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The clathrin model

This supplementary material describes the main features of our coarse-grained clathrin
model. We refer the interested reader to earlier publications for more details and a moti-
vation of the model.

Shape

The particle is rigid. Each leg consists of a three linear segments, referred to as the
proximal (p), distal (d) and terminal domain (td), see Fig 1. The three proximal segments
meet at the central hub (h), at a pucker angle χ = 101◦ relative to the normal vector n̂h
along to the three fold symmetry axis of the particle. Normal vectors are also associated
with every knee (k); the normal n̂α,k of the knee of the αth leg lies in the plane formed by
the proximal segment of that leg and the particle normal n̂h. The three angles between
a knee-normal and the two leg segments meeting at that knee are chosen to be identical
to the three angles between the hub-normal and two proximal segments meeting at the
hub. The terminal domain is attached at the ankle (a) at an angle of 114◦ relative to the
adjacent distal segment, and at a dihedral angle of 28◦ relative to the distal and proximal
segments of the same leg. All leg segment are taken to be the same length, σ = 17 nm.
Associated with every proximal segment is a polarity vector, defined for the αth leg as

m̂α,p =
(xα,k − xh)× n̂h
|(xα,k − xh)× n̂h|

, (1)

with x denoting the position of the specific joint indicated in the subscript, see Fig. S1.
Polarity vectors to distal segment m̂α,d are defined likewise, based on the end points of
that segment and the normal at the knee.

Potential

The interaction between two triskelia is described by a sum of inter-segmental interactions.
These interactions conform with the segmental pairings observed in experimental cage
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edges: attractive interactions are introduced between aligned pairs of two anti-parallel
proximal segments, of two anti-parallel distal segments, and between any aligned pair of
one proximal and one distal segment; here ‘anti-parallel’ refers to amino acid sequences
running in opposite directions. When two segments are properly aligned, their respective
ends are close to each other. As an example, consider the proximal segment of the αth leg
of particle i interacting with the proximal segment of the βth leg of particle j. The two
average distances between the four ends of these segments are

riα,hkjβ,kh =
1

2
|xi,h − xjβ,k|+

1

2
|xiα,k − xj,h| , (2)

riα,hkjβ,hk =
1

2
|xi,h − xj,h|+

1

2
|xiα,k − xjβ,k| , (3)

where the distance on the first line is small if the hub of i is close to the βth knee of j and
the αth knee of i is close to the hub of j (i.e. aligned and anti-parallel), while the distance
on the second line is small if the hub of i is close to the hub of j and the αth knee of i is
close to the βth knee of j (i.e. aligned and parallel), as illustrated in Fig. S2. The former
combination occurs in clathrin cages, hence an attractive interaction is assigned:

φiα,hkjβ,kh = −εhkkh · f
(
riα,hkjβ,kh

)
· g

(
m̂iα,p · m̂jβ,p

)
, (4)

with the positive parameter εhkkh denoting the (absolute) maximum inter-segmental binding
energy. The distance dependence smoothly decreases from unity for coinciding end points
to zero at the cut-off distance rcut, following

f(r) =
1

2

[
1− tanh[A(r − rcut/2)]

tanh[Arcut/2]

]
, (5)

where A determines the steepness of the potential, see Fig. S3. The numerical values
entering these expressions are provided in Table S1. In addition to a small distance between
the end points, we also require alignment of the polarities of the two leg segments, through

g(x) =

{
−x for x < 0

0 for x ≥ 0.
(6)

This factor reflects the supposition that interaction sites are not distributed homoge-
neously over the segmental surface, but are concentrated on the side that faces the three
neighbouring segments in a cage edge. As a result, two legs will bind only if the two
triskelia involved are oriented similarly, i.e. their hub normals point approximately in the
same direction. For the current example of two proximal segments, they will bind only if
the average hub-knee distance is small and their polarities are pointing in opposite direc-
tions. Our earlier simulations indicated that this rotational asymmetry holds the key to
the self-assembly of clathrin cages; upon removing the factor g from the potential, triskelia
form disordered aggregates rather than cages. All other attractive interactions between
binding segment pairs, see the aforementioned list of combinations, are constructed along
the same lines.

The introduction of excluded volume interactions between the thin long legs is disad-
vantageous from a computational point of view: they impose a smaller time step, and the
legs have to be non-linear and slightly flexible in order to interweave into a cage edge.
We therefore omitted excluded volume interactions. One important consequence of ex-
cluded volume interactions should not be ignored, however: excluded volume prevents a
leg segment from binding to an edge in a ‘slot’ already occupied by another leg segment.
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Figure S1: The coarse grained simulation model. The unit vectors n̂h and m̂α,p denote
the normal at the hub and the polarity vector of a proximal segment, respectively.

Returning to the two proximal segments of the above example: the distance between the
ends of two aligned parallel proximal segments, as calculated in Eq. (3), should not become
small. This is achieved by a pair interaction similar to Eq. (4),

φiα,hkjβ,kh = −εhkhk · f
(
riα,hkjβ,hk

)
, (7)

where the interaction strength parameter εhkhk has a negative value and the rotational asym-
metry has been omitted. A likewise interaction is introduced between two aligned parallel
distal segments. The parameters of these repulsive interactions are listed in Table S1.
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iα – jβ ε A/σ−1 rcut/σ g(x)

attractive
hk – kh ε 4 0.4 m̂p · m̂p

ka – ak ε 4 0.4 m̂d · m̂d

hk – ka ε/2 4 0.4 −m̂p · m̂d

hk – ak ε/2 4 0.4 m̂p · m̂d

repulsive
hk – hk −10ε 0.8 0.8 −1
ka – ka −10ε 0.8 0.8 −1

Table S1: Interaction parameters of the six distinct clathrin leg segment pairings. In the
first column, the letters refer to the hub (h), knee (k) and ankle (a) of legs α and β of
particles i and j, respectively. Note that the order is important: the two proximal-proximal
pairings, i.e. the first attractive combination and the first repulsive combination, refer to
Eqs. (2) and (3), respectively. The value of ε is varied from 2 to 10kBT in the construction
of the phase diagrams. The elements in the last column represent the arguments x to the
polarity function g(x), where the first vector in the dot products refers to a segment of
the α leg of particle i and the second vector to a segment of the β leg of particle j, and
where g(−1) = 1.

Figure S2: (A) Arrows indicating the two distances entering Eq. (2), to be used for the
attractive potential, and (B) arrows indicating the two distances entering Eq. (3), to be
used for the repulsive potential.
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Figure S3: Distance dependence of the segment-segment interaction.
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Figure S4: AP-clathrin click potential in the unclicked (A, b = 0) and clicked (B, b = 1)
state.
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Figure S5: Validation of the Monte Carlo clicking moves by comparing reaction equilibrium
constants obtained from simulations (markers) with the theoretical expressions (solid lines)
derived in Appendix 1. Shown are the reaction equilibrium constants for triskelia with
one single-clicked AP, Ktri

1,0, with two single-clicked APs, Ktri
2,0, and with one double-clicked

AP, Ktri
0,1. Simulations are performed using a box of volume 106σ3 populated with 1,000

clathrin and 3,000 APs. To enhance the number of clicks and to facilitate the comparison
with theory, the clathrin-clathrin interactions are turned off, ε = 0, AP clicks are limited
to one leg per triskelion, the AP spring constant is reduced to k = 1kBT/σ

2, and the
radius of the click interaction is enlarged to ρ = 0.3σ.
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Figure S6: Calculated fraction of triskelia absorbed in cages, for APs clicking to the ends
of the TDs and the ankles of triskelia, as a function of the clathrin and AP concentrations,
for the standard chemical potential differences indicated on the plots, in units of kBT . See
main text for discussion.
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