SUPPLEMENTAL MATERIALS

Supplemental Figure 1. Imaging the Nucellus Using the mPS-PI Technique.

(A) Three-dimensional reconstruction of a wild-type ovule 0 DAF imaged using the mPS-PI technique. The median longitudinal plane is highlighted in blue. Ecotype Col-0.

(**B**) Central longitudinal section of a wild-type ovule 0 DAF imaged using the mPS-PI technique. The inner integument 1 and pigment strand are highlighted in yellow whereas the nucellus is highlighted in orange. Ecotype Col-0.

Scale bar, 50 μ m.

Supplemental Figure 2. The Nucellus Does Not Entirely Degenerate.

Central longitudinal section of a wild-type mature seed imaged using the mPS-PI technique. The nucellus is highlighted in orange. Ecotype Ws-2. Scale bar, $50 \,\mu$ m.

Supplemental Figure 3. Nucellus Development in PCD Mutants and Overexpression Lines. Central longitudinal sections of wild-type, *tt16-1*, *mc1*, *lsd1*, and *Pro35S:HVA22d* seeds 6 DAF imaged using the mPS-PI technique. The nucellus is highlighted in orange. Ecotype Col-0. DAF, days after flowering; wt, wild-type. Scale bars, 50 µm.

Supplemental Figure 4. PA Deposition.

- (A) Vanillin staining of an unfertilized wild-type ovule (6 DAF). Ecotype Col-0.
- (B) Vanillin staining of a fertilized wild-type seed (6 DAF). Ecotype Col-0.
- (C) Vanillin staining of a fertilized *tt16-1* seed (6 DAF). Col-0.
- DAF, days after flowering; wt, wild-type. Scale bars, 50 µm.

Supplemental Figure 5. FIS2 Does Not Repress the Degeneration of the Nucellus before Fertilization.

(A) Central longitudinal section of an unfertilized *fis2-5/+* ovule (6 DAF) imaged through the mPS-PI technique. The nucellus is highlighted in orange. Ecotype Col-0.

(B) Average number of nucellus cells in the central longitudinal sections of *fis2-5/+* ovules (0 and 6 DAF). Ecotype Col-0.

DAF, days after flowering. Standard deviations (error bars) were calculated from more than 30 individuals. Scale bar, $50 \,\mu$ m.

Supplemental Figure 6. TT16 Promotes Nucellus Degeneration.

(A) Average number of nucellus cells in the central longitudinal sections of wild-type, *tt16-1*, *tt16-2*, *tt16-3*, *tt16-1;3.4PTT16:gTT16-GUS*, *tt16-1;PTT1:gTT16*, and *tt16-1;1.6PTT16:gTT16* seeds (6 DAF). Ecotype Ws-2.

(**B-F**) Dry seeds of wild-type, *tt16-1*, *tt16-1;3.4PTT16:gTT16-GUS*, *tt16-1;PTT1:gTT16*, and *tt16-1;1.6PTT16:gTT16* plants.

DAF, days after flowering; wt, wild-type. Standard deviations (error bars) were calculated from more than 30 individuals. Colored asterisks indicate a statistical difference compared to wild-type (blue) or *tt16-1* (red) (Student's *t* test, P < 0.01). Scale bars, 200 µm.

-DEX

+DEX

Pro35S:gTT16-GR

Supplemental Figure 7. A TT16-Inducible Line.

(A) A Pro35S:TT16-GR Arabidopsis plant.

(B) A *Pro35S:TT16-GR Arabidopsis* plant treated with DEX.

Scale bar, 1 cm.

Supplemental Figure 8. TT16 Expression in the Inner Integuments or in the Nucellus.

 β -glucuronidase activity in cleared whole mounts of *ProTT1:gTT16-GUS* and

1.6ProTT16:gTT16-GUS ovules (stage 3-V). Ecotype Col-0.

n, nucellus; ii, inner integument. Scale bars, 20 µm.

Supplemental Figure 9. Early Endosperm Development is Unaffected in the *tt16* Mutant.

(A) β -glucuronidase activity in cleared whole mounts of *ProFIS2:FIS2-GUS* wild-type seeds (stage 4-I, 4-II, and 1 DAF from left to right). Ecotype Col-0.

(B) β -glucuronidase activity in cleared whole mounts of *ProMEA:MEA-GUS* wild-type seeds (stage 4-II, 1 DAF, and 2 DAF from left to right). Ecotype Col-0.

(C) β -glucuronidase activity in cleared whole mounts of *ProFIS2:FIS2-GUS;tt16-1* seeds

(stage 4-I, 4-II, and 1 DAF from left to right). Ecotype Col-0.

(**D**) β -glucuronidase activity in cleared whole mounts of *ProMEA:MEA-GUS;tt16-1* seeds (stage 4-II, 1 DAF, and 2 DAF from left to right). Ecotype Col-0. Scale bars, 50 µm.

9 9

Supplemental Figure 10. TT16 Maternal Effect on Endosperm Development.

 β -glucuronidase activity in cleared whole mounts seeds (stage 4-I, 2 DAF, and 4 DAF from left to right) obtained from the cross between *ProFIS2:FIS2-GUS;tt16* (female) and wild-type (male) plants. Ecotype Col-0. Scale bars, 50 µm.

Gene code	Gene symbol
At4g24960	AtHVA22d
At3g57240	BETA-1,3-GLUCANASE 3
At5g20885	/
At2g41100	ТОИСН 3
At4g14365	XB3 ORTHOLOG 4
At1g77380	AMINO ACID PERMEASE 3
At1g19180	JASMONATE-ZIM-DOMAIN PROTEIN 1
At3g55470	/
At3g56240	COPPER CHAPERONE
At1g09970	RECEPTOR-LIKE KINASE 7
At4g03550	GLUCAN SYNTHASE-LIKE 5
At4g18950	/
At1g51680	4-COUMARATE:COA LIGASE 1
At2g31260	AUTOPHAGY 9
At3g07525	AUTOPHAGY 10

Supplemental Table 1. TT16 Target Genes.

Genes up- (red) or down- (green) regulated more than two fold in *tt16* versus wild-type seeds at seven days post anthesis according to (Dean et al. 2011).