronts which are in the Kardar-Parisi-Zhang

(KPZ) universality class [7]. Conditional on survival, a neutral sector reaches size l⊥, roughly, after a time of
order l3/2

⊥ , a KPZ prediction that was confirmed in Ref. [8]. Thus, the magnitude of the speed of growth of the
width of a sector due to random genetic drift scales as vdrift

⊥ ∼ l⊥/l3/2
⊥ = l−1/2

⊥ (again in units of the wild-type
front speed). Selection on the other hand increases a sector width linearly in time according to a constant speed
vsel.
⊥ =

√
s(s+2) [5]. Both speeds balance at a length scale of lsel.

⊥ ∼ (s(s+ 2))−1. Genetic drift dominates
(vdrift
⊥ � vsel.

⊥ ) when l⊥� lsel.
⊥ and selection dominates (vdrift

⊥ � vsel.
⊥ ) for l⊥� lsel.

⊥ . Knowing the establishment
length now allows us to predict the scaling of the number of sectors Nsec ∼ PiL/lsel.

⊥ ∼ PiLs(s+2).
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Figure A4: Number of sectors for colonies with de novo mutations obeys a scaling relation, for a wide range of
selective advantages s and final radius Rf (see color legend). The number of sectors Nsec was computed by only
counting mutant clones that were both still present at the front at the end of the simulation and that were born
before Rf/2. Because sectors inevitably have large areas for large s, we record the actual number of mutations
Nmut in Rf/2 for simulations, which was set to an average of 5 to limit interactions between clones. The scaling
function saturates for ξ → 0 and scales as ξ for ξ → ∞ (dashed lines are guides to the eye). The inset shows
the same data on linear scale.

Radial expansion

To model a circular colony, one has to take into account the effect of ”inflation” [5]: As the colony expands, the
circumference increases in size. As a consequence, domain boundaries tend to move away from one another at
a speed proportional to their current (front) distance, keeping the opening angle of the sector constant. Inflation
enables mutations to fix even if they are neutral because, on long times, inflation is a stronger driving force than
genetic drift. The speed vinfl.

⊥ of inflation of a sector of front size l⊥ is such that it keeps the sector angle l⊥/R
constant. Thus, we have vinfl.

⊥ ∼ l⊥/R. Balancing this speed of inflation with the speed vdrift
⊥ of genetic drift

yields another characteristic length linfl.
⊥ ∼ R2/3. This is the establishment length for a neutral sector: If a neutral

sector reaches size larger than linfl.
⊥ , it will be protected by inflation from going extinct through genetic drift.

For the case with selection, we expect that if linfl.
⊥ � lsel.

⊥ , establishment will be effectively neutral as a result
of the competition of drift and inflation. If on the other hand we have linfl.

⊥ � lsel.
⊥ then surfing is controlled by

the competition of drift and selection. This expectation can be summarized by the scaling form

Nsec = PiR/linfl.
⊥ FSV

(
linfl.
⊥ /lsel.

⊥
)
= PiR1/3FSV

(
sR2/3

)
, (A15)

which depends on the initial radius R of the colony and the selective advantage s of the mutations. The scaling
function FSV(ξ ) satisfies

FSV(ξ )∼

{
const. for ξ → 0,
ξ for ξ → ∞.

(A16)

Our analysis thus predicts that when the selection coefficient is small, the number of sectors will be roughly
equal to the neutral number of sectors, scaling as the third root of the initial radius. For larger selection coeffi-
cients, on the other hand, the number of sectors will scale like the radius times the selection coefficient s. This
analysis is supported by simulations, see Fig. A3.
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Note that since the number of sectors in E. coli experiments depends roughly exponentially on s, we only fit the
constant as s→ 0. For the E. coli data points, we interpolated from the experimental results to obtain values for
small s.

3D range expansions

The preceding discussion can be extended to the important case of three-dimensional radial range expansions,
pertaining to, e.g., growing solid tumors. In 3D, a neutral surviving sector has lateral size l⊥ after a time of
order l1.56

⊥ (another KPZ prediction [7]). We can estimate the surfing probability of a clone of size lc by the
probability u(s) ∼ (R/lc)−2 that a clone from a neutral mutation reaches a solid angle l−2

c . The length scale lc
again arises from the competition between drift, vdrift

⊥ ∼ l⊥/l1.56
⊥ , and selection, vsel.

⊥ ∼
√

s(2+ s) and is given by
lc∼ (s(2+s))−1.79. The surfing probability of a mutant with selective advantage s thus scales u(s)∼ s3.45. Thus,
weakly beneficial mutations have a particularly small changes of surfing in three-dimensional populations.

De novo mutations

So far, we have focused on the number of sectors emerging from a standing variation experiment. One may
alternatively consider the situation of a colony growing from a single cell. Mutations occur at a constant rate
µ per lattice site. Then, we can follow very similar scaling arguments as for standing variation to arrive at the
same scaling form,

Nsec = µRf
Rf

linfl.
⊥

FDN
(
linfl.
⊥ /lsel.

⊥
)
= µR4/3

f FDN

(
sR2/3

f

)
, (A17)

however, with a different scaling function FDN(ξ ) satisfying the same asymptotic limits,

FDN(ξ )∼

{
const. for ξ → 0,
ξ for ξ → ∞.

(A18)

Note that the length scale Rf appearing in these equations defines the final radius of the colony.

1.4 Mapping the Eden model to colonies

The Eden model is, ultimately, a simplified lattice model that aims to capture the coarse behavior of a colony.
To map Eden model predictions to an actual colony, one needs to fit the relevant phenomenological parameters.
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Figure A6: Adaptation gain in range expansions (RRE, Eq. (A12)) and uniformly grown (RWM, Eq. (A4))
populations. The number of sector was computed from Eq. (A19) with a = 0.8µm. A prefactor of 0.05 was
introduced to match the experimentally measured sector size. We find that, for a wide range of parameters, the
range expansion gives rise to a higher adaptation gain. In our experimental set-up, we expect the uniformly
grown population to become more efficient than the range expansion around s = 0.7 (dashed line in (b)).

As we will see, the values of these parameters will also tell us to what extent the Eden model may be applicable.
A lattice site has a width and a length. By the rotational symmetry of a colony, we expect that we have to

choose, in general different length a‖ and a⊥ for the radial and transverse width of a lattice site, respectively. The
choice of these lengths leaves selection and inflation unaffected but it influences the strength of genetic drift:
Conditional on survival, a neutral sector reaches size l⊥, roughly, after a radial distance of order a‖(l⊥/a⊥)3/2,
as was measured in Ref. [8]. Thus, the magnitude of the speed of growth of the width of a sector due to
random genetic drift scales as vdrift

⊥ ∼ l⊥/[a‖(l⊥/a⊥)3/2] = (a3/2
⊥ /a‖)l

−1/2
⊥ . The competition between genetic

drift, selection and inflation then leads to the establishment lengths lsel.
⊥ ∼ (a3

⊥/a2
‖)(s(s + 2))−1 and linfl.

⊥ ∼
(a⊥/a2/3

‖ )R2/3, respectively. Applied to an actual colony, the Eden model prediction thus takes the form

Nsec = PiR/linfl.
⊥ FSV

(
linfl.
⊥ /lsel.

⊥
)
= Pi(R/a)1/3FSV

[
s(R/a)2/3

]
. (A19)

This result shows that we have effectively one parameter a = a3
⊥/a2

‖, a ”microscopic” length scale, to fit the
predictions of the Eden model in the case of standing variation. Nevertheless, it is useful to think of this one
length scale as the ratio a3

⊥/a2
‖ of two length scales, because there are natural candidates for the radial and

transverse length scales a‖ and a⊥. For instance, in the case of yeast, it is natural to choose the radial length
to be the thickness of the growth layer and the transverse length simply as a cell diameter – there is no other
transverse length scale in this problem. Then one expects a3

⊥/a2
‖ < 5µm. This explains then why the fitted

microscopic length scale a = 0.8µm (see Fig. A5) is smaller than a single yeast cell diameter.
In the case of E. coli on the other hand, we do have another transverse length scale. Time lapse movies reveal

that E. coli colonies buckle on length scales of order a⊥ ≈ 20µm. Indeed, the fitted microscopic length scale
a = 12µm is much larger than a single E. coli cell.

Once the value of a is known, we can compare the adaptation gain in uniformly grown population and range
expansions and find the parameter range for which range expansions are more efficient. Our model predicts for
the case of S. cerevisiae (Fig. A6) and our experimental parameter range (a = 0.8µm, Nf/Ni ≈ 104) that range
expansions are more efficient up to values of s < 0.7, although we do not expect our model to be accurate at
such high values of s. Hence, for most experimentally accessible parameters, we expect range expansions to
exhibit a higher adaptation gain than well-mixed growth.
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In the case of de novo mutations, we obtain the growth layer width λ as an additional parameter, since only
mutations arising at the front are able to surf. Hence,

Nsec =
µRf

λ
(Rf/a)1/3FDN

[
s(Rf/a)2/3

]
. (A20)

Note that, in the de novo mutation case, one has to measure both the mutation rate, growth layer width and
roughness length scale to obtain predictions from the Eden model.

Limits of the coarse-grained Eden model

Our coarse-grained lattice model is a meta-population model, meaning that each lattice site represents a sub-
population of cells. The size Ne of those subpopulations can be estimated once we have determined the linear
dimensions a‖ and a⊥ of a lattice site (see previous paragraph). Thus, we may estimate Ne ≈ a‖a⊥/Acell, which
amounts to 2.5 and 200 in the cases of budding yeast and E. coli, respectively.

The parameter Ne allows scrutinizing a precondition for the applicability of our coarse-grained model. If,
for a given selective advantage, Ne is too large, we cannot assume that mutants will fix in a subpopulation
with probability equal to their current ratio. This is assumed when we set the mutation rate in the Eden model
equal to the mutation rate of single cells. The same assumption is made in the case of standing variation,
when we assume that the initial fraction of mutant lattice sites is equal to the initial frequency of mutant cells.
If subpopulations behaved like well-mixed sub-populations, for instance, we would have to require Nes� 1.
Note that this condition is strongly violated in our E. coli experiments. For Nes� 1, the effective mutation
rates as well as the initial frequencies would have to be multiplied by Nes. Since, however, our populations are
manifestly spatial, it is not clear how a more microscopic model would behave. Therefore, we also implemented
more explicit simulations that take into account the shape and steric interaction between cells (described in
detail below).

1.5 Analysis of long-range jumps

We extend our meta-population by allowing for long-range jumps in each step. The rationale behind introducing
long-range dispersal is that well-mixed growth and colonies are natural opposites in that they feature no and
strong spatial correlations and mixing. Long-range jumps allow for a breaking of spatial correlations and thus
lie in between these two cases. We then also expect the adaptation efficacy to interpolate between the colony
and the well-mixed case as the likelihood of long-range jumps increases.

As described in the Methods section above, we can vary the likelihood of large jumps by tuning the parameter
µ . Hallatschek and Fisher [1] showed that the expansion speed of a growing population, in terms of its range,
depends on the parameter δ = µ − d, where d is the spatial dimension. If δ > 0, the range of the population
grows as a power-law, while for δ < 0, long-range jumps are frequent and the range of the population grows as
a stretched exponential.

Introducing mutants with selective advantage s at initial frequency Pi = 0.02, we studied the influence of
dispersion range on the efficiency of adaptation. The naive expectation would be that in the limit of short-ranged
jumps, adaptation should be as efficient as in the classical Eden model, whereas long-range jumps increase the
mixing of the population such that adaptation becomes less efficient, asymptotically becoming well-mixed.

Fig. A7 shows examples of populations grown from Ni = 103 to Nf = 106 for different values of µ and s. We
observe that the final frequency of the mutants increases with s, as expected, but does so much more strongly
when µ is large. As µ increases, the populations become increasingly patchy, with mutants primarily residing in
confined spatial regions. For µ = 5, we even observe sectors very much like in Eden simulations. Fig. A8 shows
the results of 750 simulations for each set of parameters (µ,s). We see indeed that the average final frequency of
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Figure A7: Examples of populations undergoing range expansions with long-range dispersal. Different selec-
tive advantages s of the mutants (shown in red) over the wild type (gray) are shown as the columns. Varying
the ”spread” coefficient µ (rows), we obtain almost well-mixed populations for small µ (when large jumps are
common), while sectors emerge for very large µ (when practically no large jumps occur). For intermediate µ ,
mutants accumulate in patches that resemble sectors more and more as µ increases. The larger µ , the higher
the mean final mutant frequency, as shown in Fig. A8.
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Figure A8: Final mutant frequency in populations grown with varying degrees of dispersal. All populations
grown from Ni = 103 to Nf = 106 with a starting fraction of Pi = 0.02. Populations with long-range jumps
show adaptation efficiency intermediate between well-mixed and strictly short-ranged range expansions (Eden
model). For µ � δ , the final mutant frequency becomes indistinguishable from the well-mixed case. Results
obtained by averaging over 750 simulations.

mutants increases as long-range jumps become increasingly rare. Thus, long-range jumps can hinder adaptation
from standing variation even in spatially structured growing population because they effectively induce mixing
which allows previously trapped clones to continue to grow, allowing for fewer generation to happen at the very
front (for fixed final population size).
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Parameter E. coli-like (long) cells Yeast-like(short) cells

Diffusion constant D
[
µm2/h

]
500 500

Initial nutrient concentration [a.u.] 1 1

Nutrient uptake rate κ [a.u./h] 1.5 or 1.8 4

Young modulus E [kPa] 100 500

Minimal division time T [min] 40 120

Cell diameter [µm] 1 4

Minimal length [µm] 2.5 0

Damping coefficient ζ [1016 h−1] 65 65

Friction coefficients k⊥ = 4, k‖ = 0.25 k⊥ = k‖ = 1

Width of simulation box L [µm] 340, 640 320, 640, 1280

Table A1: Parameters of the off-lattice model.

2 Individual-based simulations: method and results

2.1 Model description

In order to develop a microscopic understanding of the surfing process, we used a model based on that used in
Ref. [2], with a few modifications. Our model strikes a balance between computational cost, limited knowledge
of the nature of mechanical interactions between cells in microbial colonies, and the reproduction of experi-
mental observations made in this work.

All cells are modeled as sphero-cylinders of variable length l and identical radius r0. Cells interact mechan-
ically through Hertzian repulsion: F = 4

3 Er1/2
0 h3/2 where F is the repulsive force, E is the effective Young

modulus of the cell, r0 is the radius and h is the overlap between interacting cells. The dynamics of the cells is
described by the overdamped Newton equations of motion:

d
dt
~r =

K−1~F
m

, (A21)

d
dt

ϕ =
τ

ζ J
. (A22)

Here,~r is the position of the cell’s center of mass, ϕ is the angle the cell with the x-axis, ~F is the total force, τ

is the total torque acting on the cell, m is the mass, J is the momentum of inertia of the sphero-cylinder, and ζ

is the damping (friction) coefficient. The matrix K

K = ζ

[
k‖n2

x + k⊥n2
y (k‖− k⊥)nxny

(k‖− k⊥)nxny k⊥n2
x + k‖n2

y

]
(A23)

takes into account the possible anisotropy of friction between the cell and the surface: k⊥ is the damping coef-
ficient in the direction perpendicular to cell’s major axis, k‖ is the damping coefficient in the parallel direction,
and~n = (cosϕ,sinϕ). For isotropic friction, k⊥ = k‖, and the matrix K reduces to the identity matrix times the
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Quantity E. coli-like (long) cells Yeast-like(short) cells
κ = 1.5 κ = 1.8 κ = 4

Thickness of the growing layer λ [µm] 31 25 95
Roughness of the growing layer σ [µm] 12 15 3.6
Speed of the growing layer [µm/h] 26 23 31
Average area 〈A〉 per cell [µm2] 1.7 2.0 15.6
Average linear size a of cell [µm] 1.3 1.4 4.5
Thickness of the growing layer λ/a [cells] 24 18 24

Table A2: Steady-state properties of the growing layer.

friction coefficient. To model cells which prefer to roll rather than to slide we set k⊥ < k‖, whereas for cells
that prefer to slide along the major axis it holds that k⊥ > k‖. In particular, for ”yeast-like” cells we assume
isotropic friction, whereas for ”E. coli-like” cells we set k⊥ > k‖. This replicates experimentally observed long
”chains” of aligned cells and high surface roughness of E. coli colonies.

Cells consume nutrients diffusing in the 2D substrate beneath the colony of cells. The concentration c(~r, t)
of the nutrient evolves in time as

∂c
∂ t

= D
(

∂ 2c
∂x2 +

∂ 2c
∂y2

)
−κ ∑

i
δ (~ri−~r) , (A24)

where D is the diffusion constant, κ is the nutrient uptake rate and {~ri} are the positions of the cells. We assume
that cells elongate at a constant rate as long as the local nutrient concentration is larger than 2% of the initial
concentration, and divide when they double in length. The length of individual cells thus increases linearly in
time in our model. Although this is not true for real microorganisms [3, 4], deviations from linear growth are
not important for the population level we are concerned with.

We model faster-growing mutants by increasing both the elongation rate and the nutrient uptake rate by 1+s,
where s is the selective advantage of the mutant over the wild type.

To reduce computation time we simulate only a narrow strip of width L at the front of the colony, with
periodic boundary conditions in the direction perpendicular to the direction of growth, and fix cells which lag
behind the growth layer.

All parameters are listed in Table A1. The assumed values have been chosen to make simulations computa-
tionally feasible while at the same time to approximately reproduce experimental observables: the average cell
size, the velocity of the moving front, and the thickness of the growth layer. For example, the trade-off between
speed and realism required the diffusion constant to take an unrealistically small value.

2.2 Characterization of the properties of simulated colonies

We define the growth layer as the layer at the colony front in which cells were replicating. We calculated the
thickness λ of the growth layer as the average of the shortest distances between cells at the very front of the
growth layer (first line of cells) and the last layer of cells towards the bulk still exhibiting growth.

The roughness σ was defined as the square root of the mean square deviation of the front height y(x), where
y(x) corresponds to the envelope of the front, with resolution 1µm. The speed of the front was obtained by
fitting a straight line to the average position of the front y(t).

Fig. A9 shows that the thickness and the roughness of the growing layer stabilize after some time. The
steady-state values are given in Table A2. The table also shows the average cell size determined as the area
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Figure A9: Run-in period of off-lattice simulations. Thickness λ and roughness σ of the growing layer for
”yeast-like” cells, for 10 simulation runs (different colors).
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Figure A10: Average speed of cells at a given distance from the colony front for simulated ”yeast-like” cells.

of the growing layer divided by the number of cells. This is the actual size taken by the average cell; me-
chanical compression due to growth causes this area to be slightly lower than the average area of an isolated
spherocylinder as determined by the parameters from Table A1.

We also computed the average linear cell size a as the square root of the average area, a = 〈A〉1/2. This
enabled us to express the thickness of the growing layer in cell lengths as λ/a. We adjusted the parameters of
the model for ”yeast-like” and ”E. coli-like” cells such that λ/a was approximately the same for both types of
cells.

The speed of the cells in the growing layer is a linear function of the distance from the front (Fig. A10).
This replicates well the experimentally observed behavior (Fig. SIE 8). We note that in our experiments
cessation of growth in the center of the colony and the emergence of the growing layer may be due to the
accumulation of waste rather than nutrient exhaustion. However, as demonstrated in Ref. [2], the behavior of
the model is similar regardless of whether growth is limited by nutrients or waste products, and that in both
cases growth becomes confined to a thin layer after an initial period of exponential growth, in agreement with
what is observed experimentally.
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Figure A11: The probability density that a lineage originated at distance ∆ from the front (cell lengths) given
that it fixed in the growing layer, for different selective advantages (s = 1%, 2%, 4%, 8% and 12%). Left:
”yeast-like” cells. The probability is concentrated at the very first line of cells, almost independently of selective
advantage. Right: ”E. coli-like” cells. The distribution is slightly broader but still concentrated around ∆ = 0.

2.3 Surfing probability at the front and distribution of ancestor location

To determine the surfing probability Psurf of mutants with different selective advantages we first ran simulations
in which mutant cells were randomly inserted into a steady-state growing layer. We ran between 1000 and
10000 simulations and calculated Psurf as the proportion of runs in which the mutant fixed in the growing layer.
We also determined Psurf for mutants appearing at different distances from the front.

Our results show that Psurf is very small even for quite large selective advantage s = 0.12: Psurf = 0.004 for
”E. coli-like” cells and Psurf = 0.015 for ”yeasts-like” cells for parameters as in Table A1. Fig. A11 shows that
the surfing probability quickly decreases with the distance ∆ from the front of the first (founder) mutant cell.

We then ran simulations with mutants inserted only in the first line of cells. Fig. A12 shows that ”yeast-like”
cells have a much larger Psurf than ”E. coli”-like cells. Since the two cases differ in the roughness of the growing
layer (c.f. Table A2), we hypothesized that roughness is the main factor affecting the amount of genetic drift.
To test this, we simulated ”E. coli”-like populations with reduced roughness – this was achieved by decreasing
the nutrient uptake rate (Table A2). We indeed observed an increase in Psurf, in accordance with our hypothesis.

3 Supplementary discussion: Dynamics behind the front

In our experiments, change in local allele frequencies occurs only directly at the front, and our analysis above
reflects this fact. While true for non-motile microbes, our arguments arguably extend to other cases where
spatial arrangements are mostly conserved, e.g., biofilms and to some extent, solid tumors. However, our
results are valid more generally, independently of whether sectoring is neutral or beneficial, as long as the front
advances faster than the blurring of the sectors occurs. However, if there is mixing behind the front, any spatial
inhomogeneity in local allele frequencies will eventually be blurred out.

Blurring of neutral sectors

If individuals can move randomly behind the front, existing sector boundaries will undergo diffusion and thus
have a characteristic width w scaling as w(t) ∼

√
t. The front, however, advances at constant speed and hence
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Figure A12: Left: Surfing probability Psurf versus selective advantage s for ”yeast-like” cells (”smooth front”,
orange) and ”E. coli”-like cells (”rough front”, blue. Here, κ = 1.8). Smooth fronts deviate from a line only
by about 1 cell diameter, while rough fronts exhibit a roughness of about 10 cell diameters. Parameters and
measured characteristics of the populations are given in Tables A1 and A2. Mutants were introduced only into
the first layer of cells. The surfing probability Psurf decreases with increasing roughness, but increases with
selective advantage. Right: the same plot with a logarithmic scale.

the front position r(t) ∼ t. Hence, on long time-scales, the advancement of the front is much faster than the
blurring of sectors, and sector boundaries will remain sharp near the advancing front.

Beneficial sectors behind the front

After the front has passed, beneficial sector will slowly blur due to diffusion, but may also widen or shrink as the
beneficial mutants compete with the wild type in the bulk. Even if the mutants exhibit a growth rate advantage
at the front, there is not a priori reason to assume that the same is true in the bulk, where other characteristics
than maximum growth rate may be more important. For example, a more efficient use of nutrients in poor
growth environments (like the bulk of a colony) may prove to be more advantageous than the ability to outgrow
one’s competitors when nutrients are abundant.
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