SUPPLEMENTAL MATERIALS FOR:

A type I signal peptidase is required for pilus assembly in the Gram-positive biofilmforming bacterium *Actinomyces oris*

Sara D. Siegel,¹ Chenggang Wu,^{1‡} and Hung Ton-That^{1‡}

¹Department of Microbiology & Molecular Genetics, University of Texas Health Science Center, Houston, TX, USA.

[‡]To whom correspondence should be addressed: Chenggang Wu Department of Microbiology and Molecular Genetics University of Texas Health Science Center 6431 Fannin Street, R222/MSE Houston, TX 77030, USA. E-mail: <u>chenggang.wu@uth.tmc.edu</u>;

Hung Ton-That Department of Microbiology and Molecular Genetics University of Texas Health Science Center 6431 Fannin Street, R224/MSE Houston, TX 77030, USA. E-mail: <u>ton-that.hung@uth.tmc.edu</u>; Tel. (+1) 713 500 5468; Fax (+1) 713 500 5499.

Figure S1: Requirement of LepB2 for surface expression of tip pilins

The presence of FimB (**A**) and CafA (**B**) on the bacterial cell surface was analyzed by ELISA with specific antibodies to FimB and CafA, respectively. The absorbance values, as compared to those of corresponding mutants as background, were determined from at least two independent experiments performed in triplicate. Error bars represent standard deviations. Asterisks (*) indicate P values of 0.02 (A) and 0.03 (B); all determined using the paired, two-tailed t-test with Prism GraphPad.

	10	20 	30 	40 	50 	60
LepB1	VQDGTDDVGLDLKQ	ADPSQIGRTS	SR <mark>SAITPA</mark> CTS	SPSA <mark>DS</mark> PQE <mark>S</mark> I	RQAAET <mark>AGE</mark> A	PVDDSDE
LepB2	MSSAPDÇ	SPQGRIHVE	DEDV <mark>TSG</mark> RHI	JRTD <mark>HD</mark> RRN <mark>G</mark> I	HRHKAG <mark>AGE</mark> DI	R <mark>AGDS</mark> -Q
	:* *	: .:*	. :*	: ::.:	:: ***	** :
	70	80	90	100	110	120
1						
Tebri Tebri	WDYDPF IDPDAEPE	PDEELTELPI	PSIQPRRQVAP	ATPPPQTSPI	YQRVIRLVL	
перва	***	:.*	* *	ہ 1	* * * * *	:** :
	130	140	150	160	170	180
LepBl	VP <mark>a</mark> ll <mark>r</mark> ayvv <mark>q</mark> iye	IPSG <mark>S</mark> ME R TI	L <mark>RDGDKVAVP</mark> M	IY <mark>G</mark> SDNVERGI	OVIVFSDPDD	WLHVKEP
LepB2	I-AFIRTFIIQSFT	'IPSG <mark>S</mark> MENTI	LNEGDRVTVTM	IY <mark>D</mark> SDKVHRGI	OVVVFTDPDH	WLTTQEP
	: *::*::::* :	**** <mark>*</mark> ** • * *	*.:**:*:*.*	* * * * * * * * * *	**:**:***	** .:**
	190	200	210	220	230	240
			_			
LepB1	TGLRGATQRLKVLV	NLLPENTGH	HLVKRVIGVGO	BDHVVADGKG	TLTVNGVAIK	EPYVKDG
герва	TGLQGAAQDFLVAI	RIFPQNAGH	HLIKRVIGMPO	5DHVVADGKG	5LTVNGVELH. *****	ESYLKPG * *:* *
						• •
	250	260	270	280	290	300
LepB1	QSSSLTSFDVTVPQ	GYVWVMGDN	RSNSADSRYHF	RDDAHGGFVPI	_KNVVGVAK-	VVFQWTH
Герв5	RSASEVAFDVTVPE		KSNSSDSRYHQ * * * * : * * * * * * :	2NDVHRGFVP	GNVVGVAKN	**: ::*
				•		
	310	320	330	340	350	360
LepB1	LSRWGLLGGGESAF	SDVPAQETTI	PSARPSPPPAP	ASDGETASE	EEAPSPVPEG	RDSEDAG
Герв5	WSSLTSGQEVE * * * *	SQVPKPTST ****	PAAVPTGAAAP	PASR		
		· ·				
	370	380	390	400		
LepB1	AVGEGHSNDEAPQF	TTGGLADGPI	DTYGGMADQGQ)PPGGTR		
тервг		цасSGI **	/ *			

Figure S2: Sequence alignment of *A. oris* LepB1 and LepB2

Sequence alignment of *A. oris* LepB1 and LepB2 was performed using CLUSTALW (1). Highlighted in yellow are the conserved catalytic Ser and Lys residues.

Strain & Plasmid	Description	Reference	
Strain			
A. oris MG1	Parental strain	(2)	
A. oris CW1	$\Delta galK$; an isogenic derivative of MG-1	(3)	
A. oris AR4	$\Delta fimA$; an isogenic derivative of CW1	(3)	
A.oris WU36	Conditional srtA deletion mutant (Δ srtA), containing pTetR- Ω -SrtA	(4)	
A.oris WU51	Deletion of <i>1291</i> ($\Delta gspA$); an isogenic derivative of CW1	(4)	
A.oris WU73	Deletion of gspA and srtA; Δ GspA/ Δ srtA	(4)	
A.oris WU42	$\Delta lepB2$; an isogenic derivative of MG1	This study	
A.oris WU50	$\Delta lepB1$; an isogenic derivative of MG1	This study	
A.oris WU80	$\Delta lepB1/2$; an isogenic derivative of MG1	This study	
A.oris WU81	Deletion of <i>lepB</i> 2 and <i>srtA</i> ; ∆ <i>lepB</i> 2/∆ <i>srtA</i>	This study	
A.oris WU42c1	WU42 containing pLepB2	This study	
A.oris WU42c2	WU42 containing pLepB2(S101A)	This study	
A.oris WU42c3	WU42 containing pLepB2(K169A)	This study	
A.oris WU51c1	WU51 containing pGspA _{∆cwss}	This study	
S. oralis So34	RPS positive	(5)	
S. oralis OC1	a RPS-negative isogenic mutant of So34	(5)	
Plasmid			
pJRD215	Actinomyces/E. coli shuttle vector, Kan ^R , Str ^R	(6)	
pGspA∆cwss	pCWU10 expressing GspA lacking the cell wall sorting signal (CWS)	This study	
pCWU2	Derivative of pHTT177, expressing GalK under the control of the <i>rpsJ</i> promoter	(3)	
pCWU2-∆ <i>lepB</i> 2	An allelic replacement vector of <i>Ana_1190</i> (<i>lepB2</i>) using pCWU2	This study	
pCWU2-∆ <i>lepB1</i>	An allelic replacement vector of <i>Ana_1180</i> (<i>lepB1)</i> using pCWU2	This study	
pLepB2	pJRD215 derivative expressing wild-type LepB2 from MG-1	This study	
pLepB2(S101A)	pJRD215 derivative expressing LepB2 with S101A mutation	This study	

Table S1: Bacterial strains and plasmids used in this study

pLepB2(K169A)	pJRD215 derivative expressing LepB2 with K169A mutation	This study
pCVD047	Broad host range vector	(7)
pCWU10	pCVD047 derivative with kanamycin resistance gene from pJRD215 replacing with its original ampicillin resistance gene	This study
pFimA _{∆cwss}	pCWU10 expressing FimA lacking the cell wall sorting signal (CWSS)	This study

Table S2: Primers used in this study

Primer	Sequence ^(a)	Application
1190upF	GGCG <u>TCTAGA</u> TCCGGACAAACCGTTCCATG CCCCGA	pCWU2-∆ <i>lepB</i> 2
1190upR	GGCG <u>AAGCTT</u> TGCGCTGCTCATAGGCCTTC TCCTG	pCWU2-∆ <i>lepB</i> 2
1190dnF	GGCG <u>AAGCTT</u> GACTGATCGCCCCGAAAGCG TGCTG	pCWU2-∆ <i>lepB</i> 2
1190dnR	GGCG <u>GAATTC</u> ACCGACCTCGTCCAGGCCGC CGACGT	pCWU2-∆ <i>lepB</i> 2
Pro-1192F	GGCG <u>GAATTC</u> CCCTCGGCCGAGTCATCGGCC GCTCG	pLepB2
pro-1192R	GGCG <u>GGTACC</u> CTCCTGGGATCGGGGCATGGAACGG	pLepB2
com-1190F	GGCG <u>GGTACC</u> GTGATGAGCAGCGCACCCGACCA GAGC	pLepB2
com-1190R	GGCG <u>AAGCTT</u> TCAGTGGTGGTGGTGGTGGT GGTCCCCG GAGCCCGCCA GCCTG	pLepB2
1188upF	GGCG <u>GAATTC</u> ACTGATCGCCCCGAAAGCGT GCTGG	pCWU2-∆ <i>lepB1</i>
1188upR	GGCG <u>TCTAGA</u> ACGGGGAAGTGCAGGCCGGT GTG	pCWU2-∆ <i>lepB1</i>
1188dnF	GGCG <u>TCTAGA</u> GGCCCGGACACTTACGGCGG CATGG	pCWU2-∆ <i>lepB1</i>
1188dnR	GGCG <u>GGTACC</u> CTAGCCCCATGACGCATCCA CCG	pCWU2-∆ <i>lepB1</i>
1190S102A-F	GCGATGGAGAACACCCTCAACGAGGGCG	pLepB2(S101A)
1190S102A-R	CCCCGAGATGGTGAAGCTGCTCTGGATG	pLepB2(S101A)
1190K169A-F	GCGCGGGTCATCGGAATGCCCGGTGACCACG	pLepB2(K169A)
1190K169A-R	GATGAGGTGGTGACCGGCGTTCTGGGG	pLepB2(K169A)
pCVD047- noAmp-F	GGCG <u>GAGTCA</u> TGATTTAGAAAAATAAACAAATAGGG G	pCVD047 _{∆Amp}
pCVD047- noAmp-R	GGCGAAGCTTCTGTCAGACCAAGTTACTCATATATA	$pCVD047_{\Delta Amp}$
215Kan _{MCS} -F	GGCG <u>GAGCTC</u> TCAGAAGAACTCGTCAAGAA GGCGA	pCWU10
215Kan _{MCS} -R	GGCG <u>AAGCTT</u> ATCG ATGATAAGCTGTCAA	pCWU10
GspA∆cws-His6- R	GGCGGAATTCTCAGTGGTGGTGGTGGTGGGGGC TTGCCGGAGGTGGAGGCCGCC	$pGspA_{\Delta cwss}$
prFimB-BamHI-F	AAAAA <u>GGATCC</u> GACGTCACCGGTGTCATCACCCTCC	pFimA _{∆cwss}
prFimB-R	GGGACCGCCTTCTCTTAGGCGTCG	pFimA _{∆cwss}
FimA-F	GTGACGCCGTCGGACAAGACGGAG	pFimA _{∆cwss}
FimA∆cws-His6- EcoRI-R	AAAAA <u>GAATTC</u> TCAGTGGTGGTGGTGGTGGTGAAC CGA CTG CTT GGT GTT CTC AAC GG	$pFimA_{\Delta cwss}$
RT-16s-R	GGTGTTGCCGACTTTCATG	RT-PCR (16s rRNA)

RT-16s-F	GTCGCTAGTAATCGCAGATCAG	RT- PCR (16s rRNA)
RT-1291F	GACGGCACCTACAAGATCAC	RT-PCR (gspA)
RT-1291R	AGGAGTCGGTCTTGCTGA	RT-PCR (gspA)
P1	CCTCCAGGTCC CGATCACAC	RT and qRT-PCR
P2	GCCTGCGGGGTTGGATAGAGG	RT and qRT-PCR
P3	CCCGGCCGGTCAGCCTCCGAGGTCG	RT and qRT-PCR
P4	GCTGGACCAGTGGGAGTATGGCCAC	RT and qRT-PCR
P5	GTGTGATCGCGGACCTGGAGG	RT- PCR
P6	GGCCATACTCCCACTGGTCCAG	RT- PCR

^(a) Underlined are the restriction sites in the primers.

Surface Protein	Signal Peptide ^a
AcaA	MSIIPIRLRR <mark>LSAPTSALLAALALAAAGPAVAAPASNT</mark>
AcaB	MKRRIVAQMAILALSLSAPVLAVTHAPQ AAA ADGNII
AcaC/GspA	MRLGRPLAAASVMAAAIGASLAASP <mark>ALA</mark> GDSLAF
AcaD	MRLGRPLAAASAVAAMTGASLIASP <mark>VLA</mark> NSSNSN
AcaE	MNTMSTGAASRPALTRGAVRGAAAILTLFLVAILSQFAPQ <mark>ASA</mark> EQNKSV
	MLRRFFVRSHRRELTSSRQPSRQSRRRLR
AcaF	SGAAISTFALIAGALGTATLPAPP AEA VHGNPA
	MRFSPLIPVNIELKFATASIECRTSPERFAVSKIPAPRALRAPVR
AcaG	ATGALLLLVVMVAAMLTVLPMQ ARA AINPKI
	MFLSSSSPGSPSLRLIRNDMRLRPTRAVR
AcaH	VSAVLCALTLTALSPFPLSPP AGA DEPAAP
Acal	MTSHSPFSRRRLPALLGSLPLAATGLIAAAPP ALA VPTSDG
AcaJ	MRRRAPRLVGLAGAVVLSSSLSIPMMAP <mark>VSA</mark> EPTSGD
AcaK	MNIKRVIAAAALTVVPLTASSA ALA APVAPE
AcaL	MNRPSQHDKPNVAHYMKQLTFIILVTLLLFNQELPLPTTLPT ASA AITTNV
AcaM	MSRTARALSALTAFCLLAAASTLTSVP AAA SGQARP
	MLVWEGPAALRTAGAQVGADQWCDKVDPVVVSYHTG
AcaN	KNRSSSGLPQEMTRQLDGQFTALSLMSAKEILAGM ATF DERKRS
FIMP	MHSLNTRRGLGLAAAMTLAAGALVAPT GAA APADPN
FimQ	MSQSSRRPQRGREGLLRRFCAVVGSLAIVLVTMVSLPWTAPP ADA STSDLS
FimA	MKHNASTLGRRAAAAAGVLTLAFLGLAPS AVA TETPNY
FimB	MFPLLSRRAIKPRLRK <mark>LVAGAAALACVAAALVGTEQPSAGAAPSGLP</mark>

Table S3: Putative signal peptides of non-fimbrial and fimbrial surface proteins in *Actinomyces oris*

^aThe n-regions are followed by h-regions, which are highlighted by grey color, and the AXA motif is underlined and bolded.

Sequencing	Residue (pmol)			
Cycle	MG1	∆lepB1	∆lepB2	∆lepB1/∆lepB2 ª
1	G (4.761)	G (13.250)	G (7.833)	L (3.150); A (3.665)
2	D (4.438)	D (13.830)	D (8.280)	A (3.887)
3	S (2.529)	S (5.692)	S (4.623)	G (2.938); P (1.390)
4	L (3.972)	L (10.650)	L (6.026)	D (2.962); A (2.836)
5	A (4.082)	A (11.050)	A (6.184)	S (1.774)
6	F (2.913)	F (8.309)	F (5.394)	L (3.162)
7	K (3.882)	K (10.280)	K (5.761)	A (4.124); G (2.501)
8	l (2.661)	l (8.125)	l (4.958)	F (2.520); D (2.494)
9	A (3.427)	A (9.922)	A (5.492)	K (2.520); S (1.729)
10	D (2.794)	D (7.996)	D (5.265)	l (1.875); L (2.144)

Table S4: Edman Degradation of GspA proteins purified from four A. oris strains

^a Two major residues were detected in the majority of the first 10 sequencing cycles.

Sequencing Cycle	Residue (pmol)			
	MG1	∆lepB1	∆lepB2ª	
1	T (8.363)	T (2.341); G (1.394)	A (10.082); T (8.999); G (70.840);	
2	E (6.034)	E (1.391)	V (6.512); E (6.271); L (6.009)	
3	T (7.885)	T (2.137)	A (10.563); T (9.934)	
4	P (6.338)	P (1.786)	T (10.321); P (8.828)	
5	N (4.784)	N (1.467)	E (5.881); N (4.545)	
6	Y (5.789)	Y (1.512)	T (11.027); A (9.149); Y (5.218)	
7	G (5.246)	G (2.061)	P (7.555); G (11.852); V (6.863)	
8	N (4.597)	N (1.412)	N (5.679); A (9.687)	
9	l (4.777)	l (1.771)	l (6.770); Y (4.509)	
10	K (5.922)	K (1.133)	K (6.659); G (12.054); E (5.618)	

 Table S5: Edman Degradation of FimA proteins purified from three A. oris strains

^a Multiple residues were detected in each of the first 10 sequencing cycles.

References

- Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673-4680.
- Mishra A, Das A, Cisar JO, Ton-That H. 2007. Sortase-Catalyzed Assembly of Distinct Heteromeric Fimbriae in *Actinomyces naeslundii*. J Bacteriol 189:3156-3165.
- 3. **Mishra A, Wu C, Yang J, Cisar JO, Das A, Ton-That H.** 2010. The *Actinomyces oris* type 2 fimbrial shaft FimA mediates co-aggregation with oral streptococci, adherence to red blood cells and biofilm development. Mol Microbiol **77** 841–854.
- 4. **Wu C, Huang IH, Chang C, Reardon-Robinson ME, Das A, Ton-That H.** 2014. Lethality of sortase depletion in *Actinomyces oris* caused by excessive membrane accumulation of a surface glycoprotein. Mol Microbiol **94:**1227-1241.
- Yoshida Y, Ganguly S, Bush CA, Cisar JO. 2006. Molecular basis of L-rhamnose branch formation in streptococcal coaggregation receptor polysaccharides. J Bacteriol 188:4125-4130.
- Yeung MK, Kozelsky CS. 1994. Transformation of *Actinomyces* spp. by a gram-negative broad-host-range plasmid. J Bacteriol **176:**4173-4176.
- Taton A, Unglaub F, Wright NE, Zeng WY, Paz-Yepes J, Brahamsha B, Palenik B, Peterson TC, Haerizadeh F, Golden SS, Golden JW. 2014. Broad-host-range vector system for synthetic biology and biotechnology in cyanobacteria. Nucleic Acids Res 42:e136.