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CALCULATION OF THE AVERAGE FORCE DIPOLE FOR TWO FILAMENTS

We detail here how we obtain the average force dipole exerted by a motor on two �laments in the con�gurations
shown in Fig. 2. As mentioned in the text, we assume here that crosslinkers are rigidly �xed to the external network.
The geometry of the two �laments and motor can be described by the positions of the motor on the two �laments s1,
s2 and by the two angles  i between the motor �lament and i-th �lament (i = 1; 2). The motor positions si evolve
according to

�
dsi
dt

= �@U
@si

; (S1)

while the angles  i relax instantaneously, so that @U=@ i = 0.

No crosslinkers attached, or one �lament is attached by only one crosslinker and the other �lament is rigidly

attached to the external network

Case (i) and (iv): In these situations, no steady-state is reached as the motor always unbinds from the two �laments.

Two �laments attached to each other by a crosslinker

Case (ii): When the two �laments are attached to each other by a single crosslinker, the mechanical potential U
reads

U = �f0(x1 + x2) + �

�q
x21 + x22 � 2x1x2 cos � � lm

�
(S2)

with x1 and x2 the distances between the myosin attachment points to the crossing point of the two �laments, taken
positive in the direction of the �lament towards which motors move (Fig. S1A). � is the angle between the two
�laments, such that n1:n2 = cos �, with ni the unit vector giving the orientation of the �lament i. In addition, � is a
Lagrange multiplier ensuring that the length lm of the motor is �xed. Three situations can then occur:

� when � 6= 0 and � 6= � and the �laments are not parallel neither antiparallel, the angle � is given by

cos � =
x21 + x22 � l2m

2x1x2
(S3)

and is free to adjust as the motor position changes. The evolution of the position of the motor on the �laments
is given by

�
dx1
dt

= f0 (S4)

�
dx2
dt

= f0 (S5)

such that the motor moves until it detaches from the �laments, or until the �laments become parallel or
antiparallel.
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FIG. S1: Final con�gurations reached by two �laments bound by a motor, with the �laments attached to a rigid external
network with a varying number of crosslinkers. A, D, G, example con�gurations for each case, according to the number
of crosslinkers; B, E, H, corresponding possible steady-state con�gurations; C,F,I, Phase plot of the dynamics of the motor
according to the coordinates of its position on the two �laments, x1, x2. Red lines and dots correspond to stable steady-state
con�gurations, while dotted black lines correspond to unstable steady-state con�gurations. Green regions represent values of
the coordinates x1 and x2 which are not geometrically accessible.

� When the two �laments are parallel and point in the same direction, � = 0 and (x1 � x2)
2 = l2m. The center of

mass of the motor at position (x1 + x2)=2 follows the dynamic equation

�
d

dt

x1 + x2
2

= f0 (S6)

and the motor moves on the �lament until it detaches.

� When the two �laments are antiparallel, � = � and (x1 + x2)
2 = l2m. Two con�gurations are then possible,

according to whether the two �laments point away or towards the center of the motor from their attachment
point to the motor. These two con�gurations correspond respectively to x1+x2 = �lm (expansile con�guration)
and x1 + x2 = lm (contractile con�guration). Any position of the motor on the �lament is then a steady-state
solution, as long as the two motor ends each bind on the �laments.

To test for the stability of these two con�gurations, we consider a slight change of the angle between the two
�laments, � = � + ��, with j��j � 1. We take the initial position of the motor to be x1 = x0 + �lm=2 and
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x2 = �x0 + �lm=2, with � = �1 for an expansile con�guration and � = 1 for a contractile con�guration.
x0 = (x1 � x2)=2 is the position of the center of mass of the motor, relative to the crosslinker joining the two
�laments, measured positively in the direction of the �rst �lament. We �nd then the following dynamic equation
for ��:

�
d��

dt
= �

�
dx1
dt

@�

@x1
+
dx2
dt

@�

@x2

�

= f0
8�lm

l2m � 4x20

1

��
(S7)

where we have used Eqs. (S3), (S4) and (S5) from the �rst to the second line. The sign of the right hand side
of Eq. (S7) indicates whether the angle � increases or decreases when the two �laments are slightly rotated
away from their antiparallel con�guration. Therefore, the associated con�guration is unstable when the sign is
positive, and stable otherwise. We �nd therefore that the stability of the con�guration depends on the position
of the center of mass of the motor: for jx0j < lm=2 (motor near the crosslinker), the expansile con�guration
is stable, and the contractile con�guration unstable. For jx0j > lm=2 (motor away from the crosslinker), the
expansile con�guration is unstable and the contractile con�guration is stable.

The ow diagram in Fig. S1C shows the corresponding dynamics in the space of the motor position (x1; x2). Red
segments indicate the stable steady states. In the green regions, no value of the angle � allows for the motor to have
position (x1, x2) on the two �laments.

Two �laments, each attached by a crosslinker to the external network

The mechanical potential reads in that case

U = �f0(x1 + x2) + �

�q
x21 + x22 + l2m + 2x1lm cos 1 + 2x2lm cos 2 + 2x1x2 cos( 1 +  2)� a

�
; (S8)

with x1 and x2 the distances between the myosin attachment point and the crosslinker position on each �lament, and
a 6= 0 the distance between the two crosslinkers (Fig. S1D). � is a Lagrange multiplier imposing that the length of
the motor is equal to lm. In this subsection, we use for convenience the dynamics of the angle between motor and
�laments  1 and  2 to characterise the orientation of the �laments. The dynamics in the limit where the relaxation
of  1 and  2 is taken into account is given by

�
dx1
dt

= f0 � �

a
(x1 + lm cos 1 + x2 cos( 1 +  2)) (S9)

�
dx2
dt

= f0 � �

a
(x2 + lm cos 2 + x1 cos( 1 +  2)) (S10)

��a2
d 1

dt
=

�

a
(x1lm sin 1 + x1x2 sin( 1 +  2)) (S11)

��a2
d 2

dt
=

�

a
(x2lm sin 2 + x1x2 sin( 1 +  2)) (S12)

where �� 1 is a factor that vanishes in the quasi-static limit where the �laments rotate adiabatically. Solving for the
Lagrange multiplier � by imposing the constraint that the length of the motor is equal to lm, we obtain:

� = �f0a
3 (x1 + x2)(1 + cos( 1 +  2)) + lm(cos 1 + cos 2)

A+B�a2
(S13)

A = (x1lm sin 1 + x1x2 sin( 1 +  2))
2 + (x2lm sin 2 + x1x2 sin( 1 +  2))

2

B = (x1 + lm cos 1 + x2 cos( 1 +  2))
2
+ (x2 + lm cos 2 + x1 cos( 1 +  2))

2

where the coe�cient A vanishes when the �laments are aligned with the motor. Several situations can again be
distinguished:
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� When the �laments are neither parallel nor antiparallel, from Eq. (S13), � � � in the limit � ! 0. Eqs. (S9)
and (S10) then yield at the lowest order in �

�
dx1
dt

= f0 +O(�) (S14)

�
dx2
dt

= f0 +O(�) (S15)

such that no steady-state exists in that situation.

� When the �laments are parallel and point in the same direction, ( 1;  2) = (0; �) or ( 1;  2) = (�; 0). In that
case � = 0 and no steady-state exists for the motor, which runs on the two �laments before detachment.

� When the �laments are antiparallel, ( 1;  2) = (0; 0) (expansile con�guration) or ( 1;  2) = (�; �) (contractile
con�guration). In the expansile con�guration, x1+x2+ lm = �a, with � = �1. In the contractile con�guration,
x1+ x2� lm = �a, with the same rule applying for �. In both cases, Eq. (S13) yields � = �f0 and any position
of the motor is a steady-state.

To test for the stability of these steady states, we consider the dynamics of  1 and  2 around  1 =  2 =  �

with  � � 0 or �. We write therefore  1 =  �+ � 1 and  2 =  �+ � 2. To regularise the dynamics around the
parallel �laments state, we consider a situation with non-zero � and consider perturbations verifying � � p

�,
such that � ' �f0. From Eqs. (S11) and (S12), we have then

��a2
d� 1

dt
=

�f0
a

[(x1lm cos � + x1x2)� 1 + x1x2� 2] (S16)

��a2
d� 2

dt
=

�f0
a

[x1x2� 1 + (x2lm cos � + x1x2)� 2] ; (S17)

so that the state  1 =  2 =  � is stable if �(x1lm cos � + x2lm cos � + 2x1x2) < 0 and (x1lm cos � +
x1x2)(x2lm cos � + x1x2) � x21x

2
2 > 0, whereas it is unstable otherwise. Taking the initial condition to be

x1 = x0=2+ (�a� lm cos �)=2 and x2 = �x0=2+ (�a� lm cos �)=2 at the steady state, the stability condition
is satis�ed when

�(x20 + l2m � a2) > 0 and x1x2� cos 
� > 0 : (S18)

The results are summarized in the ow diagram in Fig. S1F. Red segments indicate the stable steady states. In the
green region, there are no possible values of  1 and  2 for given values of x1 and x2.

Two �laments rigidly attached to the external network

This situation corresponds to case (v). The mechanical potential U reads as for case (ii)

U = �f0(x1 + x2) + �

�q
x21 + x22 � 2x1x2 cos � � lm

�
; (S19)

with x1 and x2 the distances to the crossing point of the two �laments, taken positive in the direction of the �lament
towards which motors move (Fig. S1G). � is the angle between the two �laments, such that n1:n2 = cos �, with ni

the unit vector giving the orientation of the �lament i. � is a Lagrange multiplier ensuring that the length lm of the
motor is �xed. The dynamic equation for the motion of the motor on the two �laments Eq. (S1) then reads

�
dx1
dt

= f0 � �

lm
(x1 � x2 cos �) (S20)

�
dx2
dt

= f0 � �

lm
(x2 � x1 cos �); (S21)

where � is a �xed angle, and the Lagrange multiplier � is obtained from the constraint that x21+x
2
2�2x1x2 cos � = l2m:

� =
f0lm(x1 + x2)(1� cos �)

(x1 � x2 cos �)2 + (x2 � x1 cos �)2
(S22)
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Two solutions can be found for the motor position on the two �laments, assuming that they are not parallel (� 6= 0
and � 6= �):

x1 = x2 = � lm

2 sin �
2

(S23)

As pointed out in Ref. [1], a linear stability analysis around the steady-state indicates that only the positive solutions
x1 = x2 = lm=[2j sin(�=2)j] is stable. The corresponding force dipole at equilibrium is positive and is given by

d =
lmf0

j sin( �2 )j
: (S24)

Therefore, the dipole formed on two rigidly �xed, non-parallel �laments is always contractile (Fig. S1H-I).

Average force dipoles

FIG. S2: Schematic of the force dipole exerted by a motor. Each motor exerts a force of magnitude f0 parallel to the
�lament. The total force exerted by the motor on the �lament are equal and opposite at steady-state and denoted f1 and
f2. The contribution of the force normal to the �lament arises from geometrical constraints. Overall, this results in a tension
f = jf1j = jf2j acting within the motor, which is used here to de�ne the force dipole exerted by a motor.

To obtain the associated average force dipole exerted by the motor in these di�erent con�gurations, we proceed as

follows: denoting as c
(0)
12 the initial distance between the two �laments, �

(0)
f;1 and �

(0)
f;2 the two angles giving the initial

orientations of the �laments, x
(0)
m;1, x

(0)
m;2 the initial position of the two motors on the �laments, and rk (k = 1; � � � ; Nc

with Nc the number of crosslinkers attached to the external network) the position of the crosslinkers on the �laments,
we compute the motor-induced force dipole d reached at steady-state as shown in Fig. S2 by

d(c
(0)
12 ; �

(0)
f;1; �

(0)
f;2; x

(0)
m;1; x

(0)
m;2; frkgk) = � lmf0

2 cos 1
� lmf0

2 cos 2
; (S25)

where the angles  1 and  2 between the motor and two �laments at steady-state are functions of c
(0)
12 , �

(0)
f;1, �

(0)
f;2, x

(0)
m;1,

x
(0)
m;2 and frkgk. Equation (S25) is obtained from the de�nition of the force dipole

d =
lm
2
n12 � (f1 � f2) (S26)

with n12 the unit vector giving the motor orientation pointing from �lament 1 to �lament 2, and fi with i = 1; 2 are
the forces exerted by the motor on the two �laments. The dependencies �1= cos i (i = 1; 2) in Eq. (S25) arise from
the condition that the projections of the forces fi on the �lament i have magnitude f0 (Fig. S2).
The average force dipole is then obtained by

< d >=
1

�

Z
dc

(0)
12

Z 2�

0

d�
(0)
f;2

Z 2�

0

d�
(0)
f;2

Z  NcY
k=1

drk

!Z
d
n
x
(0)
m;1; x

(0)
m;2

o
d(c

(0)
12 ; �

(0)
f;1; �

(0)
f;2; x

(0)
m;1; x

(0)
m;2; frkgk) ; (S27)
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where the integration
R
d
n
x
(0)
m;1; x

(0)
m;2

o
runs for all possible initial motor con�gurations x

(0)
m;1, x

(0)
m;2 that eventually

reach a steady state, and � =
R
dc

(0)
12

R
dfx(0)m;1; x

(0)
m;2g(2�)2(Lf )Nc .

RELATIONSHIP BETWEEN THE STRESS AND THE AVERAGE FORCE DIPOLE

In this section, we discuss the two contributions to the stress generated by the �lament and motor network, �fij and

�mij . We point out that in the absence of large scale deformations, �fij can contribute to the total stress, when the
elastic response of the �lament network is non-linear.

A

B

Motors are

turned on

FIG. S3: A. Schematic of a 2D elastic material, subjected to forces arising from force dipoles exerted by motor �laments.
Motors result in a stress �ij acting at the boundary of the box. B. Schematic of a 1D chain of non linear springs subjected to
force dipoles. The chain contains N springs and is �xed at both ends. Motors result in a force � along the chain.

Two-dimensional, linear elastic material

We consider here a two-dimensional elastic material subjected to the force dipoles exerted by motor �laments. The
motor force dipoles consist of two opposite forces fk = �fknk, separated by a distance lm, and where the index k
label the motors. The motors induce a deformation in the elastic material. The total stress in the system is then the
sum of the resulting elastic stress, denoted �fij , and the stress generated within the motors, denoted �mij :

�ij = �fij + �mij (S28)

We start by discussing the average stress created by an ensemble of motors in a 2D material. Following Ref. [2], we
now show that when the system is homogeneous, force balance on a section S of the network enclosed in a contour C
allows to relate the stress generated within motors to the concentration and orientation of motors. To evaluate the
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stress, we �rst note that each motor k corresponds to a line under tension fk with length lm, orientation n
k, centered

at position x
k, and joining the two points at coordinates xk � lm=2n

k and x
k + lm=2n

k (Fig. S3A). Therefore, the
two-dimensional stress �eld within the motors can be written

�mij (x) =
X
k

fknki n
k
j

Z lm

2

�
lm

2

du�(x� (xk + n
ku)) (S29)

where u is a coordinate going along the line under tension fk. The average stress within a region S of surface area S
is then given by

h�mij i =
1

S

Z
S

dx�mij (x) (S30)

=
1

S

Z
S

dx
X
k

fknki n
k
j

Z lm

2

�
lm

2

du�(x� (xk + n
ku)) (S31)

=
1

S

X
k

fklmn
k
i n

k
j (S32)

= chdninji (S33)

where c is the concentration of motors, dk = lmf
k is the dipole strength of motor k, and the averaging h�i is performed

over space.
In a linearly elastic material, the average stress within the network of �laments is given by

�fij = 2E

�
uij � 1

2
ukk�ij

�
+Kukk�ij (S34)

with E and K a shear and bulk elastic moduli, and uij =
1
2 (@iuj + @jui) the gradient of deformation. The average

stress generated in the elastic material in a region S with contour C and surface area S is then given by

h�fiji =
1

S

Z
S

dx�fij (S35)

=
2E

S

Z
S

dxuij +
K � E

S

Z
S

dxukk�ij (S36)

=
E

S

Z
C

dl�iuj +
E

S

Z
C

dl�jui +
K � E

S

Z
C

dl�kuk�ij (S37)

where � is the vector normal to the contour C and dl an in�nitesimal line element on the contour. If we consider
a square box whose boundaries are �xed (Fig. S3A), or periodic boundary conditions, the contour integrals in Eq.
(S37) vanish. Therefore, for a linear elastic material with �xed boundaries, the average stress arises entirely from the
forces acting within the motors. This however does not apply to a non-linearly elastic material, as we show in the
next section.

One-dimensional chain of non-linear springs

We consider a simpler example in 1D of a periodic chain of N elastic springs. Each spring is located between
positions xi and xi+1, with initial resting position xi = il. The two points at the end of the chain, x0 and xN , are not
allowed to move. In addition, Nm motors are acting in parallel to a fraction n = Nm=N of the springs (Fig. S3B).
The motor exerts a constant force f . The springs have a non-linear force-extension relation

fe = k
�l

l
+ k2

�
�l

l

�2

(S38)

with fe the force exerted by the spring, �l = xi+1 � xi � l the extension of the spring, and k and k2 are two spring
constants. We assume that the springs are weakly non-linear, k2=k � 1. In the initial resting position, �l = 0. The
motors are then turned-on, driving a deformation of the the springs in the chain. The contraction of the springs
which are in parallel with the motors is denoted ��lm. Because the overall length of the chain is kept �xed, the
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deformation of the free springs is then given by �lmn=(1�n). We denote by � the total force acting within the chain.
Force balance imposes that the total force within the springs and the motors is �xed and equal to �, giving

� = �k�lm
l

+ k2

�
�lm
l

�2

+ f = k
�lm
l

n

1� n
+ k2

�
�lm
l

n

1� n

�2

(S39)

where the second part of the equality is the total force within the springs in parallel with a motor, and the third part
the force within the free springs. Solving these equations and expanding to �rst order in fk2=k

2 � 1, one obtains

� = fn+
k2f

2n(1� n)

k2
(S40)

or using the concentration of motors c = n=l,

� = flc+
k2f

2

k2
cl(1� cl) (S41)

= �m + �f (S42)

where �m = flc is the average tension exerted within the motors. To leading order in the spring non linearity, k2 ! 0,
the force within the chain reduces to the average motor tension �m, in agreement with Eq. (S33). The non-linear
elastic behaviour however brings a correction to this term �f = k2f

2cl(1 � cl)=k2, proportional to the motor force
squared, f2.

NETWORK RELAXATION TIME

Filament

Crosslinker

FIG. S4: Schematic of a �lament in the network. Crosslinkers bind to the �lament with rate kcfon and unbind with rate 1=�c.

We derive here an approximate expression for the network characteristic relaxation time. We consider a �lament
within the network, crossing other �laments that are themselves immobilised. We expect this last assumption to
be valid for a large enough number of crosslinkers. The number of crossing points is assumed to largely exceed the
total number of crosslinkers in the network. Crosslinkers bind and unbind the �lament at crossing points with other
�laments. A �lament with two attached crosslinkers is completely �xed, and can only rotate when it has one attached
crosslinker. For simplicity we consider here that the �lament can not rearrange to relax stresses unless no crosslinker
attaches it to other �laments in the network. Once a �lament is free, it can move until a crosslinker binds to it and
immobilise it. We therefore estimate the network relaxation time as the mean �rst passage time to a state where no
crosslinkers bind the �lament, from a state where one crosslinker binds the �lament.
We consider the probability of having nc crosslinkers on the �lament, P (nc). New crosslinkers bind to the �lament

with rate kcfon = 2[kcon=(1 + kcon�c)]Nc=Nf , as crosslinkers bind to all �laments in the network with rate kcon (Fig. S4),
and each crosslinker binds two �laments. In addition, crosslinkers unbind from the �lament with rate ��1

c (Fig. S4).
The probability P (nc) then follows the master equation:

dP (nc)

dt
=
nc + 1

�c
P (nc + 1) + kcfonP (nc � 1)�

�
nc
�c

+ kcfon

�
P (nc) (S43)

Stationary distribution. The stationary distribution of Eq. (S43) is a Poisson distribution:

P (nc) = e�k
cf

on
�c
(kcfon�c)

nc

nc!
(S44)

with mean and variance n�c = kcfon�c ' 2Nc=Nf for kcon�c � 1.
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Mean �rst passage time. We now want to obtain the mean �rst passage time to reach a state where the �lament
has no bound crosslinker, nc = 0, starting from a con�guration with n crosslinkers attached on the �lament. We
denote Tn this �rst passage time, and we follow a standard procedure to obtain its value [3, 4]. Tn satis�es the
following equation for n > 0:

Tn =
kcfon

kcfon + n=�c
Tn+1 +

n=�c
kcfon + n=�c

Tn�1 +
1

kcfon + n=�c
(S45)

where the �rst term corresponds to the probability of moving to a state with n + 1 bound crosslinkers, times the
waiting time from the state n + 1, the second term is the product of the probability to move to a state with n � 1
bound crosslinkers times the waiting time from the state n � 1, and the last term is the average time spent in the
state n. In addition, T0 = 0 by de�nition of the �rst passage time Tn, and we take a reecting boundary condition at
in�nity, implying Tn � Tn�1 ! 0 for n!1. Equation (S45) can be rewritten

kcfon(Tn � Tn+1) +
n

�c
(Tn � Tn�1) = 1 (S46)

or de�ning zn = Tn+1 � Tn,

zn =
n

kcfon�c
zn�1 � 1

kcfon
(S47)

To solve this equation, one introduces Zn = zn(k
cf
on�c)

n=n!, which satis�es then:

Zn = Zn�1 � (kcfon�c)
n

kcfonn!
(S48)

Solving Eq. (S48) then yields the following expression for Zn, zn and Tn, using that Z1 = 0:

Zn =

1X
k=n+1

(kcfon�c)
k

kcfonk!
(S49)

zn =
n!

(kcfon�c)
n

1X
k=n+1

(kcfon�c)
k

kcfonk!
(S50)

Tn =

n�1X
k=0

k!

(kcfon�c)
k

1X
m=k+1

(kcfon�c)
m

kcfonm!
(S51)

From this last expression, one �nally obtains T1,

T1 =

1X
m=1

(kcfon�c)
m

kcfonm!
(S52)

=
1

kcfon
(ek

cf

on
�c � 1) (S53)

=
�c
n�c

(en
�

c � 1) (S54)

The time T1 therefore contains a factor increasing exponentially with the number of crosslinkers per �lament n�c .
We use the time T1 as an estimate for the network relaxation time. In Fig. 3f, we verify that the time T1 provides a
good approximation for the relaxation time of the network.

EFFECT OF MOTOR CONCENTRATION AND DISPERSION IN MOTOR FORCES

We have performed additional simulations measuring the isotropic stress � as the concentration of myosin motors
Nm=W

2 is varied (Figure. S5A). The reference stress �0 is de�ned as being proportional to motor concentration,
such that � � �0 indicates that the stress is proportional to the myosin concentration. We �nd that � has a weak
non-linear dependence as a function of the myosin number Nm for the simulation parameters plotted in Figure S5A,
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FIG. S5: A. Isotropic stress as a function of the number of motors Nm, for two values of myosin turnover. In these graphs,
we performed the simulations for the cases with identical motors (red circles) and with the a dispersion of 20% motor force
and friction (blue triangles). Non-speci�ed parameters are as in Fig. 3 of the main text. B. Isotropic stress as a function of
the number of motors, in the absence of a crosslinker. Green diamond marks, identical motors; no stress is generated. Blue
triangle marks, a dispersion of 20% motor force and friction results in a non-zero stress for a high enough number of motors.
Non-speci�ed parameters are as in Fig. 3 of the main text. Stress was averaged here over 10� after initialization.

and is nearly linearly increasing with Nm for slow enough turnover. This indicates that the stress generated by the
simulated network is roughly proportional to the myosin concentration.
In our simulations, motors are identical and have the same stall force; as a result no stress is generated in the

absence of crosslinkers (Fig. 3 and Ref [5]). Introducing a dispersion in motor friction and stall force however can
result in stress generation as the number of myosin motors is increased (Figure. S5B). The overall stress generated is
much smaller than stresses generated for the same parameters with a cross linked network.

SUPPLEMENTARY MOVIE LEGENDS

� Supp. Movie M1 Simulation of a network with no crosslinker turnover, no �lament turnover, Nc = 800 and
�m = 100� . Total simulation time, 1600� . The number of crosslinkers Nc is below the threshold for the network
to exert a contractile stress.

� Supp. Movie M2 Simulation of a network with no crosslinker turnover, no �lament turnover, Nc = 1100 and
�m = 100� . Total simulation time, 1600� . The number of crosslinkers Nc is above the threshold for the network
to exert a contractile stress.

� Supp. Movie M3 Simulation of a network with no �lament turnover, crosslinker turnover with �c = 100� ,
Nc = 1200 and �m = 100� . Total simulation time, 1600� . The network collapses and does not exert a
contractile stress in steady state.

� Supp. Movie M4 Simulation of a network with �lament turnover with �a = 100� , crosslinker turnover with
�c = 100� , Nc = 800 and �m = 100� . Total simulation time, 1600� . The network reaches a steady-state where
no contractile stress is exerted.

� Supp. Movie M5 Simulation of a network with �lament turnover with �a = 100� , crosslinker turnover with
�c = 100� , Nc = 1200 and �m = 100� . Total simulation time, 1600� . The network reaches a steady-state where
a contractile stress is exerted.
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