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Supplementary Figure 1 | The betatron x-ray diagnostic and generated e-beam. (a) 

Single-shot x-ray betatron spectra obtained from the single-photon counting method (SPC) 

method (blue), detected by a thermoelectrically cooled, back-illuminated, deep-depletion x-ray 

CCD cameras and the residual laser light was blocked by a 80nm-thick Al filter placed in front of 

the x-ray CCD, comparing with the γ-ray detected system (red), both measured with the critical 

energy around ℏωc ≈ 5.24× 10-24 γ2 ne[cm-3] rβ[μm] keV ≈(10.5±1) keV; (b) The measured 

plasma channel via the optical interferometry and the corresponding e-beam spectra: peak energy 

360MeV, 1.4% rms energy spread, 49.7pC integrated charge, 0.35mrad rms divergence. 
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Supplementary Figure 2 | The material transmittance and measured γ-ray signal including 

angular correction vs. filter thickness. (a) Material transmittance of the filters with different 

thickness for Al (10-40mm), Pb (0.5-10mm), Cu (5-60mm), W (22-42mm); (b-c) Typical 

transmission data for reconstructing the typical spectra with peak energies at 0.74MeV and 

1.41MeV, using a 3×3 squared lead-grid (♦) filter and a sixteen-hole-array filter packed with Al 

(■), Cu (●) and W (▲) material attenuated bars, respectively. The error bars of each point 

represents the measurement uncertainties considering the beam spatial profile angular correction.   
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Supplementary Figure 3 | Spectra radiation simulations. (a) The 10000 test particles are used 

to sample an collimating 200 MeV electron beam with 3% FWHM energy spread. Relative 

radiation intensity distribution for the electrons wiggling in the intense laser field Nl=13, ar=0.95 

based on the direct numerical integration of the Lienard-Wiechert potentials in the far field; (b) 

The angular-resolved radiation intensities integrated with respect to the emission angles from 0 to 

4mrad, the center axis θ = 0 mrad, and off-axis angle detected angle θ =1mrad and θ =2mrad, 

respectively.  
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