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The SBS Polymer Model 

In the String & Binders Switch (SBS) model1,2 a chromatin filament is represented as a self-

avoiding (SAW) polymer chain, composed by N beads.  Each bead of the chain interacts with 

diffusing Brownian particles (binders) having a molar concentration c. The scale of their binding 

energy to a cognate polymer bead is named 𝐸!"#. The beads of the chain and the binders are subject 

to Brownian motion, so each particle of the system (bead or binder) obeys the Langevin equation3. 

The friction coefficient of a particle, 𝜁, in the Langevin equation is related to the viscosity of the 

solvent 𝜂 according to Stokes equation 𝜁 = 6𝜋𝜂𝑅, where 𝑅 is the radius of the particle. For sake of 

simplicity, in our simulations we set the diameter of polymer beads and of binders equal to σ, and 

take it as the unit of lengths. In our simulations we also set the mass of beads and binders equal, and 

use it as the reference mass unit, m=1. We checked that by changing the ratio of the masses our 

general results remain unchanged, apart from a shift in the time constants of the dynamics. 

 

We use the detailed particle interaction potential developed in classical studies of polymer physics 

simulations4. The potential energy, V(x), of a particle at a position, x, has three components. 

Between any two consecutive beads along the polymer chain there is a potential modeling a finitely 

extensible spring, the FENE potential4. We set the FENE length constant 𝑅!  equal to 1.6σ and K, 

the strength of the FENE spring, equal to 30kBT/σ2 (Ref.4). To account for excluded volume effects 

between any two particles there is also a purely repulsive, shifted Lennard-Jones (LJ) potential4, the 

so called Weeks-Chandler-Andersen potential, having σ as the length scale unit and ε = kBT as the 

energy scale unit, in the notation used in Ref.4.  

 

A bead of the polymer interacts with its cognate binders through a short-ranged, attractive Lennard-

Jones potential 𝑉!"#   (𝑟)5: 
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where  𝜖𝑖𝑛𝑡 = 𝜖𝑖𝑛𝑡∗  ε is the control parameter for the intensity of the polymer-binder interaction, 𝜖!"#∗   

is a dimensionless amplitude, rint is the cut-off distance regulating the interaction range and σb−b is 

the sum of the radii of the interacting bead and binder. In our case, we set σb−b=1σ and rint = 1.3σ. 

The absolute value, 𝐸!"# , of the minimum of the interaction potential, Vint, is taken as the energy 

scale of the interaction; it is proportional to 𝜖!"#	
  through the relation:  
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Molecular Dynamics simulations and physical units 

The Langevin dynamics of the system is investigated by Molecular Dynamics (MD) computer 

simulations implemented by the LAMMPS code via the Verlet algorithm6. To model a chromatin 

filament, we use the polymer model described in the previous section, made of N beads in a box 

with periodic boundary conditions. The dimensionless friction coefficient is set to 𝜁=0.54. The 

linear size of the simulation box, D, is at least as large as the gyration radius of a SAW polymer 

having the same number of beads (D ∝ N!.!""σ).  

Given the genomic length L of the chromatin region to be modeled, the corresponding genomic 

content per chain bead is 𝑠! = L/N. As discussed below, we use N=1000 beads for modeling our 

homopolymers and blockcopolymers. To give a sense of the scales involved, we consider a 

chromosome having a genomic length L=100Mb, so in our homopolymer model each bead of the 

chain contains 𝑠! = L/N=100Kb. The physical diameter of the bead σ is estimated by imposing that 

the local chromatin density matches the average nuclear DNA density, i.e., by the relation 

σ  ~   𝑠! G
!
!  D! (Ref.2), where D! is the nucleus diameter and G is the genome length. As we 

consider mouse embryonic stem cells (mESCs), as an order of magnitude we take D! =3.5µm and G 

= 6.5Gb. For example, in the above case with L=100Mb, the single bead size is σ=87nm. The molar 

concentration of binders is calculated using the relation 𝑐 =   P/VN!, where N! is the Avogadro 

number, V=D3 is the simulation box volume and P is the number of binders in the box.  

The MD dimensionless parameters are mapped into physical units by the standard MD procedure3,6. 

For instance, the time scale, 𝜏, is fixed by the standard MD relation 𝜏=η(6Πσ3/ε). We considered a 

range of viscosity values around the estimated order of magnitude of the nucleoplasm viscosity5, 

and we checked that our general results do not change apart from a time shift in the dynamics. For 

instance, if η=0.1P at room temperature (T=300K), in a model with N=1000 beads and L=100Mb 

the time unit is 𝜏=0.03s. We use a MD integration time step Δ𝑡 = 0.0127, and we let the system 
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evolve up to 109 time steps, to reach stationarity. We perform also ensemble averages, up to 5x102 

for each particular choice of system parameters.  

In all our simulations the polymer is initially prepared in a random SAW configuration, while the 

binders are randomly located in the simulation box. To produce an initial random SAW 

configuration we use the following standard approach4: we generate a random walk chain where the 

distance between two consecutive beads is equal to the average length of an equilibrium SAW chain 

under the FENE and the repulsive Weeks-Chandler-Andersen potentials described above (i.e., 

0.97σ)4. Then, to remove overlaps between beads and binders, we let the system equilibrate, for 107 

timesteps, with a soft potential 𝑉!"#$ 𝑟  instead of the hard-core LJ repulsion4:  

𝑉!"#$ 𝑟 =   
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where the factor A increases linearly in time. The scaling properties of the polymer are then 

measured to check that the stationary SAW state is attained. Finally, the chain is simulated under 

the FENE and the repulsive Weeks-Chandler-Andersen potentials, and its scaling properties 

checked again.  
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The different types of polymer chains considered 

In our investigations we considered different types of models and polymer chains, to describe 

different types of genomic regions, from the chromosomal scale to the scale of a single locus. 

Homopolymer  

We studied first a homopolymer of N=1000 identical beads. As seen above, in case we consider a 

mammalian chromosome of genomic length L   = 100Mb, each polymer bead contains 

approximately 𝑠! = L/N=100Kb. In our homopolymer model each polymer bead can interact 

equally with all the binders of the system. In the other cases we considered (listed below), we 

extend the model to accommodate different types of binding sites along the chain and their specific 

cognate binders.  

Blockcopolymer  

As a first generalization of the above described homopolymer model, we investigated 

blockcopolymers made of two different bead types, each interacting with a specific type of binder. 

Visually, in Figure 3 we represent the first bead type in red and the second bead type in green, and 

so their specific binders are colored.  

First we considered the case where each polymer block is 500 beads long and the whole polymer is 

made of 1000 beads in total. To have a sense of scale, we suppose to model a locus of L=10Mb, 

with σ=64nm and 𝜂 =2.5cP. The time unit results to be 0.003s. We simulated such a system at 

different values of the interaction energy 𝜖!"#, ranging from 0 to 𝜖!"#=12kBT, and we explored a 

range of concentrations up to c=215nmol/l for each binder type. In this model, the red and green 

blocks of the polymer do not interact with each other, and they can fold in each of the three states 

identified in the homopolymer model: open, closed disordered and closed ordered (see Figure 1b), 

according to the value of c and 𝜖!"#. In the equilibrium closed states the polymer folds in 
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conformations where two different domains are spontaneously formed, one composed of red beads 

and the other of green ones. This is manifested in their corresponding pairwise contact frequency 

matrix that exhibits two different interaction domains, one for each of the polymer blocks.  

As discussed in the Main Text, under the same general conditions we next considered a 

blockcopolymer having four domains, two red and two green alternated domains (Figure 3), each 

formed by 250 beads (1000 beads in total), interacting with red and green binders respectively. In 

this case, the conformation of the polymer in the equilibrium closed states has a hierarchical 

structure made of two different large domains (one green and one red), each composed of two 

homologous lower order domains, as seen in checkerboard pattern of the average contact matrix 

(Figure 3). 

Heteropolymer for the Sox9, Xist and Bmp7 locus models 

To model at higher-resolution the spatial organization of the Sox9 locus in mESCs, we use a chain 

made of N=2250 beads. The locus considered is 6Mb long, and we employed published Hi-C data 

from Dixon et al., 2012 at 40Kb resolution, from mESC-J1 cells. In this case, the elementary bead 

in our polymer chain contains about 2.67Kb. The bead size, obtained with the above relation, is 

σ=26nm. We generalize the models described above and consider a heteropolymer with different 

types of binding sites and specific cognate binders. The bead types and their positions along the 

polymer are obtained by a Monte Carlo procedure that minimizes the distance between the Hi-C 

experimental contact matrix and the simulated contact matrix (see below). In the case of our Sox9 

locus, such a procedure returns 15 different interacting bead types (visually represented by different 

colors in Figure 4a). Each type of beads of the chain interacts only with its specific type of binders. 

The interaction between a binder and its cognate bead is modeled by an attractive LJ potential as 

before, using the following parameters: σ!!!=1σ, 𝑟!"# =1.5σ. Assuming as a reference a viscosity of 

2.5cP, the time unit is 0.0002s. In our simulations we sampled values of the total binder 

concentration, c, ranging from zero to 215nmol/l, and we varied the interaction energy from zero 
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(open state) to 𝜖!"#=16kBT. The concentration and the interaction energy employed for the results 

discussed in Figure 4 are c=194nmol/l and 𝜖!"#=12kBT, corresponding to a closed disordered 

polymer state.  

Analogously, in the case of the Xist locus we use a chain made of N=540 beads. The locus 

considered is 1.3Mb long and we employed published 5C data from Nora et al. 20129 in male 

undifferentiated WT mESCs (mESC-E14 cells). The fragment based 5C interaction maps have been 

included in 20kb resolution interaction maps using the online tools my5C10 

(http://my5c.umassmed.edu). Here our procedure returns 10 different interacting bead types. In the 

case of the deletion ΔXTX9, we also used 5C data published by Nora et al. 2012 from the XO mES 

cell line.  In the Bmp7 case we considered a 2Mb wide region around the Bmp7 gene 

(chr2:171090000-173430000), where Hi-C data at 30kb resolution are available in mESC-46C cells 

from Fraser et al. 2015, modelled here by a polymer chain made of N=858 beads. In this case 11 

different interacting bead types are found. 

 

We consider an ensemble of up to 5x102 independent polymers, each starting from a SAW 

configuration and equilibrated as described above. Analogously, the binders are initially placed in 

random positions in the simulation box. To reach equilibrium, we run the simulations up to 109 MD 

time steps. 

 

Method to estimate the organization of the binding sites of our polymer models  

 

To identify the binding domains of the models of the studied loci, we employ a Simulated 

Annealing Monte Carlo procedure to locate the minimal arrangement of binding sites and types 

(colors) that, based only on polymer physics, best explains the experimental contact matrix. Our 

method employs a standard Simulated Annealing scheme and uses a cost function that includes the 

distance between the input Hi-C and the model predicted contact matrix, and a Bayesian term (a 
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chemical potential) to penalize overfitting. The details of the procedure will be presented in a more 

technical publication, Ref.8, devoted specifically to illustrate all the technical aspects of our 

method. 
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Order parameters of the phase diagram 

The transition lines in the phase diagram of Figure 1b are identified as follows. The coil-globule 

transition is found by measuring, at equilibrium, the collapse of the gyration radius, 𝑅!, of the 

polymer1,2. 𝑅! has the predicted value of a SAW model when the polymer is in the open state, while 

it jumps to a much lower value in the compact states (Figure S1a). 𝑅! is defined by the relation: 

𝑅!! =
!
!
      ∑!!!

!    𝑚! 𝑟! − 𝑟!" !, where 𝑚! and 𝑟! are the mass and the position of the i-th polymer 

bead, M and 𝑟!" are respectively the total mass and the position of the center of mass of the 

polymer. 

The binder order-disorder transition is captured by two structural quantities associated to the spatial 

configurations of the binders bound to the polymer: their pair distribution function g(r) and the 

structure factor S(k) (Figure S1b), that is related to g(r) by definition3: 

𝑆(𝑘) = 1+ 4πρ 𝑟! sin 𝑘𝑟 /(𝑘𝑟)
!

!
𝑔(𝑟)𝑑𝑟 

where ρ=Nb/V is the concentration of the binders bound to the polymer. The structure factor 𝑆(𝑘) is 

almost flat in the disordered binder state, while it has sharp peaks in the binder ordered state. The 

transition order parameter is the ratio S(k*)/SMAX where 𝑘∗ is the position of the second peak in S(k) 

and SMAX is a normalization coefficient taken to be equal to the maximum value of S(k*) across the 

different considered cases (Figure S2b). The ratio S(k*)/SMAX has a jump at the order-disorder 

transition3. Analogous results are found in case other peaks of S(k) are considered, but the signal to 

noise ratio can be higher.  
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Pairwise contact frequency matrices, many-body interactions and fit of Hi-C 

contact data 

The polymer average pairwise contact frequency matrices are obtained in the following way. We fix 

a contact threshold distance λσ, where σ is the length unit, and λ a dimensionless constant threshold, 

which we set to λ=3.5. For a given 3D conformation of the polymer chain, we consider the distance 

rij between each bead pair i and j, (i≠j, where i,j are bead indices along the chain). If rij < λσ, then we 

count a contact between the beads i and j. We then compute the average of these matrices across the 

different configurations in the considered polymer state. 

 

The mean contact probability, 𝑃!(𝑠), of a pair of polymer beads having a contour separation, s 

(genomic distance) is recorded in an analogous way by averaging also over all the bead pairs with 

the same, given contour distance.  

 

To estimate the average number of many-body contacts involving simultaneous interactions of k 

beads occurring in a given polymer conformation, we count the number of beads 𝑛! that are in 

contact with the i-th bead within the above fixed threshold, and the number of possible 

combinations of k simultaneous contacts that contain the i-th bead, !!
!!! . We average that number 

over all the beads in the polymer. As normalization factor, we consider the number of total possible 

many-body contacts of k particles with the i-th bead, !
!!! . 

 

The fit of genome-wide Hi-C average pair contact data as a function of the pair genomic separation 

(Figure 2) is done by use of the Least Square Method (LSM). We compute the model predicted 

contact probability of a mixture of open and closed states by using the independently derived 

corresponding contact probabilities from the MD simulations of the homopolymer chain (Figure 
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1d). Then, by LSM we find the composition of the mixture of open and closed states that minimize 

the distance between the predicted P(s) and the one derived from Hi-C data.  

 

In the case of Sox9 polymer model, the above procedure is applied to a mixture of the contact 

matrices of the different states in order to maximize the Pearson correlation coefficient between the 

model predicted and Hi-C pairwise contact frequency matrices. In this way a Pearson correlation 

coefficient r=0.93 is obtained. As the resolution is much higher in the Sox9 case than in 

chromosome wide simulations, to check the robustness of our approach we also considered a higher 

threshold value λ=10 and a variant of the procedure where only contacts between monomers of the 

same color are retained in the calculation of the contact matrix, finding a Pearson correlation 

coefficient r=0.95 between model predicted and Hi-C data. The data shown in Figure 4b,d are 

represented in a linear scale (the values corresponding to the 3rd and 97th percentile are highlighted 

as a reference). The data on the Xist locus in Fig.5 and on the Bmp7 locus in Fig.S6 are analogously 

treated.   

 

Distance distributions 

For measuring the relative physical distances of pairs of sites in the block copolymer model, we 

focused on two sites A and B, belonging to different consecutive blocks (Figure 3b). We considered 

two cases where they are located symmetrically or asymmetrically with respect to the block 

boundary. Importantly, however, in the two cases the contour distance between A and B is kept 

equal, and set to d=125σ. In the symmetric case, A and B are equally distant from the boundary, 

whereas in the asymmetric case, one of the two site is placed at a distance 5σ from the boundary. 

We checked the robustness of our results by considering also larger distances from the domain 

boundary (e.g., 25σ) and similar results are found.  
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In the model of the Sox9 locus, to measure the relative physical distances of the considered genes 

(Kncj2, Sox9 and Slc39a11) we take the genomic coordinates of their TSSs.   



	
   14	
  

Supplementary references 

1. Nicodemi, M. & Prisco, A., Thermodynamic pathways to genome spatial organization in the cell nucleus. 

Biophys. J. 96, 2168-2177 (2009). 

2. Barbieri, M., et al., Complexity of chromatin folding is captured by the Strings & Binders Switch model. Proc. 

Natl. Acad. Sci. U S A 109, 16173-1678 (2012). 

3. Allen ,M.P. & Tildesley, D.J., Computer simulation of liquids (Oxford University Press, 1987). 

4. Kremer, K. & Grest, G.S., Dynamics of entangled linear polymer melts:   A molecular‐dynamics simulation. J. 

Chern. Phys. 92, 5057 (1990) 

5. Brackley, C.A. et al., Nonspecific bridging-induced attraction drives clustering of DNA-binding proteins and 

genome organization. Proc Natl Acad Sci U.S.A. 110, E3605-11 (2013). 

6. Plimpton, S. , Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117, 1–19 (1995).  

7. Rosa, A., & Everaers, R., Structure and dynamics of interphase chromosomes. PLoS Comp. Biol., 4:e1000153 

(2008).   

8. Bianco, S., et al. in preparation (2016). 

9. Nora, E.P., et al., Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381-

5 (2012). 

10. Lajole, B.R., van Berkum, N.L., Sanyal, A., & Dekker, J., My5C: web tools for chromosome conformation 

capture studies. Nature Methods 6, 690-1 (2009). 

 

 

 


