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Supplementary Figure 1: Illustration on how to compute the expected Euler characteristic.
We assume a fixed scale w = (wL, wR) and fixed positive threshold t in the null-model. Through-
out, ∗ represents the convolution operator. (a) Illustration on how to approximate the expected
Euler characteristic with the permutation scheme. In one realization of the null, we cyclicly shift
each sample’s probes with a random offset (independently for each sample). Each sample is con-
volved with the wavelet kernel corresponding to w = (wL, wR) and the results are shown in the
curves in the column on the right in a. We sum the resulting convolved profiles to obtain the curve
in the lower right corner in a. Equivalently, we can first sum all the cyclicly shifted samples to pro-
duce a realization of the aggregate in the lower left corner and then convolve it with the wavelet.
The Euler characteristic is computed by counting disjoint regions above (below) the threshold t
(−t). This procedure is repeated N times and estimates the expected Euler characteristic using the
equation at the bottom of a. (b) We can accurately approximate the expected Euler characteristic
analytically without the permutation scheme if wL and wR are large enough. We compute the his-
togram of each sample’s convolved profile. We compute the variance in each histogram and note
that they are symmetric. Since all samples are cyclicly shifted independently, we can compute
the distribution (variance) on the aggregate by convolving (adding) the histograms (single sample
variances). Finally, we approximate the null as a Gaussian process with an analytically derived
expected Euler characteristic as shown by the bottom equation in b.
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Supplementary Figure 2: Illustrating an example with 20 DNA copy number profiles. The
top panel shows copy number gains as they occur across the genome (x-axis) for each sample
(y-axis). Driver aberrations are shown in red and passengers in grey. The bottom panel shows
the copy number break points for each sample. Neutral-to-gain breaks are shown in red, while
gain-to-neutral breaks are shown in blue.
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Supplementary Figure 3: Smooth approximation of a discrete Gaussian process. We inter-
polate a discrete stationary Gaussian process (indicated with blue dots) with a smooth and non-
stationary Gaussian process (in red). Counting regions above (below) a fixed threshold t (−t) can
be accomplished by counting up-crossing (down-crossings) in the smoothed profile as indicated by
the red (green) circles.
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Supplementary Figure 4: Illustrating the properties of the Bump function used for smoothing
the discrete Gaussian process.

2



0

t

-t

Supplementary Figure 5: Illustrating the type of t-level crossings that exist. t up-crossings
and down-crossings are represented by green and blue circles respectively. −t up-crossings and
down-crossings are represented by red and orange circles respectively
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Supplementary Figure 6: Illustrating how we count local maximum segments. (a) Illustration
of the aggregate profile (in blue) and the segmented profile (in red). (b) The size of the jump
discontinuities in the segmented profile is represented with t-scores. (c) Each t-score is transformed
into a significance score known as the expected Euler characteristic. (d) Each significance score is
finally converted to a signed tau-score)
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a. Segmented pro�le before (red) and after (black) merging two segments

b. t measurements before merging (scale dependent thresholds)

c.  tau measurements before merging (constant thresholds)

e.  tau measurements after merging (constant thresholds)

Signi�cant
Not 

signi�cant

f.  Kernel shifted 

Down-crossing

d. t measurements after merging (scale dependent thresholds)

Supplementary Figure 7: Merging segments in one iteration of clustering. (a) Illustrating
the segmented profile before and after merging two segments. (b) and (c) illustrates the t- (lag-
one difference) and tau-scores respectively before merging. (d) and (e) are the same as (b) and
(c) respectively after merging. In (d), we also shows what the aggregate profile looks like after
convolving with a fixed kernel. (f) We show why the t-score drops below the significance threshold
when we shift the kernel.
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Supplementary Figure 8: Illustrating Scenario one when merging adjacent segments. When
two segments are merged the encircled break at gn is removed. This depicts the scenario when the
tau-score at break gn−2 is above the threshold T and at break gn+2 is below −T .
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Supplementary Figure 9: Illustrating Scenario two when merging adjacent segments. When
two segments are merged the encircled break at gn is removed. This depicts the scenario when the
tau-score at break gn−2 is above the threshold T , insignificant at gn+2 and below−T at break gn+3.
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Supplementary Figure 10: Illustrating Scenario three when merging adjacent segments.
When two segments are merged the encircled break at gn is removed. This depicts the scenario
when the tau-scores at breaks gn−2 and gn+2 are below −T .
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Supplementary Table 1: Bona fide breast cancer genes with the associated literature refer-
ences. OG = Oncogene; TS = Tumor suppressor

Gene symbol Type Reference Gene symbol Type Reference
AKT1 OG 1 AKT2 OG 2

AURKA OG 3 BAG4 OG 3

BCL2 OG 4 BEND3 OG 5

C6orf203 OG 5 C8orf4 OG 3

CCND1 OG 3, 5 CCNE1 OG 3

CDK4 OG 3 CKS1B OG 3

CTNNB1 OG 6 EGFR OG 7

C11orf30 OG 3 ERBB2 OG 3, 5

ESR1 OG 8 ETV6 OG 9

FGFR1 OG 3 FGFR2 OG 5

FGFR4 OG 10 GATA3 OG 11

GRB7 OG 3 IGF1R OG 5

KRAS OG 12 LSM1 OG 3

MDM2 OG 3 MDM4 OG 13

MIR21 OG 5 MTDH OG 3

MYB OG 14 MYC OG 3, 5

NCOA3 OG 3 NIT1 OG 5

PAK1 OG 3 PIK3CA OG 15

PLA2G10 OG 3 PPM1D OG 3

PTK6 OG 3 PVRL4 OG 5

RPS6KB1 OG 3 RSF1 OG 5

RUVBL1 OG 3 SHC1 OG 3

STARD3 OG 3 TERT OG 16

TRPS1 OG 5 YEATS4 OG 5

YWHAB OG 3 ZNF217 OG 3, 5

ZNF652 OG 5 ZNF703 OG 17

BAP1 TS 18 BRCA1 TS 19

BRCA2 TS 19 CASP8 TS 20

CDH1 TS 21 CDKN2A TS 22

EP300 TS 23 MAP2K4 TS 24

PBRM1 TS 25 PTEN TS 26

RB1 TS 27 TP53 TS 28
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Supplementary Methods

Computing the expected Euler characteristic in RUBIC segmentation

Overview. RUBIC segments the aggregate copy number profile using agglomerative clustering. It
starts by considering each probe to be a unique segment and continues merging adjacent segments
until a stopping criteria is met. For each pair of adjacent segments we compute a similarity mea-
sure called the expected Euler characteristic and in each step we merge adjacent segments with the
highest similarity measure. This process continues until all similarity measures are below a fixed
threshold E. In this section we describe in detail how to estimate the expected Euler characteristic
between adjacent segments (which generally depends on the widths of the segments). First, we
describe a method involving a permutation scheme that is accurate but is computationally ineffi-
cient. Second, we describe an analytical approximation that is often (but not always) accurate and
otherwise conservative. Finally, when clustering it is important to decide which approximation to
use. We discuss this in the final part of this section. A derivation of the analytical approximation
and the reason why the expected number of local maximum segments in the null model will be
below the threshold E is discussed in the last two sections of the Supplementary Methods.

Estimating the expected Euler characteristic with permutations. In Supplementary Fig. 1a,
we give a detailed breakdown on exactly how to estimate the expected Euler characteristic with a
permutation scheme for a fixed scale w = (wL, wR) and fixed non-negative threshold t.

In one realization of the null (illustrated by the dashed box in a), we shift probe indices by a
random offset for each sample independently. Probes that are shifted beyond chromosome bound-
aries are shifted into adjacent chromosomes’ start positions and probes shifted beyond the end of
the last chromosome are shifted into the start positions of the first chromosome. In this scheme,
all break locations are independent between samples, while the inherent genomic dependancies
(for example chromothripsis) between breaks are retained within each sample. The next step is to
simply sum all the cycled samples’ profiles.

To compute the Euler characteristic for a fixed realization, we need to compute tw(g) at every
genomic position g. To efficiently do this we define a wavelet kernel as follows:

kw(g) =


+1/wR −wR ≤ g < 0
−1/wL 0 ≤ g ≤ wL

0 elsewhere
(1)

tw(g) is computed using this kernel with a computationally efficient operation called convolution
(indicated by the symbol ∗ in Supplementary Fig. 1). Essentially, for each locus g0, it computes
tw(g0) by 1) reversing and shifting the kernel to location g0, kw(g0− g), and 2) multiplying it with
the aggregate profile (using the scalar product). The resulting convolved profile is shown in the
lower right of 1a. This is equivalent to first convolving the individual samples’ profiles with the
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kernel and then summing (because convolution is distributive over addition).

For the fixed realization i, we can count the number of disjoint regions of χ+
w,i (χ−w,i) above

the threshold t (below −t) as illustrated by the red (green) numbers in 1a. The Euler characteristic
for i is then simply the sum of these counts.

If we repeat this permutation scheme many (N ) times, we can estimate the expectation across
realizations as indicated by the formula at the bottom of 1a.

An analytical approximation of the expected Euler characteristic. For many scales w (when
wL and wR are large), we can accurately approximate χ̄w(t) analytically as illustrated in Sup-
plementary Fig. 1b. We present our copy number data as a S × G matrix of copy number log
ratios [cs,g], where S is the number of samples and G the number of probe measurements on the
genome. Each row in the matrix represents a single sample profile cs, where probes are sorted on
the genome. Each sample profile can be convolved with the kernel to produce tw,s = kw ∗ cs.

First we compute the histogram for each sample’s convolved profile (tw,s). Note that these
histograms remain unchanged for cyclically shifted profiles. These histograms have mean zero (the
kernel integrates to zero) and are somewhat symmetric (positive breaks are as likely to occur as
negative breaks in every sample). Due to independence between samples in the null, we can com-
pute the histogram on the aggregate convolved profile by convolving all the sample histograms.
It is then a consequence of the central limit theorem that allows us to approximate the convolved
aggregate profile as a multivariate Gaussian random process with zero mean. Furthermore, this
process will be stationary due to the cyclic shift hypothesis (all probes behave in the same way
everywhere, since we randomly offset them for each realization). For a stationary zero-mean mul-
tivariate Gaussian process there are only two parameters that need to be estimated: The variance
σ2
w and auto-correlation rw. The auto-correlation is a function of ∆g with rw(∆g) equal to the

Pearson correlation between probe measurements separated by ∆g probes. It turns out that, in or-
der to relate χ̄w to a threshold t, we only need to compute ρw = rw(1), i.e. the Pearson correlation
between adjacent probe measurements. We explicitly compute the variance σ2

w and ρw as follows:

σ2
w =

S∑
s=1

σ2
w,s, σ2

w,s =
1

G

G∑
g=1

t2w,s(g)

ρw =
1

σ2
w

S∑
s=1

ρw,s, ρw,s =
1

G

G∑
g=1

tw,s(g)tw,s
(
(g + 1)/GZ

)
(2)

We can then accurately relate the expected Euler characteristic to a positive threshold t for a
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stationary Gaussian process as follows:

χ̄w(t) =
(G− 1)Vw

π
exp

(
− 1

2
(t/σw)2

)
, where

Vw = arccos(ρw) (3)

RUBIC segmentation based on both the permutation and analytically derived expected Euler
characteristic. In RUBIC segmentation, we need to compute χ̄w for many different scales. To do
so purely based on the permutation scheme is computationally prohibitive and it is desirable to use
the analytical estimate instead.

The Gaussian assumption does hold for the majority of kernel choices w. However, when
wL and wR are small, the approximation becomes inaccurate. For example, suppose we choose
w = (1, 1). In this case, tw,s will be zero everywhere except at locations where copy number breaks
occur. Due to the sparsity of tw,s, the Gaussian assumption fails and the analytical prediction will
be liberal.

Due to these considerations we need to perform segmentation using a hybrid between these
estimates. The methodology is simple: We cluster segments based purely on the analytical model
at first. After segmenting with this methodology, there will only be a small number of jump discon-
tinuities in the segmented profile. All of these jump discontinuities will be significant according
to the analytical estimate. It is only at this point where we recompute significance values (on
the small set of jump discontinuities remaining) based on the permutation scheme. After we did
so, we continue segmenting with the analytical estimates. We iteratively continue until all jump
discontinuities are significant based on the permutation estimate.

With this procedure, we are always ensured that the expected number local maximum seg-
ments (that we end up calling) in the aggregate segmented profile is below or equal to E/2, where
E is the global threshold used to stop clustering. This is true no matter what analytical approxima-
tion we use for χ̄w. If this analytical approximation is conservative, we end up merging segments
with jump discontinuities that should have been called significant and therefore the number of local
maximum segments will be lower than E/2. On the other hand, if the analytical approximation is
liberal, we do not lose power or incur more false positives. Instead, we end up testing many jump
discontinuities with the permutation scheme. The analytical approximation we use tend to be lib-
eral for small kernel sizes (and we should not expect to lose power because of it). Nevertheless, by
the time we stop merging segments, the majority of jump discontinuities remaining define larger
kernels, where the analytical approximations hold well.

Due to the overall accuracy of our analytical estimate, we rarely need to iterate these steps.
Usually after segmenting the aggregate profile with the analytical approximations, the permutation
scheme also calls the jump discontinuities significant and we stop.
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Iteratively updating the null-model

Generally, we consider a copy number aberration to be a driver if it provides a selective advantage
in tumor initiation and progression. Driver aberrations are likely to effect (and therefore overlap)
with oncogenes and tumor suppressor genes (driver genes). Passenger aberrations on the other hand
are believed to provide no significant selective advantage and occur due to genomic instability. It is
not necessarily true that all aberrations that overlap with driver genes are driver aberrations. For ex-
ample, it could happen that an aberration amplifies an inactive allele of an oncogene. Nevertheless,
if we can prove that neutral-to-gain (or gain-to-neutral) breaks recur significantly across samples,
then we have good reason to believe that at least a subset of them belong to driver aberrations.

In Supplementary Fig. 2 we show an example of 20 DNA copy number samples (only the
gains). In the top panel we show all the driver aberrations in red, whereas passenger aberrations
are shown in grey. Note that we generally don’t have prior knowledge on which aberrations are
drivers and we show it here only for illustrative purposes. The important point here is that not all
driver aberrations (or breaks) will necessarily recur significantly. Therefore it is not possible to
fully discriminate drivers from passengers in the data.

The cyclic shift null-model describes the behavior of passenger aberrations and is based
on the assumption that they occur randomly on the genome. Unfortunately, this scheme will be
conservative, since the overall break density will be higher in the cyclic null model than the true
passenger break density. Although the break locations are random in the null, a large portion of
the breaks that are scatter across the genome originate from drivers that are concentrated in fixed
genomic loci in the data (see the lower panel in Supplementary Fig. 2). Therefore, the cyclic shift
null-model will over estimate the background break density. Nevertheless, we can significantly
reduce this bias by iteratively detecting recurrent break points with RUBIC and then remove the
concentrated breaks from our null model. Notably, this will also automatically remove the apparent
breaks between adjacent chromosome boundaries.

At each iteration we perform RUBIC segmentation on the aggregate profile with family wise
error (FWER) control (it is not particularly natural to do FDR control for updating the null). Family
wise error control is straight forward and achieved by setting the clustering threshold at E =
FWER without applying the Benjamini-Hochberg procedure. We set the family wise error rate
equal to the FDR level. We segment each sample using the break locations detected by RUBIC
(with segment amplitudes equal to the mean in that particular sample’s copy number ratio). From
each sample, we subtract this segmented profile and update the null accordingly (i.e. cyclically
permute based on the new sample profiles). As a result, all frequently recurrent breaks are canceled.
Note that the ’cancellation’ of breaks will not necessarily align perfectly with the correct driver
breaks. This leads to a slight power loss (slightly more conservative than need be) since we are
technically introducing new breaks locally (and therefore increase the break density in the null).
Nevertheless they will occur in close proximity (and be of opposite sign) to the true driver breaks
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and greatly improves statistical power (especially for larger kernels).

At each iteration, we re-segment the aggregate of the original dataset (not the profiles with
the cancelation breaks) based on the updated null-model. We continue iterating until no new breaks
can be detected at the specified FWER level.

We use the resulting null-model (after convergence) to finally segment the aggregate with
FDR control.

Evolutionary model for simulating copy number profiles

Simulating passenger aberrations. When we simulate tumor instability in our simulation model,
we randomly add copy number aberrations that were extracted from the TCGA breast cancer
datasets. Each copy number sample in the Level 3 TCGA data is represented as a list of seg-
ments with start and end positions and the average copy number log ratio of each segment. A copy
number aberration does not typically correspond to these segments directly. For example, suppose
there are only two aberrations in chromosome 1q, one focal amplification and one broad gain of
the whole chromosome arm. We want to extract these two events separately, but in the level 3
data at our disposal there will be three segments corresponding to 1q. To extract aberrations we
follow a simple strategy. In each sample and in each chromosome, we extract the segment with
the highest (positive or negative) copy number log ratio. We then merge adjacent copy number
segments that border the chosen segment into one large segment. We take care to associate the
merged segment with a log ratio that is the weighted average of the two segments contributing (the
weights depend on the sizes of the segments). We iteratively extract segments in this fashion until
no more segments remain.

This procedure is performed for each sample and each chromosome in our TCGA breast
cancer dataset. Since we use these segments to simulate passenger aberrations that are located
at random positions and samples, we need not record their locations nor which samples they are
from, but only their genomic widths and log ratio values. We do add a flag indicating whether
the segment is as wide as the chromosome, i.e. was the last segment extracted from a complete
chromosome. Therefore we end up with a large aberration list with three fields: the width, log ratio
and chromosome wide flag.

When we add a passenger aberration to an existing profile, we select a random chromosome
(the probability of each chromosome is weighted by its length) and a random aberration from the
list described above. If the chosen segment is flagged as chromosome wide, we change its size
to the chromosome width and center it to cover the whole chromosome. Otherwise, we center the
aberration at a random position in the chromosome and clip the segment at chromosome boundaries
if necessary. Finally, we add the segment to the existing profile.
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Computing the proliferation score. We defined a list of oncogenes and tumor suppressors di
(1 ≤ i ≤ D). For each we assigned a proliferation coefficient αi where positive (negative) values
are associated with oncogenes (tumor suppressors). From this we can compute a proliferation
score P for any fixed copy number profile by assuming that cell proliferation is linearly related to
the average copy number dosage (fi) (of gene di) and αi:

P =
∑

i∈{1,...,D}

αifi (4)

The dosage fi of gene di is based on the average copy number log ratio c̄i of the gene and is a
measure of the fold change relative to a normal reference:

fi = sign(c̄i)(A
|c̄i| − 1), (5)

where A = 2 is the log base.

Parameter choices for RUBIC, GISTIC2 and RAIG

We used a fixed set of parameters for each algorithm on all simulation and TCGA datasets.

Preprocessing parameters common to all algorithms. All three algorithms split DNA copy
number gains and losses. All three algorithms accomplish this by defining a positive and nega-
tive log ratio threshold. To obtain copy number profiles containing only gains, we only consider
segments with copy number values above the positive threshold and set all remaining segments to
the copy number neutral (log ratio equal to zero) state. Deletion only profiles are obtained in a sym-
metric fashion with the negative log ratio threshold. For all three algorithms we used thresholds at
−0.1 and 0.1. This is also the default for both GISTIC2 and RAIG.

For all three algorithms, we also clipped single sample log ratio values at 1.5 (default in
GISTIC2). This means that if a segment in a single sample has a log ratio above 1.5 (below −1.5),
we set it equal to 1.5 (−1.5).

GISTIC2 parameters. The GISTIC2 analysis was performed (independently of us) in the
http://firebrowse.org/ (downloaded on 31 March 2015) pipeline and on the exact same TCGA
datasets. In this pipeline, all parameters were the same for all three datasets and are specified
as follows:

• Amplification Threshold = 0.1
• Deletion Threshold = 0.1
• Cap Values = 1.5
• Broad Length Cutoff = 0.7
• Remove X-Chromosome = 0
• Confidence Level = 0.99
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• Join Segment Size = 4
• Arm Level Peel Off = 1
• Maximum Sample Segments = 2000
• Gene GISTIC = 1
• q-value threshold = 0.25

RAIG parameters. RAIG was performed on a subset of the TCGA Breast cancer and Glioblas-
toma datasets that we considered in 29. For these two datasets, RAIG used the same parameter
settings than we did with two exceptions. First, RAIG has a flag specifying whether the analysis
should be performed on the gene level. For the Glioblastoma set, this flag was set to ‘off‘ (in
contrast to other data sets) in 29. We set this flag to ‘on‘, since we are interested in discovering
genes. Second, in 29 the q-value threshold (that corresponds to the false discovery rate) was set at
0.5 which we set at 0.25. Otherwise all parameters are the same:

• δ lower bound = 0.05
• Maximum size of a block (percentage of genome size) = 0.1
• Gene level = on
• Target region selection t = 1
• q-value threshold = 0.25

Pre-processing of Next Generation Sequencing (NGS) data sets

Low coverage Whole Genome Sequencing data. We gathered breast cancer tumor samples for
90 patients that are independent of the TCGA collection (See 30 and references therein). The seg-
mented data is available on figshare: figshare.com/s/f82d18da993411e5961706ec4bbcf141 with
the following associated DOI: http://dx.doi.org/10.6084/m9.figshare.1615908. This collection of
samples is highly enriched for BRCA1/2-like, mutated and methylated samples. 36 (40%) of
the samples are triple-negative and at least 31 (34%) are believed to be BRCA1 deficient (ei-
ther BRCA1-like, mutated or methylated). 14 (16%) additional samples are also predicted to be
BRCA2-like. These sample appear to have highly unstable genomes and the estimated number
of breakpoints per sample is 146 on average. All copy number profiling and processing was per-
formed as described in previous publications (See 30 and references therein). The un-segmented
data (i.e. raw pre-processed data, according to established methods per platform) were used as
input in the analysis. The profiles were segmented with cghseg31. As no matched normal samples
were available, the germline CNVs were labeled manually and removed from the data. Segmented
profiles for 90 tumors were employed as input to both RUBIC and GISTIC2.

Whole Exome Sequencing data. In total there were 754 primary TCGA BRCA tumors with
matched normal (peripheral blood) for which WES sequencing data was available for both the
tumor and normal (available on https://cghub.ucsc.edu/). We downloaded 792 bam files for a ran-
domly selected set of samples (396 tumors + 396 matched normals). Exome coverage is prone to
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batch effects, introduced, for example, by capture kits, amplification steps and sequencing plat-
forms. We performed hierarchical clustering on the Euclidean distance between all samples based
on the on-target (exon) read counts to determine batches. Thirteen samples were removed from
further analysis as they could not be assigned to any cluster. For seven of these we know that whole
genome amplification was performed prior to sequencing, which may explain the observed cov-
erage bias. Per cluster, normal samples were combined into a reference pool and both tumor and
normal samples were compared to this combined reference using CNVkit32 to obtain segmented
copy number profiles. The normal sample profiles were used to identify germline CNVs. Seg-
ments in each tumor sample with a Jaccard similarity coefficient of more that 20% with a germline
CNV (i.e. overlaps with a germline CNV) were removed from the data set. Segmented profiles for
383 tumors were employed as input to both RUBIC and GISTIC2.

Construction of the bona fide breast cancer gene list

We compiled a list of 52 breast cancer oncogenes and 12 breast cancer tumor suppressor genes
from the literature. A subset of the oncogenes in this list were only recently validated5 and a
large fraction were proposed by Santarius and colleagues based on the criteria as described in their
publication 33. The full list of breast cancer genes is given in Supplementary Table 1 with the
associated literature references.

Fragile site analysis

First we employed a published list34 of fragile sites and combined that with an unpublished list of
fragile sites obtained from the Sanger Institute to construct a list of 127 rare and common fragile
sites (Supplementary Data 12). To reject the null hypothesis that fragile sites are not enriched
for RUBIC recurrent regions, we performed a permutation-based enrichment test. Specifically, as
statistic, we employed the number of recurrent regions called by RUBIC that overlapped with at
least one fragile site. We tested whether this statistic is significant based on the null distribution.
To generate the null distribution, we collected 10000 values of the statistic under the null, by
performing random cyclic permutation of the recurrent regions called by RUBIC and computing
the overlap with at least one fragile site. From the statistic on the unpermuted data and the null
distribution we computed a single-tail p-value for the observed number of overlaps in the data.
Amplifications and deletions were considered independently. All datasets were also considered
independently.

Lists of detected RUBIC and GISTIC2 regions with gene priority scores

We constructed Excel files for each data set considered. Amplifications and deletions are also
represented in separate files. Each row in an Excel file represents a genomic region detected by
either RUBIC or GISTIC2. The regions are sorted based on genomic location so that overlapping
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RUBIC and GISTIC2 regions are next to each other. Each row has eight fields.

• Method. The algorithm with which the region was discovered. This is either RUBIC or
GISTIC2.
• Negative log q-value. This is the negative log of the region’s significance. Large positive

values represent highly significant regions.
• Chr. The chromosome in which the region was detected.
• Start. The left genomic boundary of the detected region.
• End. The right genomic boundary of the detected region.
• Bona fide (BRCA). The list of bona fide breast cancer oncogenes or tumor suppressors that

overlap with the region for amplifications and deletions respectively.
• All genes. A list of all the genes that overlap the region.
• Citation score. This is a measure of how frequently each overlapping gene is mentioned in

cancer specific research publications with Pubmed IDs.

In order to compute the citation score, we counted the number of cancer research publica-
tions with Pubmed IDs that explicitly mention each gene. We ranked genes based on this count.
The citation score is then obtained by computing the fraction of genes that score a lower citation
count35.

We created a set of supplemental Supplementary Data Excel files containing the information of
all the aberrations for both RUBIC and GISTIC2 in the same file to ease comparison. Each of
these files contains a header describing the information contained in the file. Below we also list
the Supplementary Data file name, followed by the information contained in the file:

1. Supp lemen ta ry Data 2 :

• Aberration type: Recurrent Amplifications
• Cancer type: Breast Cancer (BRCA)
• Profile type: SNP6 profiles
• Algorithms: RUBIC and GISTIC2

2. Supp lemen ta ry Data 3

• Aberration type: Recurrent Deletions
• Cancer type: Breast Cancer (BRCA)
• Profile type: SNP6 profiles
• Algorithms: RUBIC and GISTIC2

3. Supp lemen ta ry Data 4

• Aberration type: Recurrent Amplifications
• Cancer type: Glioblastoma Multiforme (GBM)
• Profile type: SNP6 profiles
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• Algorithms: RUBIC and GISTIC2

4. Supp lemen ta ry Data 5

• Aberration type: Recurrent Deletions
• Cancer type: Glioblastoma Multiforme (GBM)
• Profile type: SNP6 profiles
• Algorithms: RUBIC and GISTIC2

5. Supp lemen ta ry Data 6

• Aberration type: Recurrent Amplifications
• Cancer type: Colon Adenocarcinoma (COAD)
• Profile type: SNP6 profiles
• Algorithms: RUBIC and GISTIC2

6. Supp lemen ta ry Data 7

• Aberration type: Recurrent Deletions
• Cancer type: Colon Adenocarcinoma (COAD)
• Profile type: SNP6 profiles
• Algorithms: RUBIC and GISTIC2

7. Supp lemen ta ry Data 8

• Aberration type: Recurrent Amplifications
• Cancer type: Breast Cancer (BRCA)
• Profile type: Whole Exome Sequencing (WES)
• Algorithms: RUBIC and GISTIC2

8. Supp lemen ta ry Data 9

• Aberration type: Recurrent Deletions
• Cancer type: Breast Cancer (BRCA)
• Profile type: Whole Exome Sequencing (WES)
• Algorithms: RUBIC and GISTIC2

9. Supp lemen ta ry Data 10

• Aberration type: Recurrent Amplifications
• Cancer type: Breast Cancer (BRCA)
• Profile type: low coverage Whole Genome Sequencing (lcWGS)
• Algorithms: RUBIC and GISTIC2

10. Supp lemen ta ry Data 11

• Aberration type: Recurrent Deletions
• Cancer type: Breast Cancer (BRCA)
• Profile type: low coverage Whole Genome Sequencing (lcWGS)
• Algorithms: RUBIC and GISTIC2
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Derivation of the analytical approximation of the expected Euler characteristic.

We will now derive an accurate analytical expression relating the expected Euler characteristic to
a fixed non-negative threshold t for a discrete Gaussian random process with constant variance
σ2, zero mean and non-stationary correlation function r(g). In our application we have a discrete
stationary Gaussian random process defined at a finite number of probes

(
Ti : i ∈ {0, 1, ..., G}

)
,

but the theory applies to non-stationary processes too. Much work has been done on estimating
the expected Euler characteristic in stationary and discrete processes 36–38. These estimates are
typically not very accurate when adjacent probes are weakly (or negatively) correlated. On the
other had, for smooth stationary Gaussian processes, there exist exact expressions for the expected
Euler characteristics 39. Our strategy will be to interpolate discrete processes with a smooth (in
the sense that it is continuously differentiable up to any order) Gaussian random process H(g)
(Supplementary Fig. 3). From the smoothed process we can derive an extremely simple and exact
expression for the expected Euler characteristic.

Without loss of generality, we will assume that the discrete process has a variance equal to
one for all probes. For simplicity, we assume that the Euler characteristic is equal to the sum of
the up-crossings (the red circles in Supplementary Fig. 3) and down-crossings (the green circle in
Supplementary Fig. 3) at the thresholds t and −t respectively. We refer to these up-crossings and
down-crossings collectively as the level-crossings of t. Strictly, if |t0| > t, where t0 is the left most
probe measurement, the Euler characteristic will be equal to the number of crossing points plus
one. Although it is easy to correct for this boundary effect, it is usually negligible and we will not
consider it any further in this section.

Traditionally, the expected Euler characteristic is only computed for up-crossing above a
positive threshold. In our application, we also count the down-crossings. Since a Gaussian random
process is symmetric with respect to the zero line, the expected number of level crossings will be
double the number of up-crossings.

The reason we prefer to work with a smooth random process is due to the following theorem
that can be found in the supplementary data in 40:

Theorem 1. Consider a non-negative threshold t, a closed interval R = [gL, gR] and a suitably
regular (non-stationary) random Gaussian process H with ∀g ∈ R H(g) ∼ N(0, 1). The expected
number of level crossings for a threshold t in R is equal to:

χ̄(t) =
e−t

2/2

π

∫
R

√
Var
[ d
dg
H(g)

]
(6)

For the definition of a suitably regular process, see the supplementary data in 40.
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To smooth the discrete process, we convolve it with a particular bump function f satisfying
the following properties:

• It is smooth (continuously differentiable up to any order).

• {g : f(g) = 0} = (−∞, 1] ∪ [1,∞)

• {g : f(g) > 0} = (−1, 1)

• f(0) = 1

• ∀0 ≤ g ≤ 1, f(g) + f(g - 1) = 1

The exact choice of this function is not important, however a good example is illustrated in
Supplementary Fig. 4 and is defined as follows:

f(g) = Γ(g)/Γ(0), where

Γ(g) =

∫ g

−1

β(2u+ 1)− β(2u− 1)du

β(g) = γ(1− g)γ(1 + g)

γ(g) =

{
e−1/g g > 0
0 g ≤ 0

(7)

We convolve a realization of the discrete process
(
ti : i ∈ {0, 1, ..., G−1}

)
with f to produce

the smoothed profile:

s(g) = f(g − bgc)tbgc +
(
1− f(g − bgc)

)
tbgc+1 (8)

Note that at any particular position g, s only depends on the two adjacent random variables tbgc
and tbgc+1. The covariance matrix of two variables ti and ti+1 is presented as follows:

Σi =

[
1 ρi
ρi 1

]
, (9)

where ρi = Cov(ti, ti+1). Using this, we can easily compute the variance of S at any position g:

Var[S(g)] = [fg, 1− fg]Σbgc[fg, 1− fg]T , where
fg = f(g − bgc) (10)

Generally, Var[S(g)] is equal to one at integer values, but strictly smaller at intermediate
values. Therefore, our final step in smoothing the discrete process is to z-normalize. The final
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smoothed interpolation function of a realization of the discrete random process is therefore defined
as follows:

h(g) =
s(g)√

Var[S(g)]
(11)

In Supplementary Fig. 3 we show an example realization of a discrete process (with blue dots) and
the resulting smoothed function h(g) in red.

Theorem 2. Consider a non-negative threshold t, a non-stationary discrete random Gaussian
process (Ti : i ∈ {0, 1, ..., G−1}) with ∀i ∈ {0, 1, ..., G−1} Ti ∼ N(0, 1). The Expected number
of level crossings of the interpolation process H(g) in the region [0, G− 1] is equal to:

χ̄(t) =
e−t

2/2

π

G−2∑
i=0

arccos(ρi) (12)

Proof. Since f is smooth and h is an algebraic expression of f , h is itself smooth and ∀g ∈
[0, G − 1],Var[H(g)] = 1. As a consequence, all the conditions in Theorem 1 are satisfied. The
only part that needs a proof is:∫ 1

0

√
Var
[ d
dg
H(g)

]
dg = arccos(ρ0), (13)

For any g ∈ [bgc, bgc+ 1], only the variables Tbgc and Tbgc+1 are involved in an analogous manner
as T0 and T1 are involved for g ∈ [0, 1]. From this observation and Equation 13, Theorem 2
immediately follows.

In all subsequent steps, we only consider g ∈ [0, 1]. First we can simplify Equation 10:

C = Var[S(g)] = [f, 1− f ]Σ0[f, 1− f ]T

= 2αf 2 − 2αf + 1, (14)

where α = 1− ρ0. Next we rewrite Equation 11 as follows:

h =
ft0 + (1− f)t1√

C
=

f√
C

(t0 − t1) +
1√
C
t1 (15)

Taking the derivative yields

h′ = (p+ qf)(t0 − t1) + qt1, (16)

where

p = f ′C−1/2, q = −1

2
C−3/2C ′ (17)
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It is easy to show that:

Cov(t0 − t1, t1) =

[
2α −α
−α 1

]
, (18)

As a consequence,

Var[H ′] = [p+ qf, q]

[
2α −α
−α 1

]
[p+ qf, q]T , (19)

After a long, but straightforward, derivation we obtain the following:√
Var[H ′] =

r′

r2 + 1

r =

√
1− ρ0

1 + ρ0

(2f − 1) (20)

If we set r0 = −
√

1−ρ0
1+ρ0

and r1 =
√

1−ρ0
1+ρ0

,

∫ 1

0

√
Var[H ′]dg =

∫ r1

r0

r′

r2 + 1
dr

= arctan(r1)− arctan(r0)

= arccos ρ0 (21)
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The clustering threshold E controls the expected number of false positives

Overview. If we perform hierarchical clustering on a realization of the null model and stop merg-
ing segments when all similarity measures (χ̄) between adjacent segments are below a global
threshold E, then there will be a certain number of local maximum segments. The purpose of
this section is to show that the expected number of local maximum segments resulting across re-
alizations will be less than or equal to E/2. In this section it is not necessary to assume that the
null process (describing the aggregate) is Gaussian. However, there are a number of properties that
are required for the null model. Unfortunately we need to introduce some details and therefore we
introduce these properties gradually. All these properties hold in the cyclic permutation scheme
that we use. We start with the first two properties

• Property 1: The distribution of the aggregate of a probe (across realizations) is independent
of the probe index, i.e. all probes have the same distribution.

• Property 2: The aggregate process is stationary, i.e. the covariance between probe measure-
ments in the aggregate depends only on the index distance between them and not the actual
probe indices

The Euler characteristic at a fixed scale w = (wL, wR) and fixed positive threshold t in the
null model. For a fixed scale we convolve the aggregate profile of a fixed realization of the null
with a kernel kw which results in values (tg : 0 ≤ g ≤ G − 1), where G is the number of probes.
Strictly, tg = tw(g) is a function of the scale w = (wL, wR) and we drop this for convenience. The
corresponding null process (Tg : 0 ≤ g ≤ G − 1) is stationary and have mean zero everywhere,
since the kernel integrates to zero. Next, we introduce the third property of the null:

• Property 3: The distribution of each Tg is symmetric with respect to zero.

This assumption holds, since our null model describes the behavior of passenger aberrations on the
genome. Positive (neutral-gain) breaks are as likely to occur as negative (gain-neutral) breaks in
each sample and their locations are also random on the genome.

For a fixed threshold t we can compute the Euler characteristic by counting crossings as
indicated in Supplementary Fig. 5. There are two possible ways in which (tg : 0 ≤ g ≤ G − 1)
can cross the positive threshold t:

• Up-crossings: probe g is considered an up-crossing when tg ≥ t and tg−1 < t. In Supple-
mentary Fig. 5 we mark these events with green circles.
• Down-crossings: tg ≤ t and tg−1 > t. These are the blue circles in Supplementary Fig. 5.
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By convention we never count a crossing at probe index 0, since there is no probe to the left for
comparison.

We count the number of up-crossings and down-crossings and denote it with χ↑w(t) and χ↓w(t)
respectively. Similarly we can count the number of crossings at threshold −t and denote it with
χ↑w(−t) (red circles) and χ↓w(−t) (orange circles). In this notation, the expected Euler characteristic
that we use as a similarity measure is equal to χ̄w(|t|) = E

[
χ↑w(t)+χ↓w(−t)

]
, where the expectation

is across realizations. As a consequence of Property 3 and the fact that expectation is a linear
operator, we can see that:

E
[
χ↑w(t)

]
= E

[
χ↓w(t)

]
= E

[
χ↑w(−t)

]
= E

[
χ↓w(−t)

]
=

1

2
χ̄w(|t|) (22)

Counting up-crossing at t across the whole genome is equivalent to summing up-crossings
in sub-intervals as follows:

χ↑w(t) = χ↑w,{0,...,g0}(t) + χ↑w,{g0,...,g1}(t) + ...+ χ↑w,{gn,...,G−1}(t) (23)

Note that we include g0 in both the intervals {0, ..., g0} and {g0, ..., g1}. This is because we never
count the crossing in the left most probe of an interval (to stay in accordance with our definition).

From this observation, properties 1, 2 and, again, linearity of expectation, we see that

χ̄↑w,{g1,...,g2}(t) = E
[
χ↑w,{g1,...,g2}(t)

]
=

g2 − g1

2(G− 1)
χ̄w(|t|) (24)

We can define χ̄↓w,{g1,...,g2}(t), χ̄↓w,{g1,...,g2}(−t) and χ̄↑w,{g1,...,g2}(−t) in a similar fashion and
note that these expectations are all equal.

It is convenient to work with a density measure on the expected Euler characteristic. This
density is exactly equal to the expected number of crossings at one probe (or the expected Euler
characteristic at one probe). A single probe cannot be more than one type of crossing and we are
therefore computing the expectation of a Bernoulli trail which is therefore also exactly equal to
the probability of a probe to be a crossing. Due to the previous equation and Equation 22 we can
compute these densities as follows (setting g2 = g1 + 1):

∆χ̄w(|t|) =
1

G− 1
χ̄w(|t|)

∆χ̄↑w(t) = ∆χ̄↓w(t) = ∆χ̄↑w(−t) = ∆χ̄↓w(−t) =
1

2
∆χ̄w(|t|) (25)

As an application, say we wish to compute the expected number of up-crossings at the neg-
ative threshold -t over P probes. Then we simply compute P−1

2
∆χ̄w(|t|).
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It is also convenient to transform the vector (tg : 0 ≤ g ≤ G − 1) into a new vector (τg :
0 ≤ g ≤ G − 1), where each τg represents a significance measure in terms of the expected Euler
characteristic. For each tg we can compute χ̄w(|tg|), which is always positive and is uninformative
with respect to the sign of tg. Furthermore, a large value tg will correspond to a low value for
χ̄w(|tg|). For the sake of convenience, we would like τg to be an increasing function of tg, i.e.
large values in τg represent highly significant. With these considerations in mind, we define τg as
follows:

τg = τw(g) = −sign(tg) log(
χ̄w(|tg|)
G− 1

) (26)

We should note that for any scale w and value tg, χ̄w(|tg|) ≤ G− 1, since the number of crossing
points can never exceed the number of probes minus one (probe zero is never a crossing). Therefore
the log will always be non-positive. τg will always have the same sign and be an increasing function
of tg. By convention, we also set sign(0) = 0.

Counting crossing in (tg : 0 ≤ g ≤ G− 1) with respect to a positive threshold t is equivalent
to counting crossings in (τg : 0 ≤ g ≤ G− 1) with respect to the threshold T = − log( χ̄w(t)

G−1
). We

can also express the expected Euler characteristic density in Equation 25 in terms of the threshold
T :

∆χ̄(T ) = ∆χ̄w(|t|) = e−T

∆χ̄↑(T ) = ∆χ̄↓(T ) = ∆χ̄↑(−T ) = ∆χ̄↓(−T ) =
1

2
∆χ̄(T ) (27)

This form is extremely convenient, since ∆χ̄ only depends on T and not the scale w.

As before, we can also count the number of crossing in a restricted interval and denote them
by χ↑{g1,...g2}(T ), etc. We can compute the expected number of up-crossings at T in a restricted
interval {g1, ...g2} as follows: χ̄↑{g1,...g2}(T ) = g2−g1

2
∆χ̄(T ).

Counting local extrema in the segmented aggregate. In agglomerative clustering, we continue
merging segments until all similarity measures between adjacent segments are smaller than a global
threshold E. A hypothetical realization of the null after segmenting the aggregate is illustrated in
Supplementary Fig. 6a. The blue dots represent the aggregate of each probe, while the piecewise
constant red graph represent the aggregate profile after clustering. Each segment has a height equal
to the mean aggregate. By convention, we define a local extremum as a segment that is supported
by two jump discontinuities of opposite sign. As a consequence, we do not count segments on the
boundaries as local extrema. In Supplementary Fig. 6a, there are exactly three local extrema.

In Supplementary Fig. 6b we computed the difference between adjacent probes in the seg-
mented profile. This results in a sparse function that is equal to zero everywhere except perhaps
at the jump discontinuities. The height of a jump discontinuity at location gn is exactly equal to
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tgn = t(ωn,ωn+1)(gn). In Supplementary Fig. 6c, we map each tgn to its corresponding expected
Euler characteristic χ̄(ωn,ωn+1)(|tgn|). These are the similarity measures that we used for clustering
and are all below the threshold E since this is the point at which we stopped merging. In Supple-
mentary Fig. 6d we show the τ profile, where each tgn is converted to its respective τgn value as
explained earlier. Note that the threshold E in Supplementary Fig. 6d corresponds exactly to the
threshold T = − log( E

G−1
).

The green ellipses in Supplementary Fig. 6d illustrates a different way in which we count
local extrema. Counting local extrema is performed in exactly the same way we compute the Euler
characteristic for a fixed scale, except that we:

• use the τ profile in Supplementary Fig. 6d,
• use the threshold T , and
• ignore all the probes where there are no jump discontinuities, i.e. we collapse the profile

with new indices corresponding to the jump discontinuities.

We represent this number with χ(T ). Note that χ(T ) does not depend on any of the scale param-
eters, since we are counting on the segmented profile and not just any particular scale. Also note
that for all τ values at the jump discontinuities it follows that |τ | ≥ T (again because this is where
we stop clustering). The above definition of χ(T ) is only valid in this case. In the next section we
show how to compute χ(T ) in cases where |τ | < T .

At the end of clustering, χ(T ) will always be equal to the number of local extrema in the
segmented profile (which equals three in Supplementary Fig. 6a). Generally, the number of local
maximum segments will be approximately equal to half of the number of local extrema. To be
exact:

• χ(T )/2 if χ(T ) is even,
• (χ(T ) + 1)/2 if χ(T ) is odd and the left most jump discontinuity t(ω0,ω1)(g0) has a positive

sign (this is the case in Supplementary Fig. 6), and
• (χ(T )− 1)/2 if χ(T ) is odd and the left most jump discontinuity has a negative sign.

When segmenting a realization of the null, the chance that the left most break is positive is ex-
actly 50%. The expected number of local maximum segments across realizations will therefore be
exactly half of E[χ(t)].

The goal of this section is therefore to show that E[χ(T )] ≤ E.

Computing χ(T ) when some τ values are below T . We just showed how to compute χ(T ) when
all jump discontinuities |τgn| ≥ T . However, this is only the case at the terminal stage of clustering.
For intermediate stages, there will be discontinuities where |τgn| < T . In general, the count χ(T )
is computed in a slightly different manner than for a fixed scale.
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We count crossings on the vector (τgn : 0 ≤ n ≤ S − 1), where S is the number of breaks in
the segmentation. We define a discontinuity at index n as a T up-crossing if τgn ≥ T and τgn−1 < T .
By convention, the first discontinuity at index 0 will never be an up-crossing. We denote the set of
indices that correspond to T up-crossings with C+. Similarly, we define a discontinuity at index
n as a −T down-crossings if τgn ≤ −T and τgn−1 > −T . We denote the set of indices that
correspond to −T down-crossings with C−. Note that C+ and C− are disjoint.

We now introduce new types of crossings that we collectively refer to as switch crossings.
We define a discontinuity at index n as a T switch-crossing if:

n ∈ C+ and max{i ∈ C− : i < n} ≥ max{i ∈ C+ : i < n} (28)

Similarly, n is a −T switch crossing if:

n ∈ C− and max{i ∈ C+ : i < n} ≥ max{i ∈ C− : i < n} (29)

By convention, we define the max of an empty set to be equal to 0, i.e. max{} = 0. We
denote the sets of T and −T switch-crossings with S+ and S−. Notably, S+ ⊆ C+, S− ⊆ C−.
Also note that: min(C+∪C−) ∈ S+∪S−, i.e. the left most crossing (at T or−T ) is automatically
a switch crossing. This is because the max will be 0 in both cases and the ‘≥‘ statement becomes
true.

The Euler characteristic is defined as the cardinality of C+ ∪ C−. However, we define χ(T )
as the cardinality of S+ ∪ S−. Note that if ∀n ∈ {0, ..., S − 1}, |τgn| ≥ T , χ(T ) will be equal to
the Euler characteristic, otherwise it will be less than or equal.

We can also compute χ(T ) when segmenting on a restricted number of probes {m,m +
1, ..., n} and we denote it with χ{m,...,n}(T ). We should be careful to note that we only segment on
this restricted set of probes. Generally, the resulting segmentation will not be the same as when
performed on {0, ..., G− 1}, since there is no guarantee that jump discontinuities will result at m
and n. Later on, however, we will only compute χ{m,...,n}(T ) when the global segmentation have
jump discontinuities at m and n.

Merging adjacent segments in one iteration of clustering. Supplementary Fig. 7 illustrates
the step in agglomerative clustering where two segments are merged with the lowest |τ | separating
them at location gn. The red graph in Supplementary Fig. 7a shows the segmented aggregate before
merging segments of widths ωn and ωn+1 at iteration k. The black graph shows the segmented
aggregate after merging the segments at iteration k + 1. In Supplementary Fig. 7b we show the
lag-one difference profile of the segmented aggregate (similar to Supplementary Fig. 6b) before
merging and in 7c we show the corresponding tau plot (similar to Supplementary Fig. 6d) before
merging. In Supplementary Fig. 7b we show the thresholds in the diff graph that corresponds
to T = − log( E

G−1
) in the τ profile. Note that these thresholds differ between discontinuities,
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since they are all at different scales. Supplementary Fig. 7d and 7e are the same as 7b and 7c
respectively, except that these relate to the segmented aggregate after merging segments (iteration
k + 1). The only differences between Supplementary Fig. 7c and 7e are:

• We remove the jump discontinuity corresponding to τ kgn = τ(ωn,ωn+1)(gn)
• We replace τ kgn−1

= τ(ωn−1,ωn)(gn−1) with τ k+1
gn−1

= τ(ωn−1,ωn+ωn+1)(gn−1)

• We replace τ kgn+1
= τ(ωn,ωn+1)(gn+1) with τ k+1

gn+1
= τ(ωn+ωn+1,ωn+2)(gn+1)

In this specific example, the new value τ k+1
gn+1

is above the threshold T . If τ k+1
gn−1

was also significant,
we would stop merging at this point.

Jump discontinuities can become significant after merging. Case 1: bordering a significant
discontinuity of the opposite sign. In Supplementary Fig. 7d we show t(ωn+ωn+1,ωn+2)(g) evalu-
ated at every g (not just gn+1). The important point to note here is that although t(ωn+ωn+1,ωn+2)(gn+1)
is above the threshold χ̄−1

(ωn+ωn+1,ωn+2)(E), it is short lived with a crossing in close proximity. It
is extremely likely that such a crossing will occur in the region {gn+1, ..., gn+1 + ωn}. This is
illustrated in Supplementary Fig. 7f. Here we show the kernel (in black) k(ωn+ωn+1,ωn+2) when
shifted to gn+1 + ωn, i.e. k(ωn+ωn+1,ωn+2)(gn+2 + ωn − g). The value of t(ωn+ωn+1,ωn+2)(gn+2 + ωn)
is evaluated by computing the average aggregate in the right lobe of the kernel and subtracting the
average in the left lobe. These averages are shown by the dotted lines in Supplementary Fig. 7f.

As a consequence of this observation, we specify yet another property of the null model.
Given a segmentation with jump discontinuities
{τ(ωn,ωn+1)(gn), τ(ωn+1,ωn+2)(gn+1), τ(ωn+2,ωn+3)(gn+2)} and an arbitrary positive thresholds T .

• Property 4: If τ(ωn,ωn+1)(gn) < T , τ(ωn+1,ωn+2)(gn+1) < T and τ(ωn+2,ωn+3)(gn+2) ≤ −T ,
then:

P [∀g ∈ {gn+1, ..., gn+1 + ωn}, τ(ωn+ωn+1,ωn+2)(g) ≥ T ]� (30)
P [τ(ωn+ωn+1,ωn+2)(gn+1) ≥ T ],

where P [] represents the probability.

Although it is possible to think up pathological examples in which ∀g ∈ {gn+1, ..., gn+1 +
ωn}, τ(ωn+ωn+1,ωn+2)(g) ≥ T , we have never observed it in any realization of the null-model or the
real data for that matter. In contrast, it often happens that τ(ωn+ωn+1,ωn+2)(gn+1) ≥ T .

Jump discontinuities can become significant after merging. Case 2: bordering a discontinuity
that is not significant. Next we introduce a property of the null model similar to Property 4.
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Given a segmentation with jump discontinuities
{τ(ωn,ωn+1)(gn), τ(ωn+1,ωn+2)(gn+1), τ(ωn+2,ωn+3)(gn+2)} and an arbitrary positive thresholds T .

• Property 5: If τ(ωn,ωn+1)(gn) < T , τ(ωn+1,ωn+2)(gn+1) < T and τ(ωn+2,ωn+3)(gn+2) < T , then

P [∀g ∈ {gn+1, ..., gn+1 + min(ωn + ωn+1, ωn+2)}, τ(ωn+ωn+1,ωn+2)(g) ≥ T ]

� P [τ(ωn+ωn+1,ωn+2)(gn+1) ≥ T ], (31)

Note that this scenario is quite similar to the one in Property 4. The major difference here
is that we don’t require τ(ωn+2,ωn+3)(gn+2) to be below the threshold −T . Due to the relaxed con-
straint, we need to extend the domain in which we search for a down-crossing from the width wn
to min(ωn+ωn+1, ωn+2). The threshold T is large in the sense that segmentation at iteration k only
resulted in jump discontinuities lower than T in the neighborhood of gn+1. min(ωn + ωn+1, ωn+2)
is equal to the width of one of the lobes in the kernel corresponding to the scale w = (ωL, ωR),
where ωL = ωn+ωn+1 and ωR = ωn+2. Without loss of generality, let us assume it is wL. Property
5 is justified by the fact that tg0 and tg0+wL

is weakly correlated in the null and because T is high in
the neighborhood. The weak correlation stems from the fact that the kernel is anti-correlated with
itself when shifted by wL probes:∫ ∞

−∞
kw(g0 − g)kw(g0 + wL − g)dg < 0 (32)

As with Property 4, it is possible to think up pathological examples in which ∀g ∈ {gn+1, ..., gn+1+
min(ωn + ωn+1, ωn+2)}, τ(ωn+ωn+1,ωn+2)(g) ≥ T . However we never observed this in realizations
of the null-model.

Invariance in the signs of τ when merging segments. It is easy to prove that:

t(ωn−1,ωn+ωn+1)(gn) = t(ωn−1,ωn)(gn−1) + αt(ωn,ωn+1)(gn), (33)

where α = ωn+1

ωn+ωn+1
< 1. From this it follows that:

• Property 6: If |τ(ωn,ωn+1)(gn)| < |τ(ωn−1,ωn)(gn−1)| then either:

sign
(
τ(ωn−1,ωn+ωn+1)(gn−1)

)
= sign

(
τ(ωn−1,ωn)(gn−1)

)
, or

|τ(ωn−1,ωn+ωn+1)(gn−1)| ≤ |τ(ωn,ωn+1)(gn)| (34)
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What this means is that if we merge two segments that differ with the least significance
(remove the discontinuity at gn), then the new jump discontinuity at gn−1, τ(ωn−1,ωn+ωn+1)(gn−1)
will have the same sign as the old one τ(ωn−1,ωn)(gn−1) or else will be even less significant than the
discontinuity that was removed.

Control on the expected number of local maximum segments when clustering. We are now
finally in a position to prove that the expected number of local maximum segments will be less
than E/2 when clustering until all jump discontinuities have a similarity measure below E.

We start with iteration k = 0, where every probe is a unique cluster, i.e. the segmented
aggregate is exactly the same as the aggregate. At each successive iteration, we merge segments
that are separated with the lowest |τ | < T score. For any threshold T , we can compute χ(T ) at
any iteration k and denote it with χk(T ). We can also segment on an arbitrary interval of probes
{q, ..., r} and denote χ{q,...r}(T ) at iteration k with χk{q,...r}(T )

We need to prove that:

∀q∀r∀kE[χk{q,...,r}(T )] ≤ (q − r)∆χ̄(T ), (35)

where T = − log( E
G−1

).

For the special case where q = 0, r = G− 1:

E[χk{0,...,G−1}(T )] ≤ (G− 1)∆χ̄(T ) Eq. 35

= (G− 1)e−T Eq. 27
= (G− 1)elog(E/(G−1))

= E (36)

If we then choose the smallest k for which all τ values at the jump discontinuities are significant,
we know that the expected number of local extrema is less than or equal to E. As we observed, the
expected number of local maximum segments will be less than or equal to E/2.

To prove Equation 35 we use double induction. First on the number of probes P = r−q+1:

Induction hypothesis 1:

r − q + 1 < P =⇒ ∀kE[χk{q,...,r}(T )] ≤ (q − r)∆χ̄(T ) (37)

From this we need to prove that it also holds for r − q + 1 = P . We do so by induction on k.

Suppose k = 0. This is the case where we have not yet started merging segments. Every
probe is a unique segment. At this point all τ ’s are at the same scale w = (1, 1). It follows directly
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from the definition of the expected Euler characteristic at a fixed scale that:

E[χ0
{q,...,r}(T )] ≤ (q − r)∆χ̄(T ) (38)

Now suppose the statement is true for a fixed k.

Induction hypothesis 2:

r − q + 1 = P =⇒ E[χk{q,...,r}(T )] ≤ (q − r)∆χ̄(T ) (39)

We need to prove that it also holds for k + 1. For this we will consider three unique scenarios
in which segments are merged from iteration k to k + 1. All other possible scenarios that can
be conceived are either straight forward or strictly symmetric. Without loss of generality we will
assume q = 0 and r = P − 1 (we simply relabel the indices and this is legal due to Property 1 and
2), that the discontinuity locations at iteration k will be at {g0, g1, ...gn−1, gn, gn+1, ...} and that it
is discontinuity gn that will be merged in iteration k + 1.

Scenario 1. This scenario is depicted in Supplementary Fig. 8. This scenario is based on two cri-
terion. First, we assume that the right most significant discontinuity gL before gn−1 (L = max{i <
n−1 : |τ(ωi,ωi+1)(gi)| ≥ T}) has τ(ωL,ωL+1)(gL) ≥ T . Second, we assume τ(ωn+2,ωn+3)(gn+2) ≤ −T .

If |τ(ωn−1,ωn)(gn−1)| ≥ T and |τ(ωn+1,ωn+2)(gn+1)| ≥ T , then due to Property 6, χk+1
{0,...,P−1}(T ) ≤

χk{0,...,P−1}(T ) and by induction hypothesis 2, E[χk+1
{0,...,P−1}(T )] ≤ (P − 1)∆χ̄(T ). Therefore,

without loss of generality, let us assume |τ(ωn+1,ωn+2)(gn+1)| < T . In this case:

χk+1
{0,...,P−1}(T ) ≤ χs{0,...,gn−1}(T ) +

χt{gn,...,P−1}(T ) +

2U(τ(ωn+ωn+1,ωn+2)(gn+1) ≥ T ) (40)

Here, s and t are the number of iterations required to segment on the intervals {0, ..., gn−1} and
{gn, ..., P − 1} respectively when considered as separate problems. U() is the indicator function
with range {0, 1}. Due to Property 4, we know that τ(ωn+ωn+1,ωn+2)(gn+1) ≥ T implies (with high
certainty) that there will be a down-crossing in the interval {gn+1, ..., gn+1+ωn}. As a consequence,

χk+1
{0,...,P−1}(T ) ≤ χs{0,...,gn−1}(T ) +

χt{gn,...,P−1}(T ) +

2χ↓{gn+1,...,gn+1+ωn}(T ), (41)
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Finally, we can compute the expectation:

E[χk+1
{0,...,P−1}(T )] ≤ E[χs{0,...,gn−1}(T )] +

E[χt{gn,...,P−1}(T )] +

2E[χ↓{gn+1,...,gn+1+ωn}(T )]

≤ (gn−1)∆χ̄(T ) + (Induction hypothesis 1)
(P − 1− gn)∆χ̄(T ) + (Induction hypothesis 1)

2(gn − gn−1)
(1

2
∆χ̄(T )

)
(Eq. 27)

= (P − 1)∆χ̄(T ) (42)

Scenario 2. This scenario is depicted in Supplementary Fig. 9. This scenario is base on three
criterion. First, we assume that the right most significant discontinuity gL before gn−1 (L =
max{i < n − 1 : |τ(ωi,ωi+1)(gi)| ≥ T}) has τ(ωL,ωL+1)(gL) ≥ T . Second, we assume that the
left most significant discontinuity gR after gn+2 (R = min{i > n + 2 : |τ(ωi,ωi+1)(gi)| ≥ T}) has
τ(ωR,ωR+1)(gR) ≤ −T . The final criteria is |τ(ωn+2,ωn+3)(gn+2)| < T .

If |τ(ωn−1,ωn)(gn−1)| ≥ T and |τ(ωn+1,ωn+2)(gn+1)| ≥ T , then due to Property 6, χk+1
{0,...,P−1}(T ) ≤

χk{0,...,P−1}(T ) and by induction hypothesis 2, E[χk+1
{0,...,P−1}(T )] ≤ (P − 1)∆χ̄(T ). Therefore,

without loss of generality, let us assume |τ(ωn+1,ωn+2)(gn+1)| < T . In this case:

χk+1
{0,...,P−1}(T ) ≤ χs{0,...,gn−1}(T ) +

χt{gn+1,...,P−1}(T ) +

2U(τ(ωn+ωn+1,ωn+2)(gn+1) ≥ T ) (43)

Note that the only difference between Equation 40 and 43 is that we consider the interval {gn+1, ..., P−
1} instead of {gn, ..., P−1} in the second term. Due to Property 5, we can deriveE[χk+1

{0,...,P−1}(T )] ≤
(P − 1)∆χ̄(T ) following the same strategy proposed in scenario 1.

Scenario 3. The final scenario that we will consider is depicted in Supplementary Fig. 10. This is
the scenario where τ(ωn−2,ωn−1)(gn−2) ≤ −T and τ(ωn+2,ωn+3)(gn+2) ≤ −T .

If either τ(ωn−1,ωn)(gn−1) ≥ T or τ(ωn+1,ωn+2)(gn+1) ≥ T , then χk+1
{0,...,P−1}(T ) ≤ χk{0,...,P−1}(T )

and by induction hypothesis 2, E[χk+1
{0,...,P−1}(T )] ≤ (P −1)∆χ̄(T ). Therefore we will assume that

neither are above T . In this case:

χk+1
{0,...,P−1}(T ) ≤ χs{0,...,gn−1}(T ) +

χt{gn+1,...,P−1}(T ) +

2U(τ(ωn−1,ωn+ωn+1)(gn−1) ≥ T ) +

2U(τ(ωn+ωn+1,ωn+2)(gn+1) ≥ T ) (44)
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Due to Property 4, we have:

χk+1
{0,...,P−1}(T ) ≤ χs{0,...,gn−1}(T ) +

χt{gn+1,...,P−1}(T ) +

2χ↓{gn+1,...,gn+1+ωn}(T ) +

2χ↑{gn−1−ωn+1,...,gn−1}(T ) (45)

And the result follows when taking expectations.
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