Supplementary Information

Promising Tools in Prostate Cancer Research –Selective Non-Steroidal Cytochrome P450 17A1 Inhibitors

Silvia Bonomo¹, Cecilie H. Hansen², Elyse M. Petrunak³, Emily E. Scott³, Bjarne Styrishave², Flemming Steen Jørgensen¹ and Lars Olsen^{1,*}

¹Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken

2, DK-2100, Copenhagen Ø, Denmark.

²Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100

Copenhagen Ø, Denmark.

³Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Dr.,

Lawrence, KS, 66045 USA.

Contents

Figure S1: Training set of compounds used to select the best ChemScore cutoff for screening the docking results.

Figure S2: 2D representation of the simplified heme model and the heterocycles used for the DFT calculations.

Figure S3: Virtual hits from ZINC and eMolecules databases.

Figure S4: Absorbance difference vs. ligand concentration plots for compounds 1-5.

Figure S5: Structures of compound 2 and its commercially available analogues tested for their binding properties to CYP17A1.

Table S1: Biological characterization of compound **3-7** with the purified, human CYP17A1.

Table S2: Complete biological characterization of compound **1**, **2** and abiraterone on the production of steroidal hormones in the H295R cell line.

Table S3: Ionization fragments, retention times and molar masses for on-line clean-up and analysis of steroids from the H295R assay.

Appendix 1. Purity data for compound 1 provided by MayBridge LTD vendor

Appendix 2. Purity data for compound 2 provided by the ChemBridge vendor.

Figure S1. Training set of compounds used to select the best ChemScore cutoff for screening the docking results. The top panel contains inhibitor compounds ($IC_{50} < 5000$ nM), whereas the non-inhibitors ($IC_{50} > 5000$ nM) are shown in the lower panel^{1, 2, 3}.

Figure S2. 2D representation of the simplified heme model (**a**) and the heterocycles (**b**) used for the DFT calculations. The order in which the structures are reported resembles the rank obtained by the DFT calculations and shown in Figure 2 of the main paper.

virtual hits from the pyridine-based eMolecules database

Figure S3. Virtual hits from ZINC and eMolecules databases. These compounds were tested for their ability to coordinate the heme iron by recording their UV-VIS spectrum in presence of CYP17A1. Compounds colored in red gave a type II shift of the UV-VIS spectrum, but were not able to inhibit the enzyme activity.

Figure S4. Absorbance difference against ligand concentration plots for compounds 15 and abiraterone. R² values for each data fitting to the binding equation are reported.

Figure S5. Structures of compound **2** and its commercially available analogues tested for their binding properties to CYP17A1.

Compound	$K_{\rm d} \left[{\rm nM} \right]^a$	$IC_{50} [nM]^b$			
		hydroxylase	lyase		
3	400±40	>10000	ND ^e		
4	<<100	>10000	ND ^e		
5	150 ± 20^{d}	>10000	ND ^e		
6	ND ^e	>10000	ND ^e		
7	ND ^e	>10000	ND ^e		

 Table S1. Biological characterization of compound 3-7 with the purified, human

 CYP17A1.

^{*a*}Mean value over 2 measurements±standard error. ^{*b*}Mean value over 3 measurements±standard error. Assays based on the conversion of progesterone in 17 α -hydroxyprogesterone and 17 α -hydroxypregnenolone into DHEA for hydroxylase and lyase, respectively. ^{*c*}The measurement suffers of intrinsic inaccuracy because of the K_d value smaller than the lowest protein concentration at which the titration can be performed with acceptable signal:noise (100 nM). ^{*d*}Calculated using the highest absorbance data. ^{*e*}ND: not determined.

	compou	nd 1	compou	und 2	abirat	erone
	IC_{50} [nM] ^a	P-value	IC_{50} $[nM]^a$	P-value	IC_{50} $[nM]^a$	P-value
Progestagens						
PREG	390±70	0.1024	15±3	0.156	5.9±0.5	0.010
	500 ± 70^{b}	0.0749	19 ± 4^{b}	0.0632	7.3 ± 0.3^{b}	0.0028
PROG	ND^{c}	ND^{c}	ND^{c}	ND^{c}	181±5	< 0.0001
	146 ± 7^{b}	0.0086	32 ± 4^b	0.0518	1.0 ± 0.1^{b}	0.0014
170H-PREG	830±80	0.0153	52±4	0.0038	9.7±0.3	< 0.0001
170H-PROG	800±200	0.1705	20±1	0.0008	6.3±0.2	< 0.0001
Corticosteroids						
11deoxy-COS	310±60	0.1633	23.8±0.9	0.0002	2.6 ± 0.5^{d}	0.0304
	146 ± 4^{b}	0.0144			240 ± 20^{e}	
COS	ND^{c}	ND^{c}	36±4	0.021	2.9 ± 0.5^{d}	0.0179
	56 ± 1^{b}	0.0285				
11deoxy-COR	480±10	< 0.0001	54±5	0.017	5.3±0.1	< 0.0001
COR	1200±100	0.0135	36±4	0.028	5.0±0.4	0.0092
CORNE	700±100	0.0777	23±1	0.0005	2.5±0.1	< 0.0001
Androgens						
DHEA	94±30	0.0001	7.4±0.1	< 0.0001	1.8 ± 0.1	< 0.0001
AN	68±2	< 0.0001	4.3±0.1	< 0.0001	0.5 ± 0.0	< 0.0001
TS	52±2	< 0.0001	3.3±0.2	0.0006	0.2 ± 0.0	0.0024
Estrogens						
E1	220±10	0.0004	19±3	0.0597	0.8 ± 0.1	0.0053
β-Ε2	235±6	0.0001	50±10	0.146	408±60	0.0953

Table S2. Complete biological characterization of the effects of compound 1, 2 and abiraterone on the production of steroidal hormones in the H295R cell line.

^{*a*}Mean value over 6 to 15 measurements±standard error. ^{*b*}EC₂₀₀±standard error and relative P-value. ^{*c*}ND: not determined. ^{*d*}Value calculate on low concentrations of abiraterone (first part of the Guassian-like curve). ^{*e*}Value calculated using high concentrations of abiraterone (second part of the Guassian-like curve).

Steroid ^a	\mathbf{IS}^{b}	$C_xH_yO_z^c$	\mathbf{M}^{d}	Precursor Ion	Quantifier Ion	Qualifier Ion	RT ^e
AN	AN-d7	$C_{19}H_{26}O_2$	286.4	287.1	96.9	108.9	9.29
ADIOL	DHT-d3	$C_{19}H_{30}O_2$	290.4	255.2 ^e	159.0	145.0	11.19
DHEA	DHEA-d6	$C_{19}H_{28}O_2$	288.4	271.2 ^f	213.1	159.0	10.29
TS	TS-d3	$C_{19}H_{28}O_2$	288.4	289.1	96.9	108.9	9.84
ALDO	COR-d4	$C_{21}H_{28}O_5$	360.4	361.1	315.0	325.0	6.91
COR	COR-d4	$C_{21}H_{30}O_5$	362.4	363.1	121.0	327.2	7.62
11-deoxyCOR	11-deoxyCOR-d5	$C_{21}H_{30}O_4$	346.4	347.0	108.9	96.9	8.74
COS	COS-d8	$C_{21}H_{30}O_4$	346.4	347.0	121.0	163.1	8.56
11-deoxyCOS	11-deoxyCOS-d8	$C_{21}H_{30}O_3$	330.4	331.1	108.9	96.9	9.66
CORNE	COR-d4	$C_{21}H_{28}O_5$	360.4	361.1	163.1	121.0	7.26
E1	E1-d4	$C_{18}H_{22}O_2$	270.4	271.3	132.9	197.1	9.46
βΕ2	βE2-d5	$C_{18}H_{24}O_2$	272.4	255.2^{f}	159.0	132.9	9.58
PREG	PREG-d4	C21H32O2	316.5	299.1*	281.1	159.0	13.10
17-OHPREG	DHEA-d6	$C_{21}H_{32}O_{3}$	332.4	297 1 ^e	279 1	159.0	10 49
PROG	PROG-d9	$C_{21}H_{30}O_{2}$	314.5	315.2	108.9	279.1	12.20
17-OHPROG	DHEA-d6	$C_{21}H_{30}O_3$	330.4	331.1	108.9	313.0	10.17

Table S3. Ionization fragments, retention times and molar masses for on-line clean-up and analysis of steroids from the H295R assay.

^{*a*}See Figure 1 of the main paper for abbreviations; ^{*b*}internal standard; ^{*c*}molecular formula; ^{*d*}molar mass; ^{*e*}M+1 -18; ^{*f*}M+1 -2 x 18.

Appendix 1. Purity data for compound 1 provided by MayBridge LTD vendor.

No.	Ret.Time min	Height mAU	Area mAU*sec	Rel.Area %	3
1	1.10	59.607	157.324	3.08	
2	12.29	825.831	4957.983	96.92	
Tota	l:	885.438	5115.307	100.00	

HPLC data

MS data

¹H NMR spectrum

According to the NMR data, the sample is a mixture of hydrobromide salt (87 %) and free base (13%) of 1.

Appendix 2. Purity data for compound 2 provided by the ChemBridge vendor.

References

- Pinto-Bazurco Mendieta MAE, Negri M, Jagusch C, Müller-Vieira U, Lauterbach T, Hartmann RW. Synthesis, Biological Evaluation, and Molecular Modeling of Abiraterone Analogues: Novel CYP17 Inhibitors for the Treatment of Prostate Cancer. J. Med. Chem. 51, 5009-5018 (2008).
- 2. Hu Q, Jagusch C, Hille UE, Haupenthal Jr, Hartmann RW. Replacement of Imidazolyl by Pyridyl in Biphenylmethylenes Results in Selective CYP17 and Dual CYP17/CYP11B1 Inhibitors for the Treatment of Prostate Cancer. J. Med. Chem. **53**, 5749-5758 (2010).
- 3. Hu Q, Yin L, Jagusch C, Hille UE, Hartmann RW. Isopropylidene Substitution Increases Activity and Selectivity of Biphenylmethylene 4-Pyridine Type CYP17 Inhibitors. J. Med. Chem. **53**, 5049-5053 (2010).