Ultrahigh brilliance quasi-monochromatic MeV y-rays based on

self-synchronized all-optical Compton scattering

Changhai Yu¹, Rong Qi¹, Wentao Wang¹, Jiansheng Liu^{1, 2, *}, Wentao Li¹, Cheng Wang¹, Zhijun Zhang¹, Jiaqi Liu¹, Zhiyong Qin¹, Ming Fang¹, Ke Feng¹, Ying Wu¹, Ye Tian¹, Yi Xu¹, Fenxiang Wu¹, Yuxin Leng¹, Xiufeng Weng³, Jihu Wang³, Fuli Wei³, Yicheng Yi³, Zhaohui Song³, Ruxin Li^{1,#}, Zhizhan Xu^{1,†}

¹State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
²IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China
³ State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024, China

*<u>michaeljs_liu@siom.ac.cn</u>,

#<u>ruxinli@mail.shcnc.ac.cn</u>,

†<u>zzxu@mail.shcnc.ac.cn</u>

Supplementary Figure 1 | The betatron x-ray diagnostic and generated e-beam. (a) Single-shot x-ray betatron spectra obtained from the single-photon counting method (SPC) method (blue), detected by a thermoelectrically cooled, back-illuminated, deep-depletion x-ray CCD cameras and the residual laser light was blocked by a 80nm-thick Al filter placed in front of the x-ray CCD, comparing with the γ -ray detected system (red), both measured with the critical energy around $\hbar\omega_c \approx 5.24 \times 10^{-24} \gamma^2 n_e [\text{cm}^{-3}] r_{\beta} [\mu\text{m}] \text{ keV} \approx (10.5\pm1) \text{ keV}$; (b) The measured plasma channel via the optical interferometry and the corresponding e-beam spectra: peak energy 360MeV, 1.4% rms energy spread, 49.7pC integrated charge, 0.35mrad rms divergence.

Supplementary Figure 2 | The material transmittance and measured γ -ray signal including angular correction vs. filter thickness. (a) Material transmittance of the filters with different thickness for Al (10-40mm), Pb (0.5-10mm), Cu (5-60mm), W (22-42mm); (b-c) Typical transmission data for reconstructing the typical spectra with peak energies at 0.74MeV and 1.41MeV, using a 3×3 squared lead-grid (•) filter and a sixteen-hole-array filter packed with Al (•), Cu (•) and W (\blacktriangle) material attenuated bars, respectively. The error bars of each point represents the measurement uncertainties considering the beam spatial profile angular correction.

Supplementary Figure 3 | Spectra radiation simulations. (a) The 10000 test particles are used to sample an collimating 200 MeV electron beam with 3% FWHM energy spread. Relative radiation intensity distribution for the electrons wiggling in the intense laser field N_i =13, a_r =0.95 based on the direct numerical integration of the Lienard-Wiechert potentials in the far field; (b) The angular-resolved radiation intensities integrated with respect to the emission angles from 0 to 4mrad, the center axis $\theta = 0$ mrad, and off-axis angle detected angle $\theta = 1$ mrad and $\theta = 2$ mrad, respectively.