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Figure S1. FAM63A/MINDY-1 is a novel DUB containing tandem MIU motifs. Related to Figure 1. 
(A) FAM63A contains motifs interacting with ubiquitin (MIU) at the C-terminus. Schematic representation of 
domain structure of human FAM63A is shown. Sequences of FAM63A from different organisms corresponding 
to human FAM63A 388-426 were aligned and the conserved residues are highlighted in purple. Consensus 
motif of MIU (Penengo et al., 2006) is conserved in two clusters within this 388-426 stretch, suggesting a 
possibility of tandem MIU. 
(B) The catalytic domain of MINDY-1 maintains K48-linkage specificity even at high enzyme concentrations. 
10 µM MINDY-1cat was incubated with 2.2 µM of tetraUb of different linkage types for the indicated period of 
time. 
(C) The catalytic domain of MINDY-1 is conserved in evolution. Sequence alignment of MINDY-1/FAM63A 
from different organisms is shown. Secondary structure elements are shown for MINDY-1cat. The catalytic 
residues are highlighted with asterisks. Fully conserved residues are shaded in red. 
(D) MINDY-1 cleaves K48-polyUb chains at G76. DUB assay reactions of 2.2 µM K48-Ub4 and 1.6 µM 
MINDY-1cat or OTUB1 were carried out for 1 h at 30 °C. Left panel, samples at the end point reaction were 
injected and monitored by HPLC at 214 nm. Right panel, ESI-MS mass spectrum for products of DUB reaction. 
Inset shows the deconvoluted mass spectrum. The theoretical masses of Ub1, Ub2, and Ub3 are indicated. After 
60 min of reaction, MINDY-1cat produced Ub1, Ub2, and Ub3 with observed mass close to the theoretical value, 
indicating that the MINDY-1cat cleaves K48-polyUb chains at G76. Cleavage by OTUB1 was used as a control 
(lower panel).  
  



	  

  



	  

 
 

 

Figure S2. Sequence analysis of MINDY family of DUBs. Related to Figure 1.   
(A) Schematic representation of domain structure of the human proteins of FAM63A/MINDY-1, 
FAM63B/MINDY-2, FAM188A, and FAM188B. 
(B) Sequence alignment of the catalytic domain residues of MINDY family DUBs. Secondary structure 
elements are shown for MINDY-1cat. The catalytic residues are highlighted with asterisks. Fully conserved 
residues are shaded in red. For the generation of this alignment, residues spanning the EF Hand motif (300 - 
371) in FAM188A were left out. (Hs: H. sapiens, Dd: D. discoideum, At: A. thaliana, Ce: C. elegans; Sc: S. 
cerevisiae, Dm: D. melanogaster).  
(C) The crystal structure of MINDY-1cat resembles a light bulb. The structure is displayed in two different 
orientations, rotated by 180° around the y-axis.  
(D) Topology of MINDY-1cat structure. α-helices (orange), β-strands (red), and 3_10 helices (blue), catalytic 
residues, and the Cys loop connecting β2 and α1 (cyan) are indicated. 
(E) Sequence alignment of human and yeast FAM63 members as in Figure S1C.  
  



	  

 
 
 
Figure S3. The crystal structure of MINDY-1cat reveals a new folding variant. Related to Figure 2. 
(A) Conserved residues on the surface of MINDY-1cat based on sequence alignment of FAM63A and FAM63B 
members from different species generated with the Consurf server (http://consurf.tau.ac.il) are shown in surface 
and cartoon representation.  
(B-E) Crystal structure of MINDY-1 (orange) (B), crystal structure of Papain (yellow) (C), solution structure of 
Staphopain (pink) (D), and crystal structure of viral OTU (cyan) (E) are shown in a cartoon representation. The 
conserved regions among these structures are highlighted in red. Multiple comparison and 3D alignment of the 
protein structures was performed using PDBeFold (http://www.ebi.ac.uk/msd-srv/ssm/). PDB ID: 9PAP, 1CV8, 
and 3PHW (Akutsu et al., 2011; Kamphuis et al., 1984). The crystal structures of Staphopain from S. aureus and 
Papain share structural identities of 14% and 9%, respectively. The structures superpose to MINDY-1cat 
structure with rmsd values of 3.5 Å and 4.1 Å over 110 and 116 aligned Cα, respectively. 
(F-G) Topology of MINDY-1cat (F) and Papapin (G) structures with regions coloured as in (B). 



	  

  



	  

Figure S4. Crystal structure of MINDY-1cat~UbPrg. Related to Figure 3. 
(A) Coomassie stained gel showing the reaction of MINDY-1cat with propargylated Ub. 
(B) Purification of MINDY-1cat-UbPrg complex by ion exchange chromatography. SDS gel of peak fractions is 
shown.  
(C) The crystal structure of MINDY-1cat (pink, cartoon representation) with electron density for the two 
conformers of UbPrg (cyan and orange, sticks representation). The simulated annealing omit map is contoured at 
0.6 σ. 
(D) Electron density for Ub shown in two different orientations. The simulated annealing omit map is contoured 
at 0.6 σ. The C-terminal residues of the two conformers (R72-G75) align, and are represented as sticks. The 
electron density fit for these regions and the vinylthioether linkage is found to be relatively perfect. 
(E) Close up view of the catalytic site with electron density for His319 and Gln131. 
(F) Simulated annealing omit map of the Cys loop in the apo (orange) and complex (pink) structures. 
  



	  

  



	  

Figure S5. MINDY-1 cleaves polyUb chains in a step-wise manner. Related to Figure 4. 
(A-B) MINDY-1cat does not hydrolyze the fluourogenic DUB substrate Ub-Rho110-G. Progress curves for 50 
nM Ub-Rho110-G hydrolysis using increasing concentrations of MINDY-1cat (A) or MIY1 (B). UCHL3 was 
included as positive control. 
(C) MINDY-1cat cleaves K48-Ub3 poorly compared to MIY1 and OTUB1. DUBs (1 µM) were incubated with 
500 nM of K48-Ub3 that has been labeled with an infrared fluorescent dye at the distal Ub (green circle) for the 
indicated times. Fluorescence Ub was visualized using Odyssey gel scanner at 800 nm channel. 
(D) Quantification of K48-Ub3 hydrolysis by MINDY-1cat, MIY1, and OTUB1 in (C). The percentage of the 
total intensities of Ub4, Ub3, Ub2, and Ub1 formed is shown on the y-axis. (n = 3; means ± s.d.).  
(E-G) Steady state kinetics of MINDY-1cat for K48-Ub5. K48-Ub5 chains that have been labeled with an 
infrared fluorescent dye at the proximal Ub (green circle) at different concentrations were hydrolyzed by a fixed 
concentration of MINDY-1cat (15 nM) over the indicated times (E). Since the fluorescence label is only on one 
Ub molecule (proximal), the intensity on K48-Ub5 will be the same number of molecules of K48-Ub4, where 
distal Ub has been cleaved by MINDY-1cat. Therefore, the standard curve of K48-Ub5 can be used to convert 
the intensity of K48-Ub4 in (E) to a molar concentration (F). The K48-Ub4 produced is plotted against time. 
Data was fitted to linear regression curve, where the slope is the initial velocity, V0 (G). Figures S5E-S5G are 
representative data from one of the replicates that were used to derive Michaelis-Menten kinetics in Figure 4F. 
(H) MINDY-1cat prefers to cleave long K48-polyUb chains. The cleavage percentage of K48-Ub2 (green), K48-
Ub3 (blue), and K48-Ub5 (red) by MINDY-1cat over time was plotted in the same graph using the data from 
Figure 4C, S5D, and 4E, respectively. 
(I) MINDY-1 captures K48-linked polyUb chains that contain other linkages. To analyze polyUb captured by 
the catalytic domain, Flag pull-downs from extracts of HEK293 cells inducibly-expressing 3xFlag-MINDY-1 
C137A were incubated with a panel of linkage specific DUBs. The DUBs used and their linkage preferences are 
indicated in brackets: OTULIN (M1), CEZANNE (K11), TRABID (K29 and K33), MIY1 (K48), AMSH (K63), 
vOTU (all but M1, K27, and K29), and USP2 (all). K48 polyubiquitin chains are completely cleaved by MIY1 
treatment, but are not affected by any of the other DUBs. However, only partial polyUb chains detected by anti-
Ub antibody are reduced with MIY1 treatment. The remaining Ub may be a result of monoUb remnant on 
proteins or polyUb chains of linkage types other than K48 present as part of heterotypic chains. The release of 
lower molecular weight chains (Ub2-Ub5) upon MIY1 treatment suggests the presence of heterotypic chains. 
(J) MIY1/YPL191C is an endo-DUB. Time course analysis of 3.5 µM pentaUb cleavage by 32 nM 
MIY1/YPL191C shows formation of cleavage products of all chain lengths (Ub4, Ub3, Ub2 and Ub1) at the 
earliest time points.  
	    



	  

Supplemental Tables: 
Table S1: cDNA constructs used in this study 

Protein Expressed protein Tag 
Cleaved Vector type Plasmid DU 

number 
MINDY-1 MIU GST-Halo-MINDY-1 388-426 Yes Bacterial pGEX6P1 47443 

MINDY-1FL/ FAM63AFL GST-MINDY-1 1-469 Yes Bacterial pGEX6P1 49563 
FAM63BFL GST-MINDY-1 1-621 Yes Bacterial pGEX6P1 46765 

MIY1/YPL191CFL GST-YPL191C 1-360 Yes Bacterial pGEX6P1 47420 
YGL082WFL GST-YPL191C 1-381 Yes Bacterial pGEX6P1 47391 
FAM188AFL GST-YPL191C 1-445 Yes Bacterial pGEX6P1 47870 

MINDY-1cat/ FAM63Acat GST-MINDY-1 110-380 Yes Bacterial pGEX6P1 47257 
3xFlag-MINDY-1 3xFlag-MINDY-1 No Mammalian pcDNA5 FRT/TO 49562 

3xFlag-MINDY-1 MIU* 3xFlag-MINDY-1 
L415A/A416G No Mammalian pcDNA5 FRT/TO 47510 

3xFlag-MINDY-1 C137A 3xFlag-MINDY-1 C137A No Mammalian pcDNA5 FRT/TO 47438 
Ubiquitin Ub-Intein-CBD 1-75 Yes Bacterial pTXB1 24149 

Ubiquitin G75A/G76A Ubiquitin G75A/G76A n.a. Bacterial pET24 49488 
Cys-Ubiquitin K48R GST-Cys-Ubiquitin K48R Yes Bacterial pGEX6P1 47729 
Cys-Ubiquitin 1-75 GST-Cys-Ubiquitin 1-75 Yes Bacterial pGEX6P1 47779 

Ubiquitin G75A/G76A Ubiquitin G75A/G76A n.a. Bacterial pET24 49488 
Cys-Ubiquitin K48R GST-Cys-Ubiquitin K48R Yes Bacterial pGEX6P1 47729 
Cys-Ubiquitin 1-75 GST-Cys-Ubiquitin 1-75 Yes Bacterial pGEX6P1 47779 

MINDY-1cat C137A GST-MINDY-1cat 110-384 
C137A Yes Bacterial pGEX6P1 47419 

MINDY-1cat H319A GST-MINDY-1cat 110-384 
H319A Yes Bacterial pGEX6P1 47669 

MINDY-1cat Q131A GST-MINDY-1cat 10-384 
Q131A Yes Bacterial pGEX6P1 47783 

MINDY-1cat Q131E GST-MINDY-1cat 110-384 
Q131E Yes Bacterial pGEX6P1 47832 

MINDY-1cat V210A GST-MINDY-1cat 110-384 
V210A Yes Bacterial pGEX6P1 55059 

MINDY-1 W240A GST-MINDY-1cat 110-384 
W240A Yes Bacterial pGEX6P1 47817 

MINDY-1cat Y258A GST-MINDY-1cat 110-384 
Y258A Yes Bacterial pGEX6P1 47818 

MINDY-1cat F315A GST-MINDY-1cat 110-384 
F315A Yes Bacterial pGEX6P1 47819 

MINDY-1cat E263A GST-MINDY-1cat 110-384 
E263A Yes Bacterial pGEX6P1 47663 

MINDY-1cat E263R GST-MINDY-1cat 110-384 
E263R Yes Bacterial pGEX6P1 47683 

MINDY-1cat D209A GST-MINDY-1cat 110-384 
D209A Yes Bacterial pGEX6P1 47664 

MINDY-1cat D209A 
E263A 

GST-MINDY-1cat 110-384 
D209A E263A Yes Bacterial pGEX6P1 47697 

  



	  

Supplemental Materials and Methods 

Protein expression and purification 
Recombinant GST-fusion proteins were expressed in E. coli strain BL21. Cultures were grown in 2xTY media 
containing 50 µg/ml ampicillin to an OD600 of 0.6-0.8. Protein expression was induced with 300 µM IPTG and 
cultures grown overnight at 18 °C. Harvested cells were resuspended in GST-Lysis Buffer (50 mM Tris-HCl pH 
7.5, 300 mM NaCl, 10% glycerol, 0.075% 2-mercaptoethanol, 1 mM benzamidine, 1 mM PMSF, and complete 
protease inhibitor cocktail (Roche)) and lysed by sonication. Bacterial lysate was clarified by centrifugation at 
30,000 x g for 30 min and subsequently incubated with Glutathione Sepharose 4B resin (GE Healthcare) for 2-4 
h at 4 °C. The resin bound proteins were washed extensively with high salt buffer (25 mM Tris pH 7.5, 500 mM 
NaCl, and 10 mM DTT) and low salt buffer (25 mM Tris-HCl pH 7.5, 150 mM NaCl, 10% glycerol, and 1 mM 
DTT). The GST tag was removed by overnight incubation with 3C protease at 4 °C.  
Proteins were further purified by anion exchange chromatography (Resource Q, GE Healthcare Life Sciences) 
and eluted in a gradient with buffer Q (50 mM Tris-HCl pH 8.5, 1 M NaCl and 2 mM DTT), followed by size 
exclusion chromatography (Superdex 75 16/60, GE Healthcare Life Sciences) in buffer G (50 mM Tris-HCl, 
150 mM NaCl, 10 mM DTT). The purified proteins were concentrated, flash frozen in liquid nitrogen and stored 
at -80 °C.   

Ubiquitin binding domain (UBD) linkage specificity analysis 
Halo-tagged MINDY-1 (388-426) (10.5 nmol) was incubated with 100 µl of the HaloLink resin (Promega) in 
500 µl of the coupling buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.05% NP-40, 1 mM DTT) for 3 h at 4 
°C. The UBD linkage specificity analysis was carried out by incubating 10 µl of the coupled Halo-MINDY-1 
resin (388-426) with 58.5 nM of tetraUb of the indicated linkages in 500 µl of pull down buffer (50 mM Tris-
HCl pH 7.5, 150 mM NaCl, 0.1% NP-40, 1 mM DTT, 0.5 mg/ml BSA) for 2 h at 4 °C. The resin was washed 
two times with the wash buffer (50 mM Tris-HCl pH 7.5, 250 mM NaCl, 0.2% NP-40, 1 mM DTT) and once 
with the coupling buffer. Captured tetraUb chains were eluted by adding LDS buffer, separated on 4-12% SDS-
PAGE gel (Life Technology), and visualized by silver staining using Pierce Silver stain kit (ThermoFischer). 
 
Deubiquitylation assays 
DUBs were diluted in 50 mM Tris-HCl pH 7.5, 50 mM NaCl, 10 mM DTT and incubated at 24 °C for 10 min. 
The DUB assays were subsequently carried out where 2.2 µM of tetraUb of different linkage types were 
incubated with 1.6 µM DUB in 50 mM Tris-HCl pH 7.5, 50 mM NaCl, 10 mM DTT in a reaction volume of 10 
µl. For DUB assays in Fig. 4A, 160 nM YPL191C/MIY1 was used. For DUB assays comparing activity of 
MINDY-1 at cleaving K48 chains, the following concentrations of Ub chains were used: 1.9 µM K48-Ub3 or 
2.2 µM K48-Ub4, 3.5 µM K48-Ub5, or 3.5 µg of K48-Ub5-n. The reactions were incubated at 30 °C and 
stopped at different time points by adding LDS buffer. The samples were separated on 4-12% SDS-PAGE gel 
(Life Technology) and silver stained using Pierce Silver stain kit (ThermoFischer). 

Preparation and purification of MINDY-1cat~UbPrg complexes 
Ubiquitin thioester was generated following cleavage of Ub-intein as described previously (Borodovsky et al., 
2002). The Ub-thioester was dialyzed into HEPES buffer, pH 8.0 and 250 mM Propargylamine (Sigma) was 
added to the dialyzed Ub-thioester and the reaction incubated for 4 hours at 20 °C in the dark. Unreacted 
propargylamine was separated from propargylated Ub by size exclusion chromatography. To obtain MINDY-
1cat~UbPrg complexes, purified MINDY-1cat was incubated with molar excess of propargylated Ub for 30 min at 
room temperature followed by overnight incubation at 4 °C (Figure S4A). For crystallization, the covalent 
complex was purified by anion exchange chromatography (RESOURCE Q) (Figure S4B) followed by SEC in 
buffer G. The purified complex was concentrated to 11.6 mg/ml and used for crystallization.  

Crystallization, data collection and determination of MINDY-1cat structure  
Initial hits of crystals were obtained by screening using sitting-drop vapor diffusion method. For MINDY-1cat, 
native crystals were grown from hanging drops containing an equal volume of protein (10mg/ml) and mother 
liquor containing 100 mM HEPES-Na pH 7.5, 200 mM NaCl, and 25% PEG4000. For anomalous phasing, 
diffraction quality crystals were obtained with macro-seeding. Native crystals were macroseeded into drops 
containing 1mM ethylmercuric phosphate (EMP). The crystals were flash frozen in cryoprotectant containing 
100mM HEPES-Na pH 7.3, 200 mM NaCl, 35% PEG 4000 and 5% PEG 400. Interestingly, the presence of the 
mercury derivative also resulted in better diffraction of crystals. The data collection for anomalous and native 
data sets were done at Diamond light source (I02) and ID23-1 beamline, European Synchrotron Radiation 
Facility (ESRF) respectively. 
The structure of MINDY-1cat was determined by SAD phasing using data collected from crystals grown with 
mercury derivative. The anomalous data were processed using XDS (Kabsch, 2010) and then scaled using 
AIMLESS (Evans and Murshudov, 2013) within XIA2 (Winter et al., 2013). The structure was solved using the 



	  

SAS protocol of Auto-Rickshaw: the EMBL-Hamburg automated crystal structure determination platform 
(Panjikar et al., 2005). The partially built model obtained was further submitted to the MRSAD pipeline. The 
complete model for the interpretable density was built manually in Coot (Emsley et al., 2010). The native 
structure was determined by molecular replacement using PHASER with the partially built structure as a search 
model (McCoy et al., 2007).  Iterative rounds of model building and refinement were performed with coot and 
Refmac5 (Murshudov et al., 1997). The data collection and refinement statistics for MINDY-1cat structure are 
shown in Table 1. All the figures were made using PyMOL (http://pymol.org). 

Crystallization, data collection and structure determination of MINDY-1cat~Ub 
Crystals for MINDY-1cat~Ub (11.6 mg/ml) grew in hanging drops from conditions with 100mM MES pH 6.5, 
10% Dioxane and 1.6 M ammonium sulphate. The crystals were directly harvested and vitrified. The MINDY-
1cat~Ub crystals diffracted to 2.5 Å at ID29 beamline, ESRF, France. The data was processed using XDS and 
scaled and merged using AIMLESS. The structure of the complex was solved by molecular replacement using 
MINDY-1cat and Ub (PDB ID: 1UBQ) as search models. In the MINDY-1cat~Ub structure, clear electron density 
is visible for MINDY-1cat. In contrast, electron density appears to be fractured or disordered in stretches for Ub. 
When refined at lower resolution two alternate conformations of Ub could be docked into the electron density. 
The structure was finally refined at 2.65 Å with occupancy of the two conformers set to ~0.5 each. The final 
data collection and refinement statistics for the MINDY-1cat~Ub structure is shown in Table 1.  

Ubiquitin-Rhodamine110-Glycine hydrolysis assay 
Ub-Rho110-G was expressed and purified as described previously (Hassiepen et al., 2007; Ritorto et al., 2014). 
In the assay, 50 nM Ub-Rho110-G was incubated with 5 pM – 1.6 µM DUB in a final volume of 20 µl reaction 
buffer (50 mM Tris-HCl pH 7.5, 50 mM NaCl, 10 mM DTT, 0.1 mg/ml BSA). Samples were prepared in 
triplicates in 96-well plates and analysed using PHERAstar FS (BMG Labtech) Excitation/Emission 485/520 for 
60 cycles with 60 s of interval. 

Generation of fluorescently labeled K48-polyUb chains 
Assembly of K48-Ub2 that contains Cys residue at the distal Ub (K48-Ub2 [Cys-Ubdistal]) 
K48-Ub2 [Cys-Ubdistal] was assembled enzymatically using Ub G75A/G76A as the Ub acceptor and Ub K48R 
with Cys residue upstream of M1 (Cys-Ub K48R) as the Ub donor. The assembly reaction was carried out for 1 
h at 30 °C in 1 ml reaction containing 1 mM Ub G75A/G76A, 1 mM Cys-Ub K48R, 0.5 µM UBE1, 15 µM 
UBE2R1, 10 mM ATP, 50 mM Tris-HCl (pH 7.5), 10 mM MgCl2, and 0.6 mM DTT. K48-Ub2 [Cys-Ubdistal] 
was purified as described previously (Kristariyanto et al., 2015). 

Assembly of K48-Ub3 that contains Cys residue at the distal Ub (K48-Ub3 [Cys-Ubdistal]) 
K48-Ub3 [Cys-Ubdistal] was assembled by capping a pre-assembled K48-Ub2 by Cys-Ub K48R (donor Ub). The 
assembly reaction was carried out for 2 h at 30 °C in 1 ml reaction containing 250 µM K48-Ub2, 1.25 mM Cys-
Ub K48R, 0.5 µM UBE1, 15 µM UBE2R1, 10 mM ATP, 50 mM Tris-HCl (pH 7.5), 10 mM MgCl2, and 0.6 
mM DTT. K48-Ub3 [Cys-Ubdistal] was purified as described previously (Kristariyanto et al., 2015). 

Assembly of K48-Ub5 that contains Cys residue at the proximal Ub (K48-Ub5 [Cys-Ubprox]) 
K48-Ub5 [Cys-Ubprox] was assembled by extending Ub 1-75 (Ub acceptor), which contains Cys residue 
upstream of M1 (Cys-Ub 1-75), with a pre-assembled K48-Ub2. The assembly reaction was carried out for 1.5 h 
at 30 °C in 1 ml reaction containing 250 µM K48-Ub2, 1.25 mM Cys-Ub 1-75 (acceptor/proximal Ub), 0.5 µM 
UBE1, 15 µM UBE2R1, 10 mM ATP, 50 mM Tris-HCl (pH 7.5), 10 mM MgCl2, and 0.6 mM DTT. The 
reaction produced K48-Ub3 [Cys-Ubprox] and smaller quantity of K48-Ub5 [Cys-Ubprox]. K48-Ub5 [Cys-Ubprox] 
was purified as described previously (Kristariyanto et al., 2015). 

Fluorescence labeling 
The infrared dye, IRDye® 800CW Maleimide, was purchased from LI-COR. IRDye 800CW was conjugated to 
Cys residue of the Cys-Ub mutant using standard thiol-maleimide conjugation procedure. Briefly, K48-polyUb 
chains were diluted in 20 mM Tris-HCl pH 7.5, 500 µM TCEP to a concentration of 50-100 µM. The protein 
samples were purged with argon and kept at room temperature for 30 min. Four-fold excess of IRDye 800CW 
was added to the reaction mix. The reaction was purged with argon and incubated at room temperature for 2 h. 
To stop the reaction, excess amount of 2-mercaptoethanol was added. IRDye 800CW-labeled K48-chains were 
purified using PD-10 desalting column (GE Healthcare). 
  



	  

Quantitative fluorescence deubiquitylation assays 
DUB assay reactions were performed at 30 °C by adding 10 µl pre-activated DUB and 10 µl of fluorescence-
labeled K48-polyUb chains. The reaction mixtures contained 1 µM DUB, 500 nM fluorescence-labeled K48-
polyUb chains, 50 mM Tris-HCl pH 7.5, 50 mM NaCl, 10 mM DTT, and 0.25 mg/ml BSA. At the indicated 
time points, 2.5 µl of the samples was transferred to 7.5 µl LDS sample buffer to quench the reaction. Samples 
were separated on 4-12% SDS-gel and visualized using Odyssey imaging system (LI-COR) at 800 nm channel. 
Intensities of K48-chains were quantified using Image Studio Lite (LI-COR). 

Steady-state deubiquitylation assay 
Steady-state enzyme kinetics of MINDY-1cat in hydrolyzing K48-Ub5 were measured in reactions containing 15 
nM MINDY-1cat and 75, 150, 300, 600, 1200, or 2400 nM fluorescence-labeled K48-Ub5 in 50 mM Tris-HCl 
pH7.5, 50 mM NaCl, 10 mM DTT, and 0.25 mg/ml BSA at 30 °C. Aliquots of 2.5 µl were mixed with 7.5 µl 
LDS sample buffer at 2.5, 5, 7.5, 10, 12.5, and 15 min. Samples were separated and the formation of K48-Ub4 
was analyzed and quantified as described above (Figure S5E). To convert the quantified intensity of the formed 
K48-Ub4 to molar concentration, a standard curve of 1.17 to 75 nM IR-K48-Ub5 was made (Figure S5F). 
Since the fluorescence label is only on one Ub molecule (proximal), the intensity of K48-Ub5 will translate to 
the same number of molecules of K48-Ub4, or equal molar concentrations. The amount of K48-Ub4 formed 
was plotted against time and the data was fitted to a linear regression curve, where slope is the initial velocity, 
V0 (M.s-1) (Figure S5G). The initial velocity values were then plotted against substrate concentration and the 
data was fitted to the Michaelis-Menten equation: 
 

𝑉! =
𝑉!"#[S]
𝐾! + [S]

=
𝑘!"#[E][S]
𝐾! + [S]

 

 
where V0 is the initial velocity, Vmax is the maximum velocity, [S] is substrate concentration, Km is the Michaelis 
constant, and kcat is the turnover rate. Data fitting was carried out using GraphPad Prism 5 software. 

Cell culture and transfection 
Flp-In T-REx HEK293 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% 
fetal bovine serum (FBS), 2 mM L-glutamine, 100 units/ml penicillin, 100 µg/ml streptomycin, 100 µg/ml 
Zeocin and 15 µg/ml Blasticidin. Tetracycline-inducible stable cell lines were generated by transfecting Flp-In 
T-REx HEK293 cells with the indicated constructs. Transfection was performed by GeneJuice Transfection 
Reagent (Novagen). Protein expression was induced by addition of fresh tissue culture medium containing 
tetracycline at a final concentration of 1 µg/ml for 24 h.  

Flag immunoprecipitations 
Cells were lysed in lysis buffer (1% Triton-X, 50 mM Tris-HCl pH 7.5, 0.1 mM EDTA, 0.1 mM EGTA, 10 mM 
sodium glycerol 2-phosphate, 50 mM sodium fluoride, 5 mM sodium pyrophosphate, 270 mM sucrose, 1 mM 
sodium orthovanadate, 25 mM iodoacetamide, 1 mM AEBSF, 0.02% benzonase) supplemented with protease 
inhibitor cocktail. The cell lysates were incubated with Anti-Flag M2 agarose resins (Sigma Aldrich) for 2 hours 
at 4 °C. The resins were washed 3 times with lysis buffer and the captured proteins were analyzed by 
immunoblotting. Where indicated, the Flag immunoprecipitated materials were treated with a panel of linkage 
specific DUBs as described previously (Kristariyanto et al., 2015). 
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