Supplemental Experimental Procedures

1. Longitudinal analysis of cell population diversity

In order to analyze the diversity index for each cell population overtime a matrix
of incidence M was generated where each row r represented an individual
integration site (IS) while each column ¢ an individual cell type/sample (e.g.
CD15), source of sample (bone marrow = BM or peripheral blood = PB) and
timepoint (e.g. 06 months after GT). Each entry of M contained the abundance of
each r for each c in terms of sequencing reads. Estimation of diversity/entropy
was performed through the R package Entropy (http://cran.r-

project.org/web/packages/entropy/index.html) with M as input data for each

patient. Five different methods for the calculation of diversity/entropy were
applied to each ¢ within M (ML=maximum likelihood; MM=bias-corrected
maximum likelihood; SG=Dirichlet Prior Bayesian Estimator; Minimax=Dirichlet
Prior Bayesian Estimator; CS=Chao-Shen Entropy Estimator) and the results were
reported as longitudinal track for each cell type/sample and source in Figure 1A
and Figure S1. The IS counts and clonal abundance values that are combined for
the calculation of the population diversity are shown as a representative
example relative to two populations (PB CD4+ and PB CD15+ cells) on the figures
below reporting the clonal abundance as percentage of sequencing reads of PB
CD15+ and PB CD4+ cells overtime and the number of unique IS collected in PB

CD15+ and PB CD4+ cells overtime.
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In order to extend our analysis to other methods of entropy evaluation we also
calculated the Renyi diversity profile by the R package BiodiversityR
(http://cran.r-project.org/web/packages/BiodiversityR/index.html) and reported

the results for two different populations (CD4+ and CD15+ cells). The Rényi
entropy of order a , where a > 0 and # 1, is defined as H,(X) = ﬁ log(} p{).

Here,is a discrete random variable with possible outcomes and corresponding
probabilities for i = 1, ..., n, and the logarithm is base 2. If the probabilities are
p; = 1/nfor all i = 1, ...,n , then all the Rényi entropies of the distribution are
equal: H,(X) = log(n). In general, for all discrete random variables X,H, (X) is a
non-increasing function in a (Rényi, 1961).

Renyi profiles are shown in the figures belo showing in blue dots the resulting
curve for each timepoint and in dashed lines the lowest, median and highest

diversity profile within the lineage analyzed. The less horizontal a profile is the



less evenly distributed are IS abundances. The profile values for « = 0 provide
information on richness. In particular the antilogarithm of values corresponding
at @ = 0 is the value of each sample richness. Within Rényi profile different alpha
values are considered progressively including more abundant species (namely
IS). The profile of @ = oo contains the information on the proportion of the most
abundant IS. In particular, profiles that are higher at &« = o have a lower
proportion of dominant IS. Importantly within specific alpha values are
contained the values of different diversity indexes. The profile value for ¢ = 1 is
the Shannon diversity index H,(X) = —) p;logp; for which the average of
different calculations for each sample are reported longitudinally in Figl A. In
order to verify whether the differences among lineages in terms of IS richness
can significantly influence the diversity score we compared the diversity of
subsets of identical sizes within each dataset belonging to each lineage.
Accumulation curves were drawn on the basis of the average diversity value of
100 permutations from randomized sampling of data. Diversity has been
compared for identical sample sizes according to the category “months after GT”
reported as numeric values beside each line. Timepoints with more diverse

profile have an higher line in the diagram.
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2- Positive association calculation through IS similarities among lineages

Heatmaps of supplementary figures 2,3 show positive association measurement
of IS similarities among all lineages and time-points analyzed for each patient.
We built incidence matrices M were rowsrrepresented individual IS and
columncrepresented individual cell types/samples and time-points. Each entry
of M contained a binarized 0/1 values for the presence absence of that given IS in
that specific cell type and time-point. To investigate the presence/absence of
dependence, we proceed as follows: given 2 generic columns of M, say i andj, in

order to measure their association, we calculated the odds ratio (OR),

. . P(1S;=1vIS;=1)/P(IS;=0VIS;=1)
corresponding to the ratio, OR;; = P(15j=1vIS;=0)/P(ISj=0VIS;=0)

As usual, the OR index takes value in (1;00) if the columns are positively
associated and in the range (0; 1) if negatively associated. This calculation had
been performed pairwise, leading to a symmetric square matrix. For better
visual representation, only positive log, (ORU) are plotted as heatmaps in
supplementary figures 2,3. Heatmaps were drawn through the R package gplots
(http://cran.r-project.org/web/packages/gplots/gplots.pdf) with hclust function
for unsupervised clustering on average similarity. Color intensity is proportional
to the values of log, (ORU) association coefficient.

To test whether IS similarities were significantly affected by the presence of IS
with low relative abundance, as potential byproducts of cross-contamination or
sequencing background, we tested the validity of this model applying
progressive filters to the IS dataset. We calculated the relative contribution of
each IS in terms of percentage of sequencing reads within each lineage and

timepoint. We then plotted the density distribution of percentages on IS data for



each patients. As exemplified on the following figure, we applied progressive
filters to remove IS with low relative abundance and calculated and plotted
logz(ORij) on the new filtered datasets. In the shown representative example
the clustering of IS similarities was not substantially different even when, upon
data filtering, the total number of IS was reduced by 9.102 IS (corresponding to

36% of total starting IS).
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3. Estimation of population abundance by capture-recapture approach

The estimation of population abundance was performed by capture re-capture of
identical IS within each cell type/sample over different timepoints. The input file
for this analysis was a matrix of observed capture histories M where each
column crepresented a cell type and timepoint and each rowran individual IS.
Abundance estimations and their standard errors were calculated for each
timeframe within each cell type by the application to M of log-linear models for
open populations through the openp function within the R package Rcapture

(http://cran.r-project.org/web/packages/Rcapture/Rcapture.pdf).

Open populations capture re-capture models were chosen as they are based on
several assumptions that we considered key to our IS-based tracking study.
Indeed differently from previously exploited closed population models (Aiuti et
al. 2013) this model assume that the clonal population can be subjected to
“demographic” changes thus allowing taking into account clonal exhaustion or
delayed activation of quiescent hematopoietic stem cell (HSC) clones. Capture
probabilities and relative standard errors were modeled for each timeframe
through the same R package. The results of these analyses are reported on Figure
1. Dotplots showing capture probabilities (y axis) of different PB lineages from
four pooled WAS patients over different time windows represented as months

after GT (x axis) are reported on the following figure.
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The next figure shows dotplots displaying capture probabilities of BM CD34+

cells over time in four different WAS patients (left plots) over time. Estimated

clonal abundance is shown in the bar graphs on the right over the same time

windows.
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4. Calculation of CD34+ population output overtime by IS sharing

In order to assess the output of CD34+ cells we calculated the percentage of IS
shared by CD34+ cells with other lineages overtime. For each timepoint we
grouped IS from multiple lineages into two main groups: Myeloid (composed by

BM CD14+, CD15+, CD61+, Glycophorin+ cells and PB CD14+, CD15+ cells) and
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Lymphoid (composed by BM CD19+, CD3+, CD56+ cells and PB CD19+, CD3+,
CD4+, CD8+, CD56+ cells). We then calculated the percentage of IS collected from
BM CD34+ cells at a given timepoint that were also detected in Myeloid,
Lymphoid or both groups from the same timepoint. In order to account for
potential cross-contaminations we also applied a filter to the analysis on the
basis of the relative contribution of each IS as percentage of sequencing reads on
total sequencing reads from BM CD34+ and Myeloid/Lymphoid datasets. A given
IS was considered shared when the ratio between relative contributions in BM
CD34+ cells vs Myeloid/Lymphoid cells of the same timepoint was below 10.
When a IS was 10 fold more represented in one group as compared to the other
it was assigned only to the first and not to the second. The results of these
unfiltered and filtered analyses are reported in Figure 2 and in Supplementary
Figure 6. As already observed for the filters applied for the analysis of positive
correlation coefficient, we verified that filtering based on IS relative contribution
did not substantially altered the overall trend of CD34+ IS sharing overtime.
Thus, it was justifiable to exploit the whole datasets for the following analysis
based on BM CD34+ IS sharing. In Figure 2B the CD34+ IS sharing is reported in
more details. We built symmetric adjacency matrices M,,; were rows r and
column c represented individual cell types/samples and timepoints. Each entry
of M,q; contained the absolute number of IS shared between corresponding
candr. The diagonal of M,4; contained the number of IS belonging to each cell
type/sample and timepoint. For this panel we isolated from Mg,; the
percentages of IS shared between CD34+ cells and the other cell subtypes of the
same timepoint and produced individual matrices M,,; with these values for

each timepoint and patient. These data were used as input for drawing individual

12



plots through Circos Table Viewer software

(http://mkweb.bcgsc.ca/tableviewer/), as reported in Figure 2B. Shared IS are

reported in the “rainbow” area of the plot. The relative dimension of this area vs
the red area represent the redundancy of IS detection in each lineage (dimension
of the output) while the color variegation of the “rainbow” area is reflective of

the number of lineages sharing IS with CD34+ cells (nature of the output).

5. Analysis of input from CD34+ cells to different lineages overtime

In figure 2 we analyzed the input that each lineage has received overtime from
CD34+ cells in terms of shared IS. For this analysis we used, as input, data from
the adiacency matrix Maq (Figure 2B) used for the representation of CD34+
output (Figure 2B). Differently from what done for Figure 2B, where we
considered how many IS from CD34+ cells were shared with other lineages of the
same timepoint, we here evaluated how many IS from each lineage were shared
with CD34+ cells of the same timepoint. This difference is exemplified on the
table below. Here we reported, for the follow up 36 months after GT, in red the
percentage of BMCD34+ vs PBCD14+ shared IS calculated on the total IS from
BMCD34+ cells (CD34+ output, Figure 2B) and in blue the percentage of
BMCD34+vsPBCD14+ shared IS calculated on the total IS from PBCD14+ cells

(CD14+ input from CD34+ cells, Figure 2C).

CD34_BM_36 [CD14_PB_36
CD14_PB_36 24.5 100.0
CD34_BM 36 100.0 10.4

We then built a matrix Minpu: containing in each column ¢ BM CD34+ cells from a
given patient and timepoint and in each row r a specific cell type (e.g. PB CD14+

cells). Each field of Minput contained the percentage of shared IS corresponding to

13



the input towards each lineage from CD34+ cells at a given timepoint. We then
plot Minput as an heatmap through the R package gplots (http://cran.r-

project.org/web/packages/gplots/gplots.pdf)  with hclust  function for

unsupervised clustering on average similarity and color intensity corresponding

to the relative value of input from CD34+.

6. Evaluation of HSC and MPP IS sharing overtime

The following figure shows a schematic representation of human hematopoietic
hierarchy (top panel adapted from Doulatov et al. Cell Stem Cell 2012). HSC and
MPP that were isolated at 36 months after GT from two WAS patients are
highlighted by red and blue frames, respectively. The resulting cytofluorimetric
contour plots show the expression of CD90 and CD45RA surface markers gated
on Lin-/CD34+/CD38- populations are shown below. FACS-sorted HSC and MPP

are highlighted in red and blue, respectively.
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In order to represent the presence of shared IS between FACS sorted HSC and
MPP and other ex vivo isolated cell types overtime, we generated an incidence
matrix My,.,, where each column ¢ contained a different cell subtype, source and
timepoint while each row r an individual IS found in HSC or MPP. Each entry of
M,,,4 reported a sequencing reads value when that specific HSC or MPP IS on r
was detected also in that given cell subtype/timepoint on c. The percentages of
IS within HSC or MPP shared with at least one other cell subtype were reported
in the stacked bar graph of Figure 3. Then, each sequencing reads value was

converted in a “detection value” proportional to the overall level of detection for

each IS overtime and over the lineages. Only shared IS were selected and ordered

15



within HSC and MPP groups from the more detected to the less detected in the
other lineages and timepoints. A heatmap (reported in Figure 3) was created
through the R package gplots (http://cran.r-

project.org/web/packages/gplots/gplots.pdf) using these data as input with

different color intensities reflecting different detection values. We then
considered the abundance of the HSC or MPP shared IS within Whole BM, Whole
PB, BM MNC and PBMC isolated at the same timepoint (36 months after GT) and
we reported in Figure 3 the relative percentage of sequencing reads belonging to
these IS as surrogate marker of the real time input by HSC or MPP towards BM
and PB. In order to further quantify the level of HSC and MPP output overtime we
calculated an additional “sharing score”. For each timepoint we calculated the
level of detection of each IS in Myeloid, Lymphoid T, B and NK cells. We
considered that each group was composed by different cell subtypes that were
not always evenly isolated for every timepoint. Thus in one timepoint for
example the Lymphoid T group (CD3, CD4, CD8) could have been composed just
by CD4 and CD8 T cells since CD3 were not purified. In order to normalize our
results for this variability we calculated the maximum sharing score as number
of IS x number of cell subtypes for each group in each timepoint. According to the
data reported in the table below the maximum sharing score of HSC from Pt2 vs
Lymphoid_T group at 5 months after GT was 6*2=12 while at 24 months after GT
was 6*3=18. We then calculated the sharing score as percentage of the
experimental score on the maximum score for HSC or MPP vs each subgroup in

each timepoint and reported the results in tabular form as in the table below
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Sharing score values, shown in the next table in red, were plotted on the graph of

Figure 2D.
HsC Months after GT 1 2 3 4 5 5.5 6| 9 12 18] 24 30| 36
Myeloid 0 0 0 1 2 0 0 7 9 9 8 2 5
experimental | Lymphoid_T 0] 0] 0] [ 4] 1 2 12 11 11 12 B 11
score  [Lymphoid_B 0] 0] 0] 1 1 [ 1 5 5 3 5 0 3
Lymphoid_NK 0 0 0 0 0 0] 2] 5) 4 4 4 2 3]
Myeloid 12 12 12 12 12 6 12 12 12 12 12 12 12
Maximum |Lymphoid_T 6 18 12 12 12 6 12 18 18 18 18 18 18
score  [Lymphoid_B 6 6 6 6 6 6 6 6 6 6 6 6 6
Lymphoid_NK 6 6 6 6 6 6 6 6 6 6 6 6 6
Myeloid 0.0 0.0 0.0 8.3 16.7 0.0 0.0 58.3 75.0 75.0 66.7 16.7 41.7
Sharing  |Lymphoid_T 0.0 0.0 0.0 0.0 333 16.7 16.7 66.7 61.1 61.1 66.7 44.4 61.1
score Lymphoid_B 0.0 0.0 0.0 16.7 16.7 0.0 16.7 83.3 83.3 50.0 83.3 0.0 50.0
Lymphoid_NK 0.0 0.0 0.0 0.0 0.0 0.0 333 83.3 66.7 66.7 66.7 333 50.0

7. Analysis of sharing, entropy, number of IS and VCN for individual
samples at the latest follow up.

In Figure 4A we evaluated different parameters on the IS datasets deriving from
different lineages isolated from the latest follow up. We grouped the lineages as
BM CD34+, BM Myeloid, PB Myeloid, BM Lymphoid and PB lymphoid with the
same categories composition described in section 4 of supplementary material.
The position of each dot in the plots corresponds to the value relative to a given
lineage placed in its own category. Data from all patients are grouped together.
Percentage of shared IS was calculated as the fraction of IS for each lineage that
were shared with at least another lineage of the same timepoint (latest follow
up). Number of IS and vector copy number were measured for each lineage as
previously described (Aiuti et al. Science 2013). The entropy values were

calculated for each lineage as described in section 1 of supplementary material.

8. Addressing cross-contamination and clonal quantification issues
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Given the nature of the study, that relies largely on the identification and the
tracking of identical IS among different timepoints and lineages, we devised
several strategies to reduce as much as experimentally feasible and efficiently
estimate the impact of cross-contamination among samples, which is an inherent
constraint of all clonal tracking studies. A first source of potential contamination
comes from the selection/purification of individual cell lineages from the
patients’ samples. As summarized in the figure below, IS were collected from
different cell sources purified by different strategies. The average purity of cell
lineages selected by magnetic beads was 94%. This high level of purity was
achieved through a protocol that envisages that each cell type should undergo
two sequential rounds of beads purification with its specific surface marker
directed antibody. HSC and MPP were instead FACS sorted from purified CD34+
cells and yielded a purity range from 92% to 99% (average 96%) as assessed by
re-analysis of sorted cells. In the case of CFC grown on methocult® from ex vivo
purified CD34+ cells, the purity should be considered 100% as only HSPC could
have generated colonies on these specific in vitro conditions. On the basis of
these levels of purity and according to the average level of IS sharing detected
among different cell types on independent analyses, we could estimate that the
vast majority of shared IS (approximately 86% of shared IS from beads-selected
cell types, 93% of shared IS from FACS sorted cell types, and 100% of shared IS
from CFC; see captions on the figure) could have not been merely detected due to
the occurrence of cross-contaminations among purified cell samples.
Importantly, one should note that our estimates are conservative as the potential

cell contaminants are also composed by a relevant fraction of vector-negative
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cells thus further reducing the risk of contaminating a selected cell type with
unrelated IS.

Potential max contamination noise: 100%-94% = 6% Potential max contamination noise: 100%-96% = 4%
Detected average IS sharing: 44% Detected average IS sharing: 55%

Selection through magnetic beads
Average purity 94%

Selection through FACS sorting
throyd cells Average purity 96%

Megakaryo/eri
- HSC MPP

{ | =
Myeloid cells ) —

( \ | Lymphoid cells

HSPC

Selection through selective growth medium
Average purity 100%

CFC
Potential max contamination noise: 100%-100% = 0%
Detected average IS sharing: 62%

A second source of cross-contamination among independent samples could arise
after DNA extraction, LAM-PCR or high-throughput sequencing, where potential
inter-sample contaminations could occur through aerosols or spillovers. We used
different strategies to evaluate the impact of these events on our results.

Addressing the impact of contamination occurring upon DNA extraction is
relatively straightforward. It should be indeed noted that identical integrants
were detected not only among samples purified at the same time but
consistently, with similar trends among patients, on genomic samples that were
purified independently over different timepoints, with up to 3 years from one
DNA isolation to the other. It is then extremely unlikely that DNA isolation had

per se significantly impacted the outcome of this study.

19



One could still envisage that the several molecular manipulations performed
during LAM-PCR procedure might be susceptible to inter-samples cross-
contamination. To address this issue, for every round of LAM-PCR performed in
the present study H20 negative controls were added at each step of the
procedure (1 for the linear amplification, 1 for the first exponential PCR and 1 for
the second exponential PCR) and were processed in parallel to the other
samples. Importantly, for all rounds of LAM-PCR and for all enzymes in use the 3
lines corresponding to negative controls were always clean and did not display
any band, as shown on the following representative spreadex gel picture of (I.C. =
internal control bands). This is a formal proof of the overall cleanliness of the

procedure that we put in place for IS retrieval.
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To further validate the purity of our strategy and to account for potential cross-
contaminations occurring upon NGS processing (which could also most likely be

the source of the collisions events observed among samples from independent
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patients an filtered from our datasets as reported on Aiuti et al. Science 2013) we
analyzed in details the sequencing reads on a controlled experiment where we
collected integrations from individual clones with known vector content and IS
localization. The results reported in the following table show that almost the
totality of sequencing reads were associated to the expected integration sites
belonging to each given clone with an average false discovery rate (FDR) of
0.66% and a precision ranging from 98.06% to 99.99%. These levels of accuracy
were also highly reproducible as resulting from the analysis of 6 technical
replicates of the same clone (clonel) generated independently starting from
individual genomic DNA isolations. Notably, these sets of data also validate the
precision of our bioinformatic pipeline currently in use for IS identification
(manuscript in preparation) and the filters applied for removing inter-

samples/patients collisions.

Clone KnownlIS FoundIS Chr Position Strand Annotation Replicates* Read Count Tot Reads Precision FDR**
Replicate 1 70,190 70,241 99.93% 0.073%
Replicate 2 103,027 103,706 99.35% 0.655%
Replicate 3 57,268 57,729 99.20% 0.799 %
Clone 1 1 1 chr8 8,866,487 + ERI1 i
Replicate 4 17,939 18,293 98.06 % 1.869 %
Replicate 5 68,975 68,991 99.98% 0.023%
Replicate 6 30,096 30,575 98.43% 1.567 %
chr2 73,762,397 - ALMS1 Replicate 1 26,610
chrll 64,537,167 - SF1 Replicate 1 11,160
Clone2 4and6 5 chri6 28,497,497 - CLN3 Replicate 1 4,163 68,339 99.69% 0.31%
chrl7 2,032,351 - SMG6 Replicate 1 3,242
chrl7 47,732,338 - SPOP Replicate 1 22,952
Clone 3 1 1 chr3 52,306,696 - WDR82 Replicate 1 95,803 95,815 99.99% 0.012%

Having underlined that the issue of contamination was well considered and
addressed from different perspectives, for specific analyses we introduced a
further “stress test” on our datasets applying specific bioinformatics filters to
account for potential unforeseen further contamination events (details described

above on section 4 of supplementary materials). Importantly, even if this
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stringent conditioning reduced substantially the levels of IS sharing, the overall
overtime trend was maintained further validating the biological consistency of
our data. The following figure shows bar charts displaying the percentage of IS
from BM CD34+ cells shared with myeloid or lymphoid lineages (dark gray) from
the same timepoint (months after GT) on four WAS patients (left panels). The
same analyses performed on data filtered for contamination are shown in the bar
charts on the right (see supplementary materials for details). Note that in the
unfiltered analysis the extent of sharing reached very high proportions, but it
became more difficult to distinguish between different biological output vs.

contamination among samples.
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A second confounding factor could have potentially affected the interpretation of
our results in particular when analyzing individual clonal contributions and the
diversity of the clonal repertoire. The use of sequencing reads as surrogate
markers of clonal abundance is well established in the field but it is not exempt
from technical biases linked to the several rounds of exponential amplifications
employed during the LAM-PCR procedure. We are indeed aware of the fact that a

given integration site could be more easily amplified than another regardless of
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the initial representation of the corresponding clones in the original sample. The
best way to evaluate the impact of these biases on clonal quantification is to
perform serial dilutions of a clone with known IS on a bulk population containing
thousands of unrelated IS. We performed such a validation on serial dilutions of
clone 1 into genomic DNA isolated from in vitro BM CD34+ cells transduced with
the same lentiviral vector. As shown in the figure below our data, obtained by
means of relative representation of sequencing reads belonging to the IS of clone
1 (two independent experiments: red and orange lines), overlap quite well the
theoretical dilution curve (grey line). Thus, quantification of IS through

sequencing reads could indeed provide a good surrogate marker of clonal

abundance.
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Nevertheless, we recognize that the clonal quantification through sequencing
reads will never be 100% accurate and it is still possible that the detection of
certain IS could be more affected than other by PCR biases. The quantification of
clones of small size could be particularly affected by these biases and the call for
having observed a bona fide IS event could be difficult when this IS is associated
with low reads counts. Addressing this issue, we were able to validate our results
even after introducing a further “stress test” based on progressively removing
the IS with lowest sequencing reads from our datasets, as shown in
supplementary figure 3. One should also note that, conscious of the potential
limitation of our technique, in the present study we never focus or made specific
claims on the abundance of given individual clones but we instead discussed the
changes observed overtime on the general clonal size distribution within each
cell population underlining the presence of common trends among patients.

Despite potential technical constraints, making use of IS sharing and sequencing
counts to estimate clonal relationships and relative abundance respectively, we
generated a set of data consistent among patients and with a strong biological
meaning. Actually, the concordance of our results with previous clonal tracking
studies performed on animal models represents the ultimate validation of the
approach used in this work for the tracking of the fate of engineered cells in

humans.

9. Models of hematopoietic hierarchy
Methods used for testing the models schematically represented in Figure 4B
We placed the IS analysis within a Bayesian Network (BN) context to be able to

handle complex dependence structure among several variables combining
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information on conditional probability distributions and graphical models, and
to provide evidence supporting specific hierarchical structures. We remark that
this methodology is not only related to the validation of “assumed” biological
structures but it can be employed also in more general settings to explore the
whole space of dependencies.

One important advantage of the introduction of BN is to learn structure directly
from data. The strictly hierarchical nature of the differentiation process and the
absence of confounding factors in determining hypotheses of differentiation
allows for an interpretation of the graph in “causal” terms, eluding one of the
major hurdle in reading the dependence structure out of a graphical model. BNs
are multivariate statistical models satisfying sets of (conditional) independence
statements contained in a directed acyclic graph (DAG). A DAG is a pair
G = (V,E) where V is the set of nodes and Eis the set of directed edges (arrows)
between pairs of nodes. Each node represents a random variable, while missing
arrows between nodes imply (conditional) independence between the
corresponding variables. A directed graph is acyclic in the sense that it is
forbidden to start from a node and, following arrows directions, go back to the
starting node. The acyclicity is set to be in line with the hierarchical structure of
the differentiation process. We remark that in reading graphical model an arrow
connecting two variables, should not be interpreted as “biological” dependence,
but rather as a statistical conditional dependence relation, that is a dependence
in terms of conditional probability. In particular, conditional independence
statements and absence of an arrow are connected by the Markov properties
(Lauritzen (2001)). Moreover, the BN definition associates a factorization of the

joint distribution that highlights the dependence structure of the variables (chain
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rule), using as factors the conditional distributions attached to each node in the
BN. In general, the chain rule for k categorical random variables states that:
P(X1 = X1, X3 = X, 0, X = xk) = np (Xi|Pa(Xi))

where pa(X,) is the set of parents of node X;and p(X;|pa(X;)) is the probability
of X; = x; given the set of values (configuration) assumed by the parents of X;.
In the structural learning process, when the number of nodes (variables) is
larger than 5, the number of possible network structures is so large that it is
necessary to resort to appropriate search algorithms.
In general, structural learning can been carried out using either constraint based
methods (such as the PC and the NPC algorithm) or score+search algorithms,
both of them implemented in the software HUGIN (www.hugin.com).
Networks goodness can been compared by using the following two criterion:

* Bayesian Information Criterion (BIC)

* Receiving operating characteristic curve (ROC) and the related Area

Under Curve (AUC) measure.

Bayesian Information Criterion (BIC) is given by:
1
BIC(DAG|data) = LogLik(DAG: data) — EKlogn

where K is the number of free parameters in the model.

The best model is associated with the highest value of the BIC score; indicating
that we obtain the best log-likelihood corrected by the number of parameters to
estimate (to avoid over-parametrization) and by the number observations.
Direct BIC scores comparisons can be performed only within the same input

dataset.
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Moreover we remark that BIC can be directly interpreted in terms of posterior
probability change. Indeed optimizing the BIC corresponds to optimizing the
posterior model probability for a large number of observations and can be
thought of as a way of selecting a model. We also recall that a little change in BIC
represents a big change in terms of posterior probability as it can be seen by the

following relation between BIC and posterior probability gain (Wit et al.2012):

W(M) — e—BIC(M)/Z

W(M,)
ZMEM W(M)

p(Moly) =
Different approaches are possible when learning a Bayesian network, ranging
from “complete free” model, that means “no constrains” are assumed a priori
and the conditional independence relations can be read off the DAG, to a “fixed-
constrains” approach. The latter places BN in a more “confirmative” perspective
since it can be used to first estimate the conditional probability distributions and
then to provide statistical evidence in favor of one assumed biological structure
with respect to a different one, by computing the associated BIC'’s.
The ROC analysis helps validating the model since allows to inspect the
performance of a given variable as a classifier for the data set. Hence the ROC
curve has been used to evaluate whether a proposed model is accurate in
predicting the bottom level variables (BM level) of the differentiation hierarchy.
The area under the ROC curve (AUC) can be used as a synthetic measure for the
goodness of the network as a classifier, varying between 0.5 (a model with a null
discriminant capacity) and 1 (a model with a perfect discriminant capacity).

In this analysis we present results according to two different postulated chain

models representing two alternative hematopoietic hierarchies schematized in
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Figure 4B and reported in details here as in the figures below. We here
represented with arrows positive dependences, defined as the increased
probabilities of observing an IS in a downstream cell type with respect to chance,

having observed the same IS in the upstream cell type.

Structure of conditional dependencies underlying the model 1 reported in Figure

4B

CD61_BM CD14_BM CD15_BM

CD34_BM

CD14_PB CD15_PB

Structure of conditional dependencies underlying the model 2 reported in Figure

4B

CD14_PB CD15_PB

Measures of goodness of Model 1 and Model 2 are provided in terms of both BIC
and AUC on the table below (Area under the ROC curve (in black) and BIC (in

blue and italic) for seven examined differentiation structures).
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AUC Modell AUC Model2

CD14PB 0,61 0,61
CD15PB 0,61 0,62
CD56PB 0,50 0,54
CD19PB 0,54 0,56
CD3PB 0,58 0,61
CD4PB 0,51 0,57
CD8PB 0,58 0,62
BIC -103859 -103272

Our results showed that model 2 is more informative both in terms of BIC and in

terms of discriminating capacity (AUC).

Methods used for generating the model of Figure 4C

In this section we describe the model that has been generated to investigate the
hematopoietic differentiation process in humans, in vivo in humans from gene
therapy clinical trial data. A brief description of the underlying ideas,
assumptions, model and inference procedure is given. At the beginning of the
experiment, a sample of a patient’s CD34+ cells is transduced, resulting in a pool
of corrected cells that are unequivocally and permanently labeled by means of
vector integration site coordinates. After re-infusion in the patient’s body,
corrected stem cells start to duplicate and differentiate in functionally more
specialized cells, reconstituting the hematopoietic heritage of the patient. During
the follow-up period, analyzing samples from patient bone marrow and
peripheral blood by means of integration site analysis, we are able to observe the

off-spring generated by a single transduced stem cell. Furthermore, using
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sequence count data derived from a NGS platform, we can reasonably quantify
the amount of cells, belonging to each of the 15 cell types (CT), of which 8 are
from bone marrow (BM) and 7 from peripheral blood (PB) CTs, and that
originated from the same progenitor. Samples are taken at 12, 24 and 36 months,
collected from 3 patients, resulting in 37,637 clones tracked.

These data are interpreted as fixed time observations from a underlying latent
15-dimensional stochastic Markov counting process in continuous time. In other
words, at time 0 at re-infusion of the transduced cells in the patient’s body the
counts of all CT are equal to 0, except for the unique CD34+ cell, for which is
equal to 1. After a random, continuous time interval At an event occurs, changing
the state of the process for each cell. Three different types of events are
considered in our model: cell duplication, cell death and cell differentiation.
These events can be described by means of a set of quasi-reactions and their
associated transition rates. Cell duplication of CTi occurs with rate x_i o_i in the
sample, where x_i is the number of cells of CTi and o_i is the rate of an individual
cell duplication event of that type. Similarly, cell death of CTi is assumed to be
happening with rate x_i 6_i. Most interestingly, cell differentiation changes a cell
of type CTi in a cell of type CTj with rate x_i A_"ij" . Clone dynamic evolution
corresponds to a sequence of single events occurring to the cells belonging to the
clone considered. Event rates ad and A govern the underlying latent process and
can be interpreted as the number of events of a particular type expected per time
unit.

The aim is to estimate transition rates 6=(a,5,A) based on the observed 37,637
clones and, most importantly, to identify which differentiation paths are most

supported by the empirical data. In the analysis of biochemical reaction
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networks (Purutcuoglu and Wit, 2007), various estimation strategies have been
proposed. The above Markov counting process can be approximated by a
diffusion process (Gillespie 1996). The continuous diffusion can be
approximated by a discretized Euler-Maruyama approximation, which allows a
straightforward local linear approximation approach. A constrained generalized
least squares method allows us to estimate strictly transition rates.

Using this algorithm we are not only able to obtain positive rate estimates, but
also to incorporate additional biological knowledge, such as the impossibility of
peripheral blood cell differentiation into stem or pluripotent cells. This is
straightforward and done simultaneously with estimation, setting some element
of O to zero in the constraint list. The complete list of estimated rates (M) are

reported on the table below with corresponding confidence interval.
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According to the informations available from the biology, a 3 levels hierarchy on
cells lineages is assumed, corresponding to, from top to down, 1 HSC (CD34), 7
lineages in BM (CD3, CD14, CD15, CD19, CD56,CD61, GLYCO) and 7 lineages in
PB (CD3, CD4, CD8, CD14, CD15, CD19, CD56). Regarding constraints on
differentiation paths, HSC can differentiate in any other cell type in BM and PB;
BM can be connected to any cell type in BM and PB level; PB lineages cannot
differentiate. Entries on the main diagonal M¢r;cr, (highlighted in yellow)
correspond to net duplication rates acr, — 8¢y, (duplication rate - death rate).

The generic off-diagonal Mcr,cr;, elements represent the estimated
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differentiation rates Acri,crj- All rates refer the expected number of events per

year.
IS are known to be affected by various sources of possible noise and this may
have an impact on the measurements of cells counts. To investigate the reliability
of available data, part of treated HSCs sample has been analyzed by means of
NGS immediately after the transduction. It is realistic to assume that in time
interval elapsed, few events are likely to occur to transduced cells. Such
experiment allow to measure the variability introduced by biological and
technical protocols to clones known to be of size 1. Since experimental data
present some outliers, we adopt the Median Absolute Deviation (MAD) statistics
as dispersion measure, known to be more robust in these cases. Based on 3104
IS, a MAD statistic equal to 6.1 has been calculated. Using this information, a
process noise estimation is calculated as o¢2=(1.48 x MAD)"2=81.5
(Rousseeuw1993). This information is incorporated in inference modifying
estimation for parameters variance-covariance matrix.

Contamination could also affect the procedure and is a more complicated
problem to address from a methodological point of view. However, if it is
realistic to assume that the total number of these misleading observations and
associated reads counts are relatively small (see section 8 of supplementary
material), their potential impact on final results is however mitigated by the
constrained generalized least squares formulation and aforementioned
variability estimations.

In order to take into account for differentiation rates positiveness, confidence
intervals are obtained by means of a Monte Carlo technique, consisting in

generating S=10000 random sample from a multivariate normal distribution
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with mean vector and covariance matrix set equal to results obtained from
constrained generalized least squares procedure. To display the results of our
analysis, we performed a Principal Component Analysis (PCA) on M and then
plotted the first 2 components. To further validate the biology consistency of this
modeling approach and to compare the validity of the two alternatives
hematopoiesis described in Figure 4B we set up a dynamic model according to
late myeloid-lymphoid branching (early branching is nested within it) and
estimate the remaining rates in order to verify which ones are less likely to be
present (estimated as closed to 0). A network representation of the estimated
model is showed on the figure below. Arrows correspond to differentiation rates

estimated and their thickness is proportional to rates estimate.

CD14 BM

\

CD56 BM

CD3 PB CD4 PB CDs8 PB CD19 PB CD56 PB CD14 PB CD15PB

The following figure gives a graphical representation of both rates' estimates and
rates constrained, by means of an heatmap where parameters estimates and
constraints induced by late myeloid-lymphoid branching are shown in grey
squares and additional constraints due to early myeloid-lymphoid branching are

colored squares with black edges.
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The results derived from these additional analyses agree with the conclusion
drawn from the BN analyses. The late branching schema seems to be more
supported by the empirical data observed. However, since some differentiation
paths rates estimates are closed to zero, we could also hypothesize that the true
underlying structure could be an intermediate between the two. The analyses
represent a prof of principle of the applicability of such stochastic dynamic
model to study differentiation process in human, in vivo by means of IS analysis
and demonstrate the flexibility of our tool to further refinement according to the

availability of new biological information.
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