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Supplemental Figures 
 

 
 

[Related to Figure 1] 

Figure S1 - Behavioral model comparison. Four different models were fitted to behavioral choice 

data: "Plan", "Qfirst", "Qall" and "Greedy". Each model is described in the Experimental Procedures. 

Each model always had an inverse temperature parameter β, and the Q-learning models always had a 

discount rate parameter γ. There were two optional parameters in each model: a lapse rate ε and a 

learning rate α. Each combination of including or excluding ε and α was explored for each model. 

Light gray bars show two times the negative log of maximum likelihood. Dark gray bars show the 

BIC model complexity penalty, which depends on the number of parameters. The sum of these two 

quantities is an approximation of two times the total negative log evidence for each model. A, In 

11/12 participants, the planning model outperformed the simple RL models. The order of the bars in 

each plot is the same as in Figure S2. Note that the evidence for the random policy depended on the 

number of trials completed, and so differed between participants. B, At the group level, the planning 

model was favored over the best simple RL model by 157 log units of evidence. The simple RL 

models did not perform better than chance, after taking into account the complexity penalty.  
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[Related to Figure 2] 

Figure S2 – Decoding methods. For each session, six lasso-regularized logistic regression models 

were trained, one for each visual object in the primary task. A, The lasso penalty encouraged sparsity, 

so the majority of coefficients in each trained model were zero. One example trained model is shown 

here (intercept not shown). B, These models tended to select mostly occipital and temporal sensors. 

Of the 108 models used in analysis (18 sessions times 6 models), this plot shows the fraction where 

each sensor was non-zero. C, An example of the six probability time series output by the six 

regression models, over a short segment of time. Six time points, indicated by colored arrows, were 

selected for display in D. D, The top row shows the raw MEG data at the six time points indicated by 

arrows in C. The middle row shows the learned betas for the classifier whose output is high at this 
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time. The bottom row shows the element-wise product of the data at that time point with the 

illustrated classifier. The mean across sensors of these products, plus the intercept of the model, was 

the value x used to generate a probability through the transformation 1 / (1 + exp(-x)).  

 

 

 

 
 

[Related to Figure 3] 

Figure S3 – Autocorrelation in classifier outputs. Cross-correlations between pairs of states had a 

strong peak near zero lag due to autocorrelation in the underlying MEG signal. A, Symmetries over 
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state relationships, defining the color mapping used in B and C. B, Cross-correlations were calculated 

for each ordered pair of states, yielding 36 cross-correlations. These were collapsed by averaging over 

equivalent transitions (under the symmetries shown in A; for example, S1->S2 was equivalent to S2-

>S3), giving six cross-correlations, which are shown here. At 40 ms lag, the reverse transitions (blue 

and light blue) had stronger correlation than the forward transitions (red and light red). The reverse 

transitions also had stronger correlation than the null transitions (black), but this was not statistically 

significant. The identity transition (green) had strong autocorrelation. C, Magnification of lags from 

30 to 60 ms. The difference between the blue traces and the red traces reflects the sequenceness effect 

shown in Figure 3 in the main text.  

 

 

 
 

[Related to Figure 3] 

Figure S4 - Shuffling sequence produces false positives. We simulated six autocorrelated time 

series of classifier predictions in which there was no true sequenceness. A, We applied our 

sequenceness analysis method to this synthetic data to obtain sequenceness for lags between 10 and 

600 ms, in 10 ms increments. The maximum of the absolute value of these sequenceness measures 

over all lags is shown as a dashed line. We then applied the same state shuffling procedure used on 

our MEG data to obtain a null distribution of maximum statistics (black histogram, top panel). The 

"real" data did not exceed either the maximum of this distribution (the criterion we used on our MEG 

data), or the 95th percentile, consistent with the fact that there was no sequenceness in the simulated 

data.  However, when we used a shuffling procedure that shuffled the temporal sequence of the data 

instead of shuffling state identities, the "real" data exceeded the maximum of the null distribution, 

because shuffling sequence creates an artificially narrow null distribution. B, We repeated the 

procedure in A 400 times for each shuffling method. The "real" data exceeded the null distribution of 

the state shuffling method in 4.5% (95% binomial CI [2.7%, 7.0%]) of the repetitions. However, 

despite there being no signal in the data, the "real" data exceeded the null distribution of the sequence 

shuffling method in 81% (95% binomial CI [75%, 86%]) of the repetitions. 
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[Related to Figure 3] 
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Figure S5 - Sequenceness at 40 ms for each state pair. For each ordered pair of states having a 

transition between them in the task (shown on the x-axis of each panel), we subtracted the cross-

correlation between these states at -40 ms from that at +40 ms. This subtracted cross-correlation is 

shown on the y-axis in all panels. A, In the group average, there was no reliable difference between 

state pairs by one-way ANOVA (F(11,132)=0.92, p=0.52). This was expected, given that the visual 

objects associated with the states were randomized across participants. B, In each individual 

participant, there was a significant difference between state pairs that was reliable across trials 

(ANOVA F-statistics ranged from 8 to 84).  
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Supplemental Experimental Procedures 
 

Task  

 

From a participant’s point of view, each trial involved three phases: planning, move pre-entry, and 

move execution. During planning, participants saw in text the names of the starting state and the two 

neg states for that trial. Participants had up to 60 seconds to plan their moves, but could also press a 

button to enter their moves sooner. After the 60 seconds or this button press, there was a 1-second 

warning to signal the start of the move pre-entry phase. During move pre-entry, participants were 

required to enter their chosen sequence of four choices rapidly, while receiving no visual feedback 

except the corresponding arrows (up and down) appearing to reflect their move selections. If they 

took longer than 1 second per move, the trial was aborted with a fixed -10 pence loss. One percent of 

all trials was aborted due to time-outs. 

 

Next, during move execution participants were required to play out the sequence of four moves they 

selected during pre-entry. On each move, the button corresponding to the unchosen option (up or 

down) was deactivated, so there was no possibility of deviating from the pre-entered sequence. 

During execution, the visual objects corresponding to each state were shown as the participant moved 

from state to state. The transitions between objects were visually cross-faded with a blend ratio that 

changed linearly from 100%/0% to 0%/100% over 350 ms. The current reward values of each object 

were also shown, and the cumulative reward total for the trial was updated as each new state was 

reached. If a state was neg, the cumulative reward total would first reflect the addition of the state’s 

reward value, and then the text “neg” would appear and the displayed cumulative reward total would 

flip its sign. 

 

The transition structure of the maze was identical for all subjects. The assignment of “up” and “down” 

to each transition was randomized between subjects. The pseudo-random sequence of rewards, 

starting states, and negative states was also identical for all sessions (although the number of trials 

completed varied between sessions due to the self-paced nature of the task) and was optimized using a 

genetic algorithm. The primary goal of optimization was to arrange it that on nearly half of trials, 

optimal and greedy choices differed for the first choice in the sequence, where greedy choice means 

selecting the highest-value next state. (If this target had been more than a half, subjects could have 

employed the shortcut of doing the opposite of the greedy strategy.) A secondary goal of optimization 

was avoiding degenerate cases such as repeating the same starting conditions.  

 

At the end of all training and scanning sessions, participants received their earnings on the task, which 

ranged from £-0.60 to £1.76, plus £10 for each day of behavioral training and £15 for each day of 

scanning. The amount of money that could be earned varied substantially from trial to trial, so in the 

paper per-trial earnings are reported as E - Erand, where E was the actual earnings on the trial, Erand was 

the expected earnings under random play on this trial (both in units of pence). 

 

Behavioral training 

 

Participants received either two or three days of training on the task structure before scanning. 

Training progressed until a participant reached 100% performance on the final set of quizzes used for 

training. Training started by introducing the six visual objects and quizzing participants about single 

transitions (e.g., if you are in “tree” and you choose “down”, which state will you arrive at?). Quizzes 

were then extended to two-move sequences and four-move sequences. Finally, rewards were 

introduced, and participants were quizzed about how much money they would earn by taking 

specified sequences of four moves. 

 

The visual objects and transition structure used during training were preserved for each subject into 

the actual experiment, but the rewards used during training were independent of the rewards used in 
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the actual experiment. All training was automated in MATLAB/Cogent to minimize experimenter 

interaction. 

 

Behavioral models 

 

We fit four models of choice behavior. "Plan" used an optimal full-depth tree search to calculate the 

value of each of the 16 possible sequences of four moves on a trial. This planning depended on 

tracking the drifting rewards associated with each state. The model allowed for gradual learning about 

the drifting rewards, following a learning rate (α). Each time the current reward Ri for state i was 

revealed, the tracked reward ρi was updated: 

𝜌𝑖 ← 𝜌𝑖 + 𝛼 ∙ (𝑅𝑖 − 𝜌𝑖) 

The values, V, of each of the 16 possible sequences of four moves were calculated optimally and 

transformed to choice probabilities with a sigmoidal link function parameterized by inverse 

temperature (β), and lapse rate (ε): 

𝑃𝑖 = 𝜀 + (1 − 16𝜀) ∙
𝑒𝛽∙𝑉𝑖

∑ 𝑒𝛽∙𝑉𝑖𝑖
 

To evaluate whether participants were expressing knowledge of the task's transition structure in their 

choice behavior, we compared this optimal model against simpler models. The simplest was a Q-

learner, "Qfirst", with no knowledge of the transition structure. Because there were only on the order 

of 35 trials per session, it would be impossible to learn an action value representation over the entire 

space of 6 starting states × 16 actions. Meanwhile, it would be impossible to use the same set of Q-

values to make predictions from future states without knowing the transition structure. "Qfirst" 

tackled these problems by only making predictions about the first move in each trial, reducing the 

number of Q-values to 6 × 2 = 12. Based on the final reward M obtained at the end of each trial, the 

Q-value for the chosen first action c was updated:  

𝑄𝑠,𝑐 ← 𝑄𝑠,𝑐 + 𝛼 ∙ (𝛾 ∙ (𝑀 +max
𝑎

𝑄𝑠′,𝑎) − 𝑄𝑠,𝑐) 

where α was a learning rate, γ was a discount rate, s was the starting state for the trial, and the action c 

led to state s'. The first move on each trial was selected by softmax over the Q-values of the two 

possible actions: 

𝑃𝑖 = 𝜀 + (1 − 2𝜀) ∙
𝑒𝛽∙𝑄𝑠,𝑖

∑ 𝑒𝛽∙𝑄𝑠,𝑖𝑖

 

The remaining three moves in the trial were selected uniformly at random. 

The third model, "Qall", relaxed the requirement that the agent have no knowledge of the transition 

structure. By relaxing this requirement we allowed the model to make predictions about all four 

moves in each trial. The best action (i.e., up or down) for move 2, 3 or 4 in a trial depended on what 

state the agent occupied based on its earlier moves in the trial. The model selected moves 2, 3 and 4 

based on the participant's actually chosen, rather than the model's preferred, earlier moves, which 

allowed the model to make predictions about subsequent moves even if it mispredicted the early 

moves. Q-value updating and action selection worked the same as in Qfirst, except that Q-values for 

all four chosen moves were updated, and all four moves were selected (the total probability for a trial 

was the product of the probabilities for each of these moves). 

The fourth model, "Greedy", implemented another strategy we considered a priori plausible. First, it 

tracked the reward values ρi for each of the six states, as in the Plan model. Second, it chose greedily 

at each move the state that led to the largest cumulative total after that move, taking negs into account: 
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𝑉𝑢𝑝 = −1𝑛𝑒𝑔𝑢𝑝 ∙ (𝐶𝑅 + 𝜌𝑢𝑝) 

where negup was a binary variable indicating whether the state that would be reached by taking the up 

action was neg on this trial, CR was the cumulative reward gained on the trial before this move, and 

ρup was the reward value of the state that would be reached by taking the up action. Greedy therefore 

also used knowledge of the task's transition structure. Action selection was again by softmax, between 

Vup and Vdown.  

The parameters of all the models were fit using a genetic algorithm ('ga' in Matlab) to maximize the 

likelihood of the data. To guard against local minima, ga was run three times and the best run selected 

(usually all three runs were very similar).  

Model comparison was performed using the Bayesian Information Criterion (BIC). For each 

participants and for each model, the log likelihood L was evaluated at the best fitting parameters. The 

BIC score for that participant for that model was  

−2 log 𝐿 + 𝑛𝑝 log 𝑛𝑡 

where np was the number of free parameters for that model, and nt was the number of trials for that 

participant. BIC scores were summed over participants for group-level model comparison. 

 

MEG acquisition and pre-processing 

 

MEG was recorded continuously at 600 samples/second using a whole-head 275-channel axial 

gradiometer system (CTF Omega, VSM MedTech, Canada), while participants sat upright inside the 

scanner. Continuous head localization was recorded with three fiducial coils at the nasion, left pre-

auricular, and right pre-auricular points. The task script sent synchronizing triggers (outportb in 

Cogent) which were written to the MEG data file. Timings were corrected for approximately one 

frame (1/60 s) of lag between triggers and refreshing of the projected image, measured using a 

photodiode outside the task. A projector displayed the task on a screen ∼80 cm in front of the 

participant. Participants made responses on three buttons (called “up”, “down” and “advance”) of a 

button box using the fingers they found most comfortable. 

 

Raw data in CTF .meg4 format were read into MATLAB arrays using the function spm_eeg_convert 

from SPM12 (Wellcome Trust Centre for Neuroimaging, University College London). All subsequent 

analysis was performed using built-in functions in MATLAB R2015a/b, without SPM. The data were 

first resampled from 600 Hz to 100 Hz to conserve processing time and improve signal to noise ratio. 

Thus, data samples used for analysis were spaced every 10 ms. All data were then high-pass filtered at 

0.5 Hz using a first-order IIR filter to remove slow drift. 

 

Two approaches were used to reject artifacts. First, we excluded all sensors that had more than 10000 

samples of detected eyeblink across all sessions. This also minimized eye movement artifacts. 134 

sensors were left included in the analysis. Second, we rejected any data that exceeded seven units of 

mean absolute difference, plus ten samples before and after. Finally, as mentioned above, two 

sessions were entirely excluded due to large artifacts that could not be easily rejected according to 

these methods. All rejection criteria were fixed before the start of sequence analysis.  

 

All analyses were performed directly on the filtered, cleaned MEG signal, consisting of a length 134 

vector of samples every 10 ms, in units of femtoTesla. No time-frequency decomposition, baseline 

correction, source reconstruction, or other pre-processing was used. 

 

Multivariate MEG analysis 
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Logistic regression models were trained using MATLAB’s function lassoglm, with the arguments 

‘binomial’, (‘Alpha’, 1), and (‘Lambda’, Lp) where Lp was the lasso penalty whose value was 

determined through a cross-validation procedure. A trained model k consisted of a single vector βk 

with length 135: slope coefficients for each of the 134 sensors together with an intercept coefficient. 

For both training and testing regression models, all input data were scaled such that the 95th 

percentile of the absolute value of each channel was equal to 1. 

 

For model k, the training data labelled as “1” were the trials in which visual object k was presented. 

The training data labelled as “0” were trials in which any of the other five objects were presented, as 

well as a set of “null” data. The null data were the same for each of the six regression models, and 

consisted of the data immediately before the onset of each visual object. Thus, each model was trained 

on approximately 16 positive examples and 183 negative examples (and 100 of these ~183 were the 

same for all models). Models were validated on labelled data using leave-one-out cross validation. 

 

To estimate the number of meaningfully independent components in the data, we performed principal 

components analysis on the data used to train the classifier (from 200 ms after stimulus onset). We 

found that the number of components needed to explain 95% of the variance across trials ranged from 

6 to 17 between subjects.  

 

Sequenceness Measure 

 

Subtracting reverse from forward sequenceness was motivated by the existence of a strong 

autocorrelation in the underlying MEG signal at short time-lags (as time lag increased, autocorrelation 

became negative due to highpass filtering). Because classifier outputs were correlated with one 

another, each pair of classifier outputs also had a corresponding peak in cross-correlation near zero 

time lag. Therefore, both forward and reverse sequenceness alone were strongly positive at short time 

lags (Figure S3). Taking the difference between forward and reverse sequenceness minimized the 

main effect of autocorrelation while maximizing detectability of a systematic forward or reverse 

sequence effect. However, it was also possible to compare either forward or reverse transitions against 

probabilities that would be expected if representations jumped across a transition that did not exist in 

the task ('null transitions'; for example from S1, jumping to S4). Although reverse transitions were 

greater than null transitions (Figure S3), this difference did not reach significance due to high 

variability in the differences between cross-correlations of unmatched pairs of states. 

 

For the participants who had two sessions, regression models were trained separately for each session 

to account for the possibility of different head positions, and sequenceness measures from the two 

sessions were averaged together before computing group-level statistics. 

 


