Biophysical Journal, Volume 111

Supplemental Information

Protein Composition Determines the Effect of Crowding on the Proper-

ties of Disordered Proteins

Cayla M. Miller, Young C. Kim, and Jeetain Mittal

Supplementary Information for "Protein composition determines effect of crowding on the properties of disordered proteins"

Cayla M. Miller,[†] Young C. Kim,[‡] and Jeetain Mittal^{*,†}

Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, United States, and Center for Computational Materials Science, Naval Research Laboratory, Washington, D.C. 20375, United States

E-mail: jeetain@lehigh.edu

[∗]To whom correspondence should be addressed

[†]Lehigh University

[‡]Naval Research Laboratory

Figure 1: The four random sequences generated for $\langle h \rangle = 0.2$ and N=150. Images show a representative snapshot of each sequence in bulk, as well as a representative ensemble of 15 conformations (transparent). In addition to the average R_q of each sequence's total ensemble, the letter sequence is shown, where H and P represent hydrophobic and hydrophilic (polar) residues, respectively.

Figure 2: R_g vs. $\langle h \rangle$ for the 150-mer IDP in bulk, comparing the results from varying numbers of sequences for $\langle h \rangle = 0.1, 0.2, 0.3,$ and 0.5. Each sequence is simulated for 5E8 steps.

Figure 3: Number of clusters vs. $\langle h \rangle$ for the 150-mer IDP in bulk (above). Population of top ten clusters for selected <h> values (below).

Figure 4: Cumulative R_g distributions shifted by the the median value for IDPs of varying $\langle h \rangle$ in bulk.

Figure 5: Average asphericity, A_s , of the IDPs as a function of $\langle h \rangle$ shows the same trend as R_g in crowders. Above, A_s in bulk ranges from 0.45 at $\langle h \rangle = 0$ to 0.022 at $\langle h \rangle = 1$, while crowding reduces the asphericity, particularly for $\langle h \rangle \approx 0.25$. Scaling A_s by that in bulk (below) shows a non-monotonic collapse, similar to that seen in the R_g (see main text Figure 2). Data shown is for $r_c=13$ Å.

Figure 6: Cumulative R_g distributions shifted by the the median value for $\langle h \rangle = 0$, 0.2, and 1 in bulk (black) and in crowders of radius r_c =13 Å.

Figure 7: Skewness of the R_g distribution (black diamonds) as well as the three eigenvalues of the gyration tensor $(\Lambda_1, \Lambda_2, \Lambda_3)$ vs. $\langle h \rangle$, showing a maximum at intermediate $\langle h \rangle$ values.

Figure 8: $R_g(\phi)$ of the IDP chain within crowders scaled by that in bulk for varying for N and $\langle h \rangle$, while the size of the polymer relative to the crowders $(R_g(0)/r_c)$ is maintained at 3.66. Above, the IDP length (N) is varied for the fully hydrophilic ($\langle h \rangle = 0$) chain, and r_c is manipulated to maintain the same polymer-to-crowder size ratio. Below, the r_c is again manipulated while N is held constant at 150 and changes in bulk R_g are effected by varying **.**

Figure 9: $R_g(\phi)/R_g(0)$ for our 150-mer IDP polymers (open symbols) and the corresponding predictions by the ellipsoid model with free-volume theory (solid symbols) with a scaling factor $s = 1$ The simulation results are compared with theoretical predictions for $r_c = 13$ Å (above) and 40 Å (below), at crowding volume fractions $\phi = 0.1 - 0.4$.

Figure 10: Potential of mean force between a protein chain and a spherical crowder of radius $13\text{\AA}(\text{above})$ and $40\text{\AA}(\text{below})$ for different $\langle \text{h} \rangle$ values.

Figure 11: Scaling factor for the principal radii of ellipsoids vs. \langle h \rangle at $r_c = 13$ and 40 Å.