UV-vis Spectra and Photoswitching
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Supplementary Figure 1 | Overlay of the UV-vis absorption spectra of compound 1 — 6 (compound 1
and 2: ~4 uM; compounds 3 — 6: ~20 uM; toluene; room temperature) with their corresponding
absorption maxima. Both the thermally adapted and photostationary states under white light
irradiation (PSS) are indicated.



Photochemical Characterization of Compounds 1 -9
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Supplementary Figure 2 | Absorption spectra for the photoisomerization of compound 1 (Anax =
570 nm; ~4 uM in toluene; room temperature): a) cyclization with A = 590 nm (Supplementary Table
1, entry 10; 604-APTD1608SYC/J3, ) and b) thermal relaxation. Irradiation times are indicated.
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Supplementary Figure 3 | Reversible photochromism for repeated switching cycles of compound 1

(¥4 uM in toluene; room temperature) observed at A,. = 570 nm: Switching with A = 590 nm
(Supplementary Table 1, entry 10; 604-APTD1608SYC/J3, ) and thermal relaxation.
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Supplementary Figure 4 | Determination of half-life for compound 1: Points correspond to measured

data (observed at Anax = 570 nm, toluene, ~4 uM); line represents the fitting with single exponential

process. The half-life was determined to: t;, = 37.3 s.
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Supplementary Figure 5 | a) No significant shift of the A.,. is observed in a series of UV-vis

absorption spectra of increasing concentrations. b) Determination of the molar extinction coefficient

€570 of compound 1 in triplicates (linear regression, consider each replicate value as single point; 95%
confidence intervals are indicated with dashed lines).
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Supplementary Figure 6 | Absorption spectra for the photoisomerization of compound 2 (An.x =
545 nm; ~4 uM in toluene; room temperature): a) cyclization with A = 546 nm (Supplementary Table
2, entry 2; 546FS10-50, ) and b) thermal relaxation. Irradiation times are indicated.
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Supplementary Figure 7 | Reversible photochromism for repeated switching cycles of compound 2
(¥4 uM in toluene; room temperature) observed at A,. = 545 nm: Switching with A = 546 nm
(Supplementary Table 2, entry 2; 546FS10-50, ) and thermal relaxation.
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Supplementary Figure 8 | Determination of half-life for compound 2: Points correspond to measured
data (observed at A, = 545 nm, toluene, ~4 uM); line represents the fitting with single exponential
process. The half-life was determined to: t;, ~ 130s.
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Supplementary Figure 9 | a) No significant shift of the A,. is observed in a series of UV-vis
absorption spectra of increasing concentrations. b) Determination of the molar extinction coefficient
€545 of compound 2 in triplicates (linear regression, consider each replicate value as single point; 95%
confidence intervals are indicated with dashed lines).
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Supplementary Figure 10 | Absorption spectra for the photoisomerization of compound 3 (Ayax =
360 nm; ~20 uM in toluene; room temperature): a) switching trans to cis with A = 365 nm (br.)
(Supplementary Table 1, entry 2; ENB-280C/FE, ) and b) cis to trans, with A = 471 nm
(Supplementary Table 1, entry 8; 859-LTL2R3TBV3KS, ' ). Irradiation times are indicated.
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Supplementary Figure 11 | Reversible photochromism for repeated switching cycles of compound 3
(~20 uM in toluene; room temperature) observed at A = 360 nm: Switching with A = 370 nm (trans-
cis; Supplementary Table 1, entry 4; MARL 260019 UV EMITTER, TO-46, 100DEG, ) and switching
back with white light (cis-trans; Supplementary Table 1, entry 12; OSL1-EC, ).
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Supplementary Figure 12 | Determination of half-life for compound 3: Points correspond to
measured data (observed at A = 360 nm, toluene, ~20 uM); line represents the fitting with single
exponential process. The half-life was determined to: t;, > 8 h.
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Supplementary Figure 13 | a) No significant shift of the A.. is observed in a series of UV-vis
absorption spectra of increasing concentrations. b) Determination of the molar extinction coefficient
€360 of compound 3 in triplicates (linear regression, consider each replicate value as single point; 95%
confidence intervals are indicated with dashed lines).
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Supplementary Figure 14 | Absorption spectra for the photoisomerization of compound 4 (A, =
434 nm; ~20 UM in toluene; room temperature): a) switching trans to cis with A = 430 nm
(Supplementary Table 2, entry 1; 430FS10-50, ' ') and b) cis to trans, with A = 365 nm (Supplementary
Table 1, entry 3; M365F1, ). Irradiation times are indicated.
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Supplementary Figure 15 | Reversible photochromism for repeated switching cycles of compound 4
(~20 uM in toluene; room temperature) observed at Amay = 434 nm: Switching with A = 430 nm (trans-
cis; Supplementary Table 2, entry 1; 430FS10-50, ' ) and switching back with A = 365 nm (cis-trans;
Supplementary Table 1, entry 3; M365F1, ).
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Supplementary Figure 16 | Determination of half-life for compound 4: Points correspond to
measured data (observed at Apa = 434 nm, toluene, ~20 uM); line represents the fitting with single
exponential process. The half-life was determined to: t;, = 180 s.
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Supplementary Figure 17 | a) No significant shift of the A,.. is observed in a series of UV-vis
absorption spectra of increasing concentrations. b) Determination of the molar extinction coefficient
€434 of compound 4 in triplicates (linear regression, consider each replicate value as single point; 95%
confidence intervals are indicated with dashed lines).
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Supplementary Figure 18 | Absorption spectra for the photoisomerization of compound 5 (Apa =

320nm; ~20 uM in toluene; room temperature): a) switching trans to cis with A = 312 nm
(Supplementary Table 1, entry 1; ENB-280C/FE, * ) and b) cis to trans, with white light (cis-trans;
Supplementary Table 1, entry 12; OSL1-EC, ). Irradiation times are indicated.
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Supplementary Figure 19 | Reversible photochromism for repeated switching cycles of compound 5

(~20 uM in toluene; room temperature) observed at Ana = 320 nm: Switching with A = 312 nm (trans-

cis; Supplementary Table 1, entry 1; ENB-280C/FE, ' ') and switching back with white light (cis-trans;

Supplementary Table 1, entry 12; OSL1-EC, ).
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Supplementary Figure 20 | Determination of half-life for compound 5: Points correspond to
measured data (observed at Apa = 320 nm, toluene, ~20 uM); line represents the fitting with single
exponential process. The half-life was determined to: t;, > 8 h.

a) b)

09 09 7
320 nm

1
08 M 08 A
M

0.7 0.7 A
06 A

05 A

absorbance
absorbance

04 A

0.3 A

02 A
Ea00 = (270 +/-9) 10° M cm”!

01 A R®=0.983

T e e e 00 . T . . T T )
400 450 500 550 600 0 5 10 15 20 25 30

wavelength / nm concentrafion / pA

Supplementary Figure 21 | a) No significant shift of the A,.. is observed in a series of UV-vis
absorption spectra of increasing concentrations. b) Determination of the molar extinction coefficient
€350 of compound 5 in triplicates (linear regression, consider each replicate value as single point; 95%
confidence intervals are indicated with dashed lines).
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Supplementary Figure 22 | Absorption spectra for the photoisomerization of compound 6 (Ayax =
348 nm; ~20 uM in toluene; room temperature): a) switching trans to cis with A = 365 nm (br.)
(Supplementary Table 1, entry 2; ENB-280C/FE, ) and b) cis to trans, with white light
(Supplementary Table 1, entry 12; OSL1-EC, ["). Irradiation times are indicated.
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Supplementary Figure 23 | Reversible photochromism for repeated switching cycles of compound 6
(~20 uM in toluene; room temperature) observed at A. = 348 nm: Switching with A = 370 nm (trans-
cis; Supplementary Table 1, entry 4, MARL 260019 UV EMITTER, TO-46, 100DEG, ) and switching
back with white light (cis-trans; Supplementary Table 1, entry 12; OSL1-EC, ).
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Supplementary Figure 24 | Determination of half-life for compound 6: Points correspond to

measured data (observed at Am.x = 348 nm, toluene, ~20 uM); line represents the fitting with single
exponential process. The half-life was determined to: t;/, > 8 h.
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Supplementary Figure 25 | a) No significant shift of the A,.. is observed in a series of UV-vis
absorption spectra of increasing concentrations. b) Determination of the molar extinction coefficient
€348 of compound 6 in triplicates (linear regression, consider each replicate value as single point; 95%
confidence intervals are indicated with dashed lines).
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Supplementary Figure 26 | Absorption spectra for the photoisomerization of compound $6 (Ayax =
365 nm; ~10 uM in toluene; room temperature): a) switching trans to cis with A = 365 nm (br.)
(Supplementary Table 1, entry 2; ENB-280C/FE, ) and b) cis to trans, with white light (cis-trans;
Supplementary Table 1, entry 12; OSL1-EC, /). Irradiation times are indicated.
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Supplementary Figure 27 | Determination of half-life for compound S6: Points correspond to
measured data (observed at A = 365 nm, toluene, ~10 uM); line represents the fitting with single
exponential process. The half-life was determined to: t;, = 3.4 h.
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Supplementary Figure 28 | Absorption spectra for the photoisomerization of compound S8 (A, =
365 nm; ~20 uM in toluene; room temperature): a) switching trans to cis with A = 365 nm (br.)
(Supplementary Table 1, entry 2; ENB-280C/FE, ) and b) cis to trans, with white light (cis-trans;
Supplementary Table 1, entry 12; OSL1-EC, ). Irradiation times are indicated.
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Supplementary Figure 29 | Determination of half-life for compound S8: Points correspond to
measured data (observed at A,.x = 365 nm, toluene, ~20 uM); line represents the fitting with single
exponential process. The half-life was determined to: t;, = 3.6 h.
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Supplementary Figure 30 | Absorption spectra for the photoisomerization of compound 9 (Aya =
572 nm; ~4 uM in toluene; room temperature): a) cyclization with A = 577 nm (Supplementary Table
2, entry 3; 577FS10-50, ) and b) thermal relaxation. Irradiation times are indicated.
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Supplementary Figure 31 | Determination of half-life for compound 9: Points correspond to
measured data (observed at A,.x = 570 nm, toluene, ~4 uM); line represents the fitting with single
exponential process. The half-life was determined to: t;, = 30 s.



Determination of Photostationary States for Compounds 3 to 6
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Supplementary Figure 32 | Determination of photostationary states (PSS) for compound 3 by 'H-
NMR in toluene-ds; 2 mM: Irradiation of samples with indicated light sources and irradiation times.

:

After each irradiation, NMR samples were diluted and checked by UV-vis spectroscopy whether the
PSS was reached: A = 365 nm (br.) for 90 min (Supplementary Table 1, entry 2; ENB-280C/FE, ):
4:96 (trans/cis); A = 430 nm for 15 min (Supplementary Table 1, entry 6; 607-4304H6, = ): 70:30
(trans/cis); white light for 20 min (Supplementary Table 1, entry 12; OSL1-EC, \): 77:23 (trans/cis).
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Supplementary Figure 33 | UV-vis absorption spectra illustrating the photostationary states (PSS) for
compound 3 (~20 uM in toluene; room temperature). Irradiation times are indicated. Light sources
used: A = 365 nm (br.) (Supplementary Table 1, entry 2; ENB-280C/FE, ); A = 430 nm (Filter,
Supplementary Table 2, entry 1; 430FS10-50, " ); A = 430 nm (LED, Supplementary Table 1, entry 6;
607-4304H6, ' ) and white light (Supplementary Table 1, entry 12; OSL1-EC, ).
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Supplementary Figure 34 | UV-vis absorption spectra illustrating the photostationary states (PSS) for
compound 4 (~20 uM in toluene; room temperature). Irradiation times are indicated. Light sources

used: A = 365 nm (Supplementary Table 1, entry 3; M365F1, ); A = 430 nm (Filter, Supplementary
Table 2, entry 1; 430FS10-50, " ') and white light (Supplementary Table 1, entry 12; OSL1-EC, ).
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Supplementary Figure 35 | Determination of photostationary states (PSS) by *H-NMR for compound
5 in toluene-dg; 2 mM: Irradiation of samples with indicated light sources and irradiation times. After

Irr. white light, 45 min.

c
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each irradiation, NMR samples were diluted and checked by UV-vis spectroscopy whether the PSS
was reached: A = 312 nm for 12 h (Supplementary Table 1, entry 1; ENB-280C/FE, ' ): 32:68
(trans/cis); A = 430 nm for 1 h (Supplementary Table 1, entry 6; 607-4304H6, ' ): 82:18 (trans/cis);
white light for 45 min (Supplementary Table 1, entry 12; OSL1-EC, \): 77:23 (trans/cis). Remark: The
photostationary states for irradiation with A =312 nm and A = 365 nm are comparable.
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Supplementary Figure 36 | UV-vis absorption spectra illustrating the photostationary states (PSS) for
compound 5 (~20 uM in toluene; room temperature). Irradiation times are indicated. Light sources
used: A = 312nm (Supplementary Table 1, entry 1; ENB-280C/FE, " ); A = 365nm (br.)
(Supplementary Table 1, entry 2; ENB-280C/FE, ); A = 430 nm (Filter, Supplementary Table 2, entry
1; 430FS10-50, " ); A = 430 nm (LED, Supplementary Table 1, entry 6; 607-4304H6, " ') and white light
(Supplementary Table 1, entry 12; OSL1-EC, ).
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Supplementary Figure 37 | Determination of photostationary states (PSS) by *H-NMR for compound
6 in toluene-dg; 2 mM: Irradiation of samples with indicated light sources and irradiation times. After
each irradiation, NMR samples were diluted and checked by UV-vis spectroscopy whether the PSS
was reached: A = 365 nm (br.) for 90 min (Supplementary Table 1, entry 2; ENB-280C/FE, ): < 3:97
(trans/cis); A = 430 nm for 20 min (Supplementary Table 1, entry 6; 607-4304H6, = ): 69:31
(trans/cis); white light for 30 min (Supplementary Table 1, entry 12; OSL1-EC, ") 76:24 (trans/cis).
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Supplementary Figure 38 | UV-vis absorption spectra illustrating the photostationary states (PSS) for
compound 6 (~20 uM in toluene; room temperature). Irradiation times are indicated. Light sources
used: A = 365 nm (br.) (Supplementary Table 1, entry 2; ENB-280C/FE, ); A = 430 nm (Filter,
Supplementary Table 2, entry 1; 430FS10-50, " ); A = 430 nm (LED, Supplementary Table 1, entry 6;
607-4304H6, ' ) and white light (Supplementary Table 1, entry 12; OSL1-EC, ).



Photochemical Characterization of Two-Photoswitch Mixtures

Mixture of compound 1 + 3
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Supplementary Figure 39 | Reversible photochromism of the two-photoswitch system (compound 1
and 3; 1: ~4 uM; 3: ~20 uM; toluene; room temperature): (a) Absorption spectra of the individual
photoswitches (trans-3 and open-1) and their combination in a solution. (b) Absorption spectra of the
four different functional states that can be achieved by irradiation in the mixture of 1 and 3 (trans—
open; trans—cyclized; cis—open and cis—cyclized).
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Supplementary Figure 40 | Effects of irradiation with different wavelengths on the selectivity of
photoswitching of a mixture of compound 1 and 3 (1: ~4 uM; 3: ~20 uM; toluene; room temperature)
monitored at characteristic wavelengths for each photoswitch (A = 360 nm for 3 and A = 570 nm for
1). Wavelengths of irradiations are indicated.
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Supplementary Figure 41 | Orthogonal photoswitching of a mixture of compound 1 and 3 (1: ~4 uM;
3: ~20 uM; toluene; room temperature) monitored at characteristic wavelengths for each
photoswitch (A = 360 nm for 3 and A = 570 nm for 1). Wavelengths of irradiations are indicated.

Proof for Photoswitching of 3 in a Mixture of 1 and 3 by 1H-NMR
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Supplementary Figure 42 | Photoswitching of the azobenzene in a 1:1 mixture of azobenzene 3 and
DASA 1 (~4 mM; toluene-ds, room temperature). (a) Non-irradiated mixture; (b) irradiation with A =
365 nm (br.) (Supplementary Table 1, entry 2; ENB-280C/FE, ) for 20 min..
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Supplementary Figure 43 | Reversible photochromism of the two-photoswitch system (compound 1
and 4; 1: ~4 uM; 4: ~20 uM; toluene; room temperature): (a) Absorption spectra of the individual
photoswitches (trans-4 and open-1) and their combination in a solution. (b) Absorption spectra of the
four different functional states that can be achieved by irradiation in the mixture of 1 and 4 (trans—
open; trans—cyclized; cis—open and cis—cyclized). Remark: In Fig. 43b, there are two spectra depicted
for the case cis—cyclized. The reason for this is exemplified in Fig. 44 with irradiations 9/10:
irradiation with A = 590 nm also partially affects the azobenezene (4).
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Supplementary Figure 44 | Orthogonal photoswitching of a mixture of compound 1 and 4 (1: ~4 uM;
4: ~20 uM; toluene; room temperature) monitored at characteristic wavelengths for each
photoswitch (A = 434 nm for 4 and A = 570 nm for 1). Wavelengths of irradiations are indicated.
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Supplementary Figure 45 | Reversible photochromism of the two-photoswitch system (compound 1
and 5; 1: ~4 uM; 5: ~20 uM; toluene; room temperature): (a) Absorption spectra of the individual
photoswitches (trans-5 and open-1) and their combination in a solution. (b) Absorption spectra of the
four different functional states that can be achieved by irradiation in the mixture of 1 and 5 (trans—
open; trans—cyclized; cis—open and cis—cyclized).
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Supplementary Figure 46 | Orthogonal photoswitching of a mixture of compound 1 and 5 (1: ~4 uM;
5: ~20 uM; toluene; room temperature) monitored at characteristic wavelengths for each
photoswitch (A = 320 nm for 5 and A = 570 nm for 1). Two plots (a) and (b) with different order of
irradiation. Wavelengths of irradiations are indicated. Remark: Irradiation with A = 312 nm switches
compound 5 (Anax = 320 nm), but also results in slow degradation of photoswitch 1 (irradiations 6, 8
and 9). This is in accordance to earlier reports.*
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Supplementary Figure 47 | Reversible photochromism of the two-photoswitch system (compound 1
and 6; 1: ~4 uM; 6: ~15 uM; toluene; room temperature): (a) Absorption spectra of the individual
photoswitches (trans-6 and open-1) and their combination in a solution. (b) Absorption spectra of the
four different functional states that can be achieved by irradiation in the mixture of 1 and 6 (trans—
open; trans—cyclized; cis—open and cis—cyclized).
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Supplementary Figure 48 | Orthogonal photoswitching of a mixture of compound 1 and 6 (1: ~4 uM;
6: ~15uM; toluene; room temperature) monitored at characteristic wavelengths for each
photoswitch (A = 348 nm for 6 and A = 570 nm for 1). Wavelengths of irradiations are indicated.
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Supplementary Figure 49 | Reversible photochromism of the two-photoswitch system (compound 2

and 6; 2: ~4 uM; 6: ~15 uM; toluene; room temperature): (a) Absorption spectra of the individual

photoswitches (trans-6 and open-2) and their combination in a solution. (b) Absorption spectra of the

four different functional states that can be achieved by irradiation in the mixture of 2 and 6 (trans—

open; trans—cyclized; cis—open and cis—cyclized).
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Supplementary Figure 50 | Orthogonal photoswitching of a mixture of compound 2 and 6 (2: ~4 uM;

6: ~15uM; toluene; room temperature) monitored at characteristic wavelengths for each
photoswitch (A = 348 nm for 6 and A = 545 nm for 2). Wavelengths of irradiations are indicated.



Photoswitching at Higher Concentrations
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Supplementary Figure 51 | Overlay and comparison of different concentrations of the single
photoswitches 1 or 3 and their absorption spectra.
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Supplementary Figure 52 | Orthogonal photoswitching of a concentrated mixture of compound 1
and 3 (1: ~12 uM; 3: ~60 uM; toluene; room temperature; 10 mm quartz cuvette) monitored at
characteristic wavelengths for each photoswitch (A = 360 nm for 3 and A = 570 nm for 1), in order to
assess whether the orthogonality of the intermolecular photoswitching is dependent on the
concentration used.
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Supplementary Figure 53 | a) Absorption spectra of different concentrations of single photoswitches
and mixtures thereof. b) Absorption spectra of the four different functional states that can be
achieved by irradiation in the mixture of 1 and 3 (1: ~80 uM; 3: ~400 uM; toluene; room
temperature; 1.0 mm quartz cuvette).



Characterization of Photoswitching in an Intramolecular Combination of

Photoswitches

Photoswitches 1 and S6 and their intramolecular analogue 7
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Supplementary Figure 54 | Reversible photochromism of the two-photoswitch system (compound 1

and S6; 1: ~4 uM; S6: ~10 uM; toluene; room temperature): (a) Absorption spectra of the individual

photoswitches (trans-S6 and open-1) and their combination in a solution. (b) Absorption spectra of

the four different functional states that can be achieved by irradiation in the mixture of compounds 1

and S6 (trans—open; trans—cyclized; cis—open and cis—cyclized).
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Supplementary Figure 55 | Absorption spectra of (a) compound 7 and (b) compound 8 (~4 uM;
toluene; room temperature).
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Supplementary Figure 56 | Photoswitching in the inter- (a) and intramolecular (b) case (toluene;

room temperature): a) Orthogonal photoswitching of a mixture of compound 1 and S6 (1: ~4 uM; S6:
~10 uM). b) Photoswitching of compound 7 (~4 uM). Monitored characteristic wavelengths for each
photoswitch and wavelengths of irradiations are indicated.
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Supplementary Figure 57 | Reversible photochromism of the two-photoswitch system (compound 1
and S8; 1: ~4 uM; S8: ~20 uM; toluene; room temperature): (a) Absorption spectra of the individual
photoswitches (trans-S8 and open-1) and their combination in a solution. (b) Absorption spectra of
the four different functional states that can be achieved by irradiation in the mixture of 1 and S8
(trans—open; trans—cyclized; cis—open and cis—cyclized).
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Supplementary Figure 58 | Photoswitching in the inter- (a) and intramolecular (b) case (toluene;
room temperature): a) Orthogonal photoswitching of a mixture of compound 1 and S8 (1: ~4 uM; S8:
~20 uM). b) Photoswitching of compound 8 (~4 uM). Monitored characteristic wavelengths for each
photoswitch and wavelengths of irradiations are indicated.



Extraction Experiments
Study of a mixture of photoswitch 3 and 9
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B) 365 nm -> 430 nm -> 590 nm -> back-extraction
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Supplementary Figure 59 | Dynamic phase transfer of a mixture of azobenzene 3 and DASA 9 in

toluene/water. Two samples A and B were subjected to different irradiation sequences (A: 365 nm ->
590 nm -> 430 nm -> back-extraction; B: 365 nm -> 430 nm -> 590 nm -> back-extraction) and the
process was monitored by color (a) and UV-vis spectroscopy (b) and is conceptualized in (c). a) The

switching process can be monitored by phase-color (3: 500 uM; 9: 100 uM; toluene/water; room

temperature). b) UV-vis absorption spectra of both the organic and aqueous layer (at stages i to v) (3:

20 uM; 9: 4 uM; toluene/water; room temperature). c) The presence of compounds 3 and 9 in the

different phases is schematically depicted.



Study of compound 8
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Supplementary Figure 60 | Dynamic phase transfer of compound 8 in a toluene/sat. ag. NaHCO; (pH
= 9) mixture. The independent switching and phase-transfer events can be monitored by phase-color
(a) and UV-vis spectroscopy (b). State I: Initial conditions, compound 8 resides in the organic phase
(purple color). State Il: The azobenzene part of compound 8 was switched by irradiation at A =
365 nm. The DASA part remains untouched. State /lI: Irradiation with white light results in the
cyclization of the DASA moiety, decoloration and phase-transfer of compound 8. State /V: Separating
the layers and back-extraction of the aqueous layer with dichloromethane results in back-transfer of
compound 8 to the organic phase, as can be observed by the recoloration of this phase (purple
color). The presence of compounds in the different phases is schematically depicted (c).



Binding Studies

Photoswitching of the azobenzene moiety
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Supplementary Figure 61 | Absorption spectra for the photoisomerization of compound cyclized-8
(Amax =350 nm; ~11 uM in water pH = 9; room temperature): a) switching trans to cis with A = 365 nm
(br.) (Supplementary Table 1, entry 2; ENB-280C/FE, ) and b) cis to trans, with white light
(Supplementary Table 1, entry 12; OSL1-EC, ). Irradiation times are indicated.
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Supplementary Figure 62 | Determination of thermal stability of the cis-azobenzene moiety of
compound cyclized-8 (~11 uM): Points correspond to measured data (observed at Ama = 350 nm,



water pH > 9; room temperature); line represents the fitting with single exponential process. The
half-life was determined to: t;,, = 1.8 h.



UV-vis Studies on Host-Guest Binding12
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Supplementary Figure 63 | Absorption spectra for the binding of compound cyclized-8 (Amax =

350 nm; 11 uM in water pH 2 9; room temperature) with a-CD: a) before and b) after addition of
solution B.
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Supplementary Figure 64 | Absorption spectra for the photoisomerization and binding of compound
cyclized-8 (A.x = 350 nm; 11 uM in water pH 2 9; room temperature) with a-CD: a) before and b)
after addition of solution B. Switching trans to cis with A = 365 nm (br.) (Supplementary Table 1, entry
2; ENB-280C/FE, ). The spectra for the photostationary states are given.
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Supplementary Figure 65 | Absorption spectra for the photoisomerization and binding of compound
cyclized-8 (A.x = 350 nm; 11 uM in water pH 2 9; room temperature) with a-CD: a) before and b)
after addition of solution B. Switching trans to cis with A = 365 nm (br.) (Supplementary Table 1, entry
2; ENB-280C/FE, ).
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Supplementary Figure 66 | Absorption spectra for the photoisomerization and binding of compound
cyclized-8 (A.x = 350 nm; 11 uM in water pH 2 9; room temperature) with a-CD: a) before and b)
after addition of non-irradiated solution B. Switching trans to cis with A = 365nm (br.)
(Supplementary Table 1, entry 2; ENB-280C/FE, ).
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Supplementary Figure 67 | Absorption spectra for the photoisomerization and binding of compound
cyclized-8 (. = 350 nm; 11 uM in water pH 2 9; room temperature) with a-CD: a) before and b)
after addition of non-irradiated solution B. Switching trans to cis with A = 365nm (br.)
(Supplementary Table 1, entry 2; ENB-280C/FE, ). The spectra for the photostationary states are
given.



Reversible Photoswitching of Bound cyclized-8
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Supplementary Figure 68 | Absorption spectra for the photoisomerization and binding of compound
cyclized-8 (Amax = 350 nm; 11 uM in water pH > 9; room temperature) to a-CD: a) titration of the
thermally adapted state and b) titration of the PSS reached for A = 365 nm (br.) (Supplementary Table
1, entry 2; ENB-280C/FE, ). At the end-point of the titration, the sample was irradiated with A =
365 nm (br.) and subsequently with white light (Supplementary Table 1, entry 12; OSL1-EC, ). The
spectra for the photostationary states are given.
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Supplementary Figure 69 | Reversible photochromism for repeated switching cycles of compound
cyclized-8 (11 uM in water pH = 9; room temperature) observed at Ay, = 350 nm: Switching with A =
370 nm (trans-cis; Supplementary Table 1, entry 4; MARL 260019 UV EMITTER, TO-46, 100DEG, )
and switching back with white light (cis-trans; Supplementary Table 1, entry 12; OSL1-EC, ).
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Supplementary Figure 70 | Reversible photochromism for repeated switching cycles of compound
cyclized-8 (11 uM in water pH > 9; room temperature) and a-CD (140 uM, 12.7 equiv.) observed at
Amax = 367 nm: Switching with A = 370 nm (trans-cis; Supplementary Table 1, entry 4, MARL 260019
UV EMITTER, TO-46, 100DEG, ) and switching back with white light (cis-trans; Supplementary Table
1, entry 12; OSL1-EC, 7).



'H- and *C-NMR Spectra
Compound 1
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Supplementary Figure 71 | 'H- and *C{*"H}-NMR spectra of compound 1.
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Supplementary Figure 72 | 'H- and *C{*"H}-NMR spectra of compound 2.
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Supplementary Figure 73 | *H- and “*C{*"H}-NMR spectra of compound 3.
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Supplementary Figure 74 | *H- and “*C{*"H}-NMR spectra of compound 4.
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Compound S6
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Supplementary Figure 80 | ‘H- and “*C{*"H}-NMR spectra of compound S8.
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Compound 9
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Supplementary Figure 83 | *H- and “*C{*"H}-NMR spectra of compound 9.
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Light Sources

Supplementary Table 1 | Comparison of used commercial light sources.

intensity

[a] [b] .

entry color® Amax (nm) (mw)® type supplier
1 312 ND ENB-280C/FE Spectroline
2 365 (br.) ND ENB-280C/FE Spectroline

3 365 1x[4.1] M365F1 ThorLabs

MARL 260019 UV
4 370 5x[1.0] Farnell
EMITTER, TO-46, 100DEG

] Sahlmann
dl LED light source 3x .
5 400 9.1! Photochemical
400 nm .
Solutions
6 430 0.4 607-4304H6 Mouser
7 460 0.7 604-APTD1608QBC/D Mouser
8 471 120 859-LTL2R3TBV3KS Mouser
9 515 1.1 604-APTD1608ZGC Mouser
10 590 1.0 604-APTD1608SYC/J3 Mouser
11 640 2,51 604-APTD1608SEC/J3 Mouser
white light
12 & ND OSL1-EC ThorlLabs
(wl)
w
white light Plusline ES Small 160W .
13 (halogen) ND 3100 Im Philips

[a] Color code used throughout the manuscript and supporting information; [b] Absorption maximum (A,,) of the light
source as indicated by the supplier. [c] Values in [] denote intensities reported by the supplier. ND = not determined [d]
Distance from light source: 5 cm. [e] Distance from light source: 1 cm.



Supplementary Table 2 | Used optical band-pass filters were purchased from Andover Corporation
and used in combination with the high-intensity white light source (Supplementary Table 1, entry 12;
OSL1-EC, ).

entry color®  Acenter (nM)™ Bandwidth (nm)™ Transmission (%)™ type
1 430.0 +3/-0 10.0 +2/-2 45 430FS10-50
2 546.1 +2/-0 10.0 +2/-2 55 546FS10-50
3 577.0+2/-0 10.0 +2/-2 55 577FS10-50

[a] Color code used throughout the manuscript and supporting information; [b] As indicated by the supplier.

Titrations

Thermally adapted cyclized-8

Supplementary Table 3 | Amounts of solutions A and B and concentrations obtained for the titration
of thermally adapted cyclized-8.[a'b] All solution were prepared in water (pH = 9; room temperature).
The concentration of cyclized-8 was hold constant during the titration.

o0 oy — o

[cyclized-8] a-CD
entry Badded (uL) totalamount (uL) conc. (uM) conc. (uUM) equiv. a-CD

1 2070 11 0 0

2 1 2071 11 1.9 0.18
3 2 2072 11 3.9 0.35
4 4 2074 11 7.7 0.70
5 8 2078 11 15.4 1.40
6 12 2082 11 23.1 2.10
7 16 2086 11 30.7 2.79
8 20 2090 11 38.3 3.48
9 24 2094 11 459 4.17
10 28 2098 11 53.4 4.85
11 32 2102 11 60.9 5.54
12 36 2106 11 68.4 6.22
13 40 2110 11 75.8 6.89
14 52 2122 11 98.0 8.91
15 64 2134 11 112.0 10.91
16 76 2146 11 141.7 12.88
17 88 2158 11 163.1 14.83
18 100 2170 11 184.3 16.76



19 140 2210 11 253.4 23.04

20 180 2250 11 320.0 29.09
21 220 2290 11 384.3 34.93
22 260 2330 11 446.4 40.58
23 300 2370 11 506.3 46.03

[a] Solution A: 11 uM cyclized-8; Solution B: 11 uM cyclized-8; 4 mM a—CD; [b]
non-irradiated/thermally adapted.

PSS 365 nm cyclized-8

Supplementary Table 4 | Amounts of solutions A and B and concentrations obtained for the titration
of irradiated cyclized-8 for 180s A = 365 nm (br.) (Supplementary Table 1, entry 2; ENB-280C/FE,
)22 All solution were prepared in water (pH = 9; room temperature). The concentration of cyclized-8
was hold constant during the titration. Both solutions were irradiated concomitantly.

> 2@ 0@ - — !e, PR

major minor

[cyclized-8] a-CD
entry Badded (uL) totalamount (uL) conc. (uM) conc. (uUM) equiv. a-CD

1 2070 11 0 0

2 40 2110 11 75.8 6.89
3 80 2150 11 148.8 13.53
4 120 2190 11 219.2 19.93
5 160 2230 11 287.0 26.09
6 200 2270 11 352.4 32.04
7 240 2310 11 415.6 37.78
8 280 2350 11 476.6 43.33
9 320 2390 11 535.6 48.69

[a] Solution A: 11 uM cyclized-8; Solution B: 11 uM cyclized-8; 4 mM a—CD; [b]
Irradiation: 180s A = 365 nm (br.) (Supplementary Table 1, entry 2; ENB-280C/FE,
).

Control experiment 1

Supplementary Table 5 | Amounts of solutions A and B and concentrations obtained for the titration
of irradiated cyclized-8 for 30s A = 365 nm (br.) (Supplementary Table 1, entry 2; ENB-280C/FE, ).
All solution were prepared in water (pH = 9; room temperature). The concentration of cyclized-8 was
hold constant during the titration. Both solutions were irradiated concomitantly.

R ,ﬂ ‘-.’ — !é’. t'.

roughly 1:1

[cyclized-8] a-CD
entry Badded (uL) totalamount (uL) conc. (uM) conc. (uUM) equiv. a-CD
1 2070 11 0 0




2 40 2110 11 75.8 6.89
3 80 2150 11 148.8 13.53
4 120 2190 11 219.2 19.93
5 160 2230 11 287.0 26.09
6 200 2270 11 352.4 32.04
7 240 2310 11 415.6 37.78
8 280 2350 11 476.6 43.33
9 320 2390 11 535.6 48.69

[a] Solution A: 11 uM cyclized-8; Solution B: 11 uM cyclized-8; 4 mM a—CD; [b]
Irradiation: 30s A = 365 nm (br.) (Supplementary Supplementary Table 1, entry 2;
ENB-280C/FE, ).

Control experiment 2
20s 365 nm cyclized-8

Supplementary Table 6 | Amounts of solutions A and B and concentrations obtained for the titration
of irradiated cyclized-8 for 20s A = 365 nm (br.) (Supplementary Table 1, entry 2; ENB-280C/FE, )."
All solution were prepared in water (pH = 9; room temperature). The concentration of cyclized-8 was
hold constant during the titration. Only solution A was irradiated.

o @ 1’. ‘-.’ == !iﬁ. ,..

roughly 1:1

[cyclized-8] a-CD
entry Badded (uL) totalamount(uL) conc. (uM) conc. (uUM) equiv. a-CD

1 2070 11 0 0

2 40 2110 11 75.8 6.89
3 80 2150 11 148.8 13.53
4 120 2190 11 219.2 19.93
5 160 2230 11 287.0 26.09
6 200 2270 11 352.4 32.04
7 240 2310 11 415.6 37.78
8 280 2350 11 476.6 43.33
9 320 2390 11 535.6 48.69

[a] Solution A: 11 uM cyclized-8; Solution B: 11 uM cyclized-8; 4 mM a—CD; [b]
Irradiation of solution A: 20s A = 365 nm (br.) (Supplementary Table 1, entry 2;
ENB-280C/FE, ).

PSS 365 nm cyclized-8

Supplementary Table 7 | Amounts of solutions A and B and concentrations obtained for the titration
of irradiated cyclized-8 for 60s A = 365 nm (br.) (Supplementary Table 1, entry 2; ENB-280C/FE, ).[a’b]



All solution were prepared in water (pH = 9; room temperature). The concentration of cyclized-8 was
hold constant during the titration. Only solution A was irradiated.

= ) t&. «-.’ _— !e,. ‘\._.

[cyclized-8] a-CD
entry Badded (uL) totalamount (uL) conc. (uM) conc. (uUM) equiv. a-CD

1 2070 11 0 0

2 40 2110 11 75.8 6.89
3 80 2150 11 148.8 13.53
4 120 2190 11 219.2 19.93
5 160 2230 11 287.0 26.09
6 200 2270 11 352.4 32.04
7 240 2310 11 415.6 37.78
8 280 2350 11 476.6 43.33
9 320 2390 11 535.6 48.69

[a] Solution A: 11 uM cyclized-8; Solution B: 11 uM cyclized-8; 4 mM a—CD; [b]
Irradiation of solution A: 60s A = 365 nm (br.) (Supplementary Table 1, entry 2;
ENB-280C/FE, ).



Supplementary Methods

General Reagent Information: Preparation of commercially unavailable compounds: unless stated
otherwise, all reactions were carried out in oven- and flame-dried glassware using standard Schlenk
techniques and were run under nitrogen atmosphere. The reaction progress was monitored by TLC.
Starting materials, reagents and solvents were purchased from Sigma-Aldrich, Acros, Fluka, Fischer,
Combi-Blocks, TCl, J.T. Baker or Macron and were used as received, unless stated otherwise. Solvents
for the reactions were of quality puriss., p.a.. Anhydrous solvents were purified by passage through
solvent purification columns® (MBraun SPS-800). For aqueous solutions, deionized water was used.

Furfural, dimethylamine, ethylamine solution (2 M in THF), oxone (monopersulfate compound),
anisidine, N,N-dimethylaniline, 1,4-dibromobutane, 1,12 dibromododecane and methyl 4-
aminobenzoate were purchased from Sigma Aldrich. 1,3-Dimethylbarbituric acid and azobenzene
were purchased from TCl Europe. 4-Aminoacetanilide was purchased from Acros Organics. 4-
Methoxyazobenzene was purchased from Combi-Blocks.

General Considerations: Thin Layer Chromatography analyses were performed on commercial
Kieselgel 60, F254 silica gel plates with fluorescence-indicator UV,s, (Merck, TLC silica gel 60 F,s,4). For
detection of components, UV light at A = 254 nm or A = 365 nm was used. Alternatively, oxidative
staining using aqueous basic potassium permanganate solution (KMnQO,) or aqueous acidic cerium
phosphomolybdic acid solution (Seebach’s stain*) was used. Drying of solutions was performed with
MgSO, and volatiles were removed with a rotary evaporator. For lyophilization of compounds,
samples were frozen in liquid N, and then freeze-dried with a LaboGene ScanVac CoolSafe 110-4 Pro
Freeze Dryer at 168-163 K and 0.01 mbar for 16 h.

General Analytical Information: Nuclear Magnetic Resonance spectra were measured with an
Agilent Technologies 400-MR (400/54 Premium Shielded) spectrometer (400 MHz). All spectra were
measured at room temperature (22-24 °C). Chemical shifts for the specific NMR spectra were
reported relative to the residual solvent peak [in ppm; CDCls: & = 7.26; CDCls: & = 77.16; CD,Cl,: &y =
5.32; CD,Cly: & = 53.84; dg-DMSO: & = 2.50; d-DMSO: & = 39.52; toluene-dg: & = 2.08, 6.97, 7.01,
7.09; toluene-ds: & = 137.48, 128.87, 127.96, 125.13, 20.43; CD;0D: & = 3.31; CD;0D: & = 49.007°.
The multiplicities of the signals are denoted by s (singlet), d (doublet), t (triplet), g (quartet), m
(multiplet), br (broad signal), app (apparent). All *C-NMR spectra are 'H-broadband decoupled.

High-resolution mass spectrometric measurements were performed using a Thermo scientific LTQ
OrbitrapXL spectrometer with ESI ionization. The molecule-ion M*, [M + H]* and [M—X]" respectively
are given in m/z-units. Melting points were recorded using a Stuart analogue capillary melting point
SMP11 apparatus. UV-vis absorption spectra were recorded on an Agilent 8453 UV-Visible
Spectrophotometer in a 10 mm quartz cuvette using Uvasol® grade solvents. Half-lives of
photoswitches were measured at A, and fitted with single exponential process. Intensities of light
sources at A = 400 nm and above were measured using a PM160 Power Meter with Photodiode
Sensor (ThorlLabs) at their corresponding peak-wavelength (An.). The distance from the light source
is indicated.



Synthesis and Characterization
Synthesis of donor-acceptor Stenhouse adduct (DASA, 1):°

\ \ \
o)
OsN._O H,0, 2h OsN._O Et,NH O N._O
oAy Y 2 7 Yo BN Y OH Y 7
\ N~ 92% 0 NN THF SN AN NS
o) o)
1

rt., 30 min o)

1
89%

Compound S1 has been prepared according to a reported procedure.® Spectral properties matched
previously reported values.

5-((2Z,4E)-5-(diethylamino)-2-hydroxypenta-2,4-dien-1-ylidene)-1,3-dimethylpyrimidine-
2,4,6(1H,3H,5H)-trione (1):*

[¢]
S1 (234 mg, 1.00 mmol) was suspended in tetrahydrofuran (10 mL). Subsequently, diethylamine

(104 pL, 1.00 mmol) was added to the suspension at room temperature, followed by water (few
drops). The reaction mixture was stirred for 30 min. at room temperature. The color of the reaction
mixture turned dark purple.

Upon consumption of the starting material (TLC), additional tetrahydrofuran (10 mL) was added and
the product was precipitated from the reaction mixture with cold pentane. Compound 1 was filtered
to obtain dark purple crystals (275 mg, 89% vyield) that can be further purified by recrystallization
from warm acetonitrile if needed. Mp. 141-142 °C; *H NMR (400 MHz, CDCl5) § 1.31 (t, J = 7.2 Hz, 3H,
NCH,CH3), 1.34 (t, J = 7.2 Hz, 3H, NCH,CH3), 3.34 (s, 3H, NCH3), 3.35 (s, 3H, NCH3), 3.48 (q, / = 7.2 Hz,
2H, NCH,CHs), 3.50 (g, J = 7.4 Hz, 2H, NCH,CHs), 6.07 (t, J = 12.4 Hz, 1H, vinylH), 6.75 (dd, J = 12.3, 1.5
Hz, 1H, vinylH), 7.15 (s, 1H, vinylH), 7.22 (d, J = 12.3 Hz, 1H, vinylH), 12.54 (s, 1H, OH); **C NMR (101
MHz, CDCly) & 12.5, 14.7, 28.4, 28.6, 44.2, 51.9, 98.7, 102.7, 139.5, 146.7, 151.1, 152.1, 156.4, 163.5,
165.2; HRMS (ESI+) calc. for CisH,2N304 [M + H]™: 308.1608, found: 308.1605.



Synthesis of donor-acceptor Stenhouse adduct (DASA, 2):°

o 2 00/ Ho2n /T SNy EtNH o O\A
H * —_—
w i(o 89% MO THF \/NM;/H(O
o) o) rt. to 0 C, 30 min o)
S2 2

81%

Compound S2 has been prepared according to a reported procedure.®® Spectral properties matched
previously reported values.

5-((2Z,4E)-5-(diethylamino)-2-hydroxypenta-2,4-dien-1-ylidene)-2,2-dimethyl-1,3-dioxane-4,6-

dione (2):*
NPT
~_N = N (o]
WKIO(

S$2 (1.00g, 4.50 mmol) was suspended in tetrahydrofuran (10 mL). Subsequently, diethylamine
(465 pL, 4.50 mmol) was added to the suspension at room temperature, followed by water (few
drops). The reaction mixture was stirred for 10 min. at room temperature and 20 min. at 0 °C. The
color of the reaction mixture turned dark purple. Upon cooling, a precipitate was formed which was
then collected by filtration and washed with cold diethyl ether and cold pentane and dried. The final
product (2) was obtained as dark red crystals (1.08 g, 81% vyield). Mp. 132 - 134 °C; *H NMR (400
MHz, CDCl;) 6 1.29 (t, J = 7.3 Hz, 3H, NCH,CHj3), 1.33 (t, J = 7.2 Hz, 3H, NCH,CHs), 1.70 (s, 6H, C(CH3),), 3.49
(9,J = 7.2 Hz, 4H, 2 x NCH,CHs), 6.05 (t, J = 12.3 Hz, 1H, vinylH), 6.73 (dd, J = 12.4, 1.5 Hz, 1H, vinylH), 7.28 (d,
J=12.3 Hz, 1H, vinylH), 11.41 (s, 1H, OH); 3¢ NMR (101 MHz, CDCl;) 6 12.4, 14.6, 26.8, 44.2, 52.0, 90.6,
102.4, 103.5, 139.0, 145.0, 151.5, 157.2, 165.4, 167.2; HRMS (ESI+) calc. for CisH»,NOs [M + H]*:
296.1493, found: 296.1496.



Synthesis of compound 3:”"°
LSO :
NH;  oxone (2 eq.) N\\N/©/
W/Q/ CHZCIngZO 71/©/ " peoHEOH O
t., 16h o
87% 85% 3

Compound S3 has been prepared accordlng to a reported procedure.? Spectral properties matched
previously reported values.

Methyl (E)-4-((4-methoxyphenyl)diazenyl)benzoate (3):

To a solution of methyl 4-nitrosobenzoate (S3, 1.00 g, 6.10 mmol) in EtOH (10 mL) was added 4-
methoxyaniline (0.75 g, 6.10 mmol) and glacial acetic acid (10 mL). The reaction mixture was stirred
at room temperature for 16 h.

After consumption of the substrates (TLC), water (20 mL) was added and the aqueous phase was
extracted with CH,Cl, (3 x 20 mL). The combined organic extracts were washed subsequently with
1M aqg. HCl-solution (20 mL), sat. ag. NaHCOs-solution (20 mL), water (20 mL) and sat. ag. NaCl-
solution (20 mL) and were dried over MgSQ,, filtered and concentrated in vacuo. Recrystallization
from hot EtOAc furnished compound 3 as bright orange crystals (1.39 g, 85% vyield). Mp. 165-167 °C;
'H NMR (400 MHz, CDCl;) & 3.90 (s, 3H, OCHs), 3.95 (s, 3H, CO,CHs), 7.03 (d, J = 8.9 Hz, 2H, ArH), 7.91
(d, J = 8.5 Hz, 2H, ArH), 7.95 (d, J = 9.0 Hz, 2H, ArH), 8.17 (d, J = 8.5 Hz, 2H, ArH); **C NMR (101 MHz,
CDCl;) 6 52.4, 55.8, 114.5, 122.5, 125.3, 130.7, 131.3, 147.1, 155.5, 162.8, 166.8; HRMS (ESI+) calc.
for Cy5H1sN,03 [M + H]™: 271.1077, found: 271.1081. Spectral properties matched previously reported
values.’

Characterization in toluene-ds:

trans-3: 'H NMR (400 MHz, toluene-ds) & 3.24 (s, 3H), 3.52 (s, 3H), 6.71 (d, /= 9.0 Hz, 2H), 7.90 (d, J =
8.8 Hz, 2H), 7.97 (d, J = 8.9 Hz, 2H), 8.14 (d, J = 8.8 Hz, 2H).

cis-3: '"H NMR (400 MHz, toluene-ds) 6 3.09 (s, 3H), 3.44 (s, 3H), 6.35 (d, J = 8.9 Hz, 2H), 6.56 (d, J = 8.4
Hz, 2H), 6.73 (d, J = 8.9 Hz, 2H), 7.82 (d, J = 8.5 Hz, 2H).

Methyl (E)-4-((4-(dimethylamino)phenyl)diazenyl)benzoate (4):

To a solution of methyl-4-aminobenzoate (300 mg, 2.00 mmol) in aq. 1M HCl (10 mL) was added
drop-wise a solution of NaNO, (138 mg, 2.00 mmol) in H,O (1.0 mL) on ice. This solution was stirred
for 15 min at room temperature. The resulting mixture was slowly added to a solution of N,N-
dimethylaniline (242 mg, 2.00 mmol) and NaOAc (57.0 mg, 0.70 mmol) in EtOH (10 mL), in an ice-
water bath. Upon addition, the reaction mixture turned dark red and it was subsequently stirred for
1h in an ice-water bath and 1h at room temperature. CH,Cl, (50 mL) was added to the reaction
mixture and the layers were separated and the aqueous layer extracted with CH,Cl, (3 x 50 mL). The
combined organic extracts were washed with H,0 (50 mL), ag. 0.1 M HCl-solution (50 mL) and sat.



aq. NaCl-solution (2 x 50mL) and dried over MgSQ,, filtered and concentrated in vacuo.
Recrystallization from acetonitrile yielded 4 as bright red crystals. (250 mg, 45%). Mp. 183-184 °C; 'H
NMR (400 MHz, CDCl5) 6 3.11 (s, 6H, N(CHs),), 3.94 (s, 3H, OCHs), 6.76 (d, J = 9.2 Hz, 2H, ArH), 7.87 (d,
J = 8.5 Hz, 2H, ArH), 7.91 (d, J = 9.1 Hz, 2H, ArH), 8.14 (d, J = 8.6 Hz, 2H, ArH); *C NMR (101 MHz,
CDCls) 6 40.4, 52.3, 111.7, 122.1, 125.7, 130.2, 130.7, 143.8, 153.0, 167.0; HRMS (ESI+) calc. for
C16H1sN30; [M + H]": 284.1394, found: 284.1395.

Characterization in toluene-ds:

trans-4: "H NMR (400 MHz, toluene-dg) & 2.39 (s, 6H), 3.52 (s, 3H), 6.40 (d, J = 9.1 Hz, 2H), 7.98 (d, J = 8.5
Hz, 2H), 8.09 (d, J = 9.1 Hz, 2H), 8.17 (d, J = 8.5 Hz, 2H);

cis-4: *H NMR (400 MHz, toluene-dg) 6 2.26 (s, 6H), 3.47 (s, 3H), 6.04 (d, J = 9.0 Hz, 2H), 6.71 (d, J = 8.3 Hz,
2H), 6.95—-7.00 (m, 2H), 7.92 (d, J = 8.2 Hz, 2H).

(E)-azobenzene (5):

'

©/N>N
Characterization in toluene-ds:
trans-5: "H NMR (400 MHz, toluene-dg) 6 7.07 —7.12 (m, 1H), 7.14 — 7.20 (m, 2H), 7.93 — 7.98 (m, 2H);
cis-5: "H NMR (400 MHz, toluene-dg) & 6.60 — 6.64 (m, 2H), 6.68 — 6.73 (m, 1H), 6.77 — 6.84 (m, 2H).

(E)- 4-Methoxyazobenzene (6):
O\
Wes

o
Characterization in toluene-ds:
trans-6: "H NMR (400 MHz, toluene-dg) 6 6.72 (d, J = 8.9 Hz, 2H), 7.10 — 7.13 (m, 1H), 7.21 (t, J = 7.7
Hz, 2H), 7.99 (d, J = 8.6 Hz, 4H).
cis-6: "H NMR (400 MHz, toluene-dg) 6 6.37 (d, J = 8.9 Hz, 2H), 6.67 — 6.71 (m, 2H), 6.74 — 6.79 (m,
3H), 6.89 (t, J = 7.9 Hz, 2H).



Synthesis of compound 7:
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7: 84%
(E)-4-(4’-hydroxyphenylazo)acetanilide (S4, following a literature procedure):*°

jon
AcHN

To an ice-cold solution of 4-amino-acetanilide (1.35 g, 9.00 mmol, 1.04 equiv.) in aq. 6N HCI (9.0 mL)
was added drop-wise a solution of NaNO, (635 mg, 9.20 mmol, 1.02 equiv.) in water (2.0 mL),
followed by a few crystals of urea. The resultant yellow mixture was added slowly to a cooled (ice-
water bath) solution of phenol (828 mg, 8.80 mmol, 1.00 equiv.) and NaOH (1.70 g, 42.5 mmol,
4.70 equiv.) in water (6.0 mL). After 2h, the mixture was allowed to warm to room temperature and
was acidified with 30% aq. HCl to pH = 6. The resultant precipitate was filtered off, washed with
water and dried, furnishing product $4 (1.79 g, 80%) as a brown solid. 'H NMR (400 MHz, DMSO-dy):
52.07 (s, 3H, CH5CO), 6.91 (d, *J = 8.0 Hz, 2H, ArH), 7.71-7.90 (m, 6H, ArH), 10.19 (s, 1H, NH). Spectral
properties matched previously reported values.?

(E)-N-(4-((4-(4-bromobutoxy)phenyl)diazenyl)phenyl)acetamide (S5):
O\/\/\Br
Q“\‘NQ
AcHN

A solution containing (E)-4-(4’-hydroxyphenylazo)acetanilide (S4, 255mg, 1.00 mmol), 1,4-
dibromobutane (2.00 mL, 17.0 mmol, 17.0 equiv.), potassium carbonate (276 mg, 2.00 mmol,
2.00 equiv.) and potassium iodide (17 mg, 0.10 mmol, 0.10 equiv.) in acetone (10 mL) was heated
under reflux for 2.5h. The reaction mixture was diluted with EtOAc (100 mL), washed with 1N aq. HCI
(2 x 100 mL), sat ag. NaHCO; (100 mL) and sat. ag. NaCl solution (100 mL) and dried over MgSO,.
Solvents were partially evaporated, and the product was precipitated with pentane, to give S5
(310 mg, 80% yield) as an orange solid. Mp. 172-174 °C; *H NMR (400 MHz, DMSO-d¢): & 1.75-1.96
(m, 4H, BrCH,CH,CH,), 2.08 (s, 3H, CH3CO), 3.60 (t, °J = 6.8 Hz, 2H, BrCH,), 4.09 (t, °J = 6.4 Hz, 2H,
OCH,), 7.08 (d, J = 8.0 Hz, 2H, ArH), 7.70-7.85 (m, 6H, ArH), 10.23 (s, 1H, NH); *C NMR (101 MHz,



DMSO-d;): 524.6,27.8,29.5, 35.2, 67.5, 115.4, 119.5, 123.7, 124.7, 142.2, 146.6, 147.9, 161.4, 169.1;
HRMS (ESI+) calc. for C;gH,1BrN3;0O,: 390.0812, found: 390.0563.

(E)-N-(4-((4-(4-(ethylamino)butoxy)phenyl)diazenyl)phenyl)acetamide (S6):
O~
Q/N\\N/O ”
AcHN

(E)-N-(4-((4-(4-bromobutoxy)phenyl)diazenyl)phenyl)acetamide (S5, 195 mg, 0.50 mmol) was added
to ethylamine (2M in THF, 5.0 mL) and the resulting solution was stirred at room temperature for
16 h. The reaction mixture was added to 1N aqg. HCI (50 mL) and the resulting mixture was washed
with EtOAc (50 mL). The aqueous phase was alkalized with ag. KOH solution to pH > 10. The product
was extracted with EtOAc (2 x 70 mL). The organic phase was dried (MgS0O,) and the solvent was
evaporated. The product was recrystallized from hot Et,0 to furnish S6 (60 mg, 34%) as an orange
powder. Mp. 114-116 °C; *H NMR (400 MHz, CDCl5): 5§1.13 (t, >J = 7.2 Hz, 3H, CH3CH,), 1.60-1.90 (m,
5H, OCH,CH,CH,, CH,NH), 2.20 (s, 3H, CH3CO), 2.65-2.75 (m, 4H, CH,NHCH,), 4.05 (t, >/ = 6.4 Hz, 2H,
OCH,), 6.97 (d, >J = 8.4 Hz, 2H, ArH), 7.58 (br s, 1H, AcNH), 7.64 (d, >J = 8.4 Hz, 2H, ArH), 7.84-7.88 (m,
4H, ArH); 3¢ NMR (101 MHz, DMSO-d;): 615.6, 24.6, 26.4, 27.0, 43.9, 49.2, 68.4, 115.4, 119.5, 123.6,
124.7, 142.2, 146.6, 147.9, 161.5, 169.1; HRMS (ESI+) calc. for CyH»;N40,: 355.2129, found:
355.2126.

N-(4-((E)-(4-(4-((5-(1,3-dimethyl-2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene)-4-hydroxypenta-

1,3-dien-1-yl)(ethyl)amino)butoxy)phenyl)diazenyl)phenyl)acetamide (7):
0]

O~ Xy XN -
pees S el
AcHN

(E)-N-(4-((4-(4-(ethylamino)butoxy)phenyl)diazenyl)phenyl)acetamide (S6, 18 mg, 51 umol) was
suspended in  tetrahydrofuran (0.5mL). 5-(Furan-2-ylmethylene)-1,3-dimethylpyrimidine-
2,4,6(1H,3H,5H)-trione (S1, 13 mg, 56 umol, 1.10 equiv.) was subsequently added to the suspension
at room temperature, followed by H,0 (three drops). The reaction mixture was stirred for 60 min at
room temperature resulting in a dark purple solution. Upon consumption of the starting material (*H
NMR), the reaction mixture was diluted with tetrahydrofuran (3.0 mL) and addition of cold pentane
(100 mL) to the solution resulted in deposition of product 7 on the walls of the flask. The product was
washed subsequently with cold pentane (3 x 10 mL) and diethylether (3 x 10 mL) to furnish 7
(25.2 mg, 84% vyield) as a mixture of protomers, which was observed before for donor-acceptor
Stenhouse adducts.* *H NMR (400 MHz, CDCl5): §1.29 and 1.31 (two t, J = 7.2 Hz, 3H; NCH,CHs, #6),
1.73 — 1.94 (m, 4H; OCH,CH,CH,, #2 — #3), 2.21 (s, 3H, CH3CO), 3.36 (s, 6H, 2 x NCHs), 3.45 (m, 4H;
CH,;NCH,, #4, #6), 4.03 (m, 2H; OCH,, #1), 6.01 and 6.04 (two t, J = 12.3 Hz, 1H, vinylH), 6.60 (dd, J =
22.4, 12.3 Hz, 1H, vinylH), 6.90 — 6.99 (m, 2H, ArH), 7.06 — 7.20 (m, 2H, vinylH), 7.65 — 7.73 (m, 2H,
ArH), 7.84 — 7.90 (m, 4H, ArH), 12.47 and 12.63 (two s, 1H, OH); **C NMR (101 MHz, CDCl): & 12.4,
14.7, 24.3, 24.9, 26.1, 26.2, 26.6, 28.4, 28.6, 44.3, 49.0, 52.2, 57.0, 67.4, 67.5, 98.8, 102.6, 102.8,
114.7, 114.8, 114.8, 115.3, 119.9, 123.7, 123.8, 124.7, 124.8, 139.6, 140.4, 140.5, 146.6, 146.7, 147.3,
147.3,149.1, 149.1, 149.1, 150.9, 151.0, 152.0, 156.7, 156.9, 160.9, 161.0, 163.6, 163.6, 165.2, 168.7;
HRMS (ESI+) calc. for C3;H37NgOs: 589.2769, found: 589.2752.



Synthesis of compound 8:
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(E)-N-(4-((4-((12-bromododecyl)oxy)phenyl)diazenyl)phenyl)acetamide (S7):

NP NG
/©/O o
/©/N\\N
AcHN

A solution containing (E)-4-(4’-hydroxyphenylazo)acetanilide (S4, 127 mg, 0.50 mmol), 1,12-
dibromododecane (2.61 g, 8.00 mmol, 16.0 equiv.), potassium carbonate (138 mg, 1.00 mmol, 2.00
equiv.) and potassium iodide (8.3 mg, 0.05 mmol, 0.10 equiv.) in acetone (5.0 mL) was heated under
reflux for 3 h. The reaction mixture was diluted with EtOAc (100 mL), washed with 1N aqg. HCI
solution (2 x 100 mL), sat ag. NaHCO; solution (100 mL) and sat. aq. NaCl solution (100 mL) and dried
over MgS0,. Volatiles were partially evaporated, and the product was precipitated with pentane, to
give S7 (97 mg, 39% vyield) as a brownish solid. Mp. 120-121 °C; 'H NMR (400 MHz, DMSO-dg): 51.20
—1.46 (m, 16H, alkylH), 1.68 — 1.82 (m, 4H, alkylH), 2.09 (s, 3H, CH3CO), 3.50 (t, / = 6.6 Hz, 3H, BrCH,),
4.05 (t, J = 6.5 Hz, 2H, OCH,), 7.09 (d, J = 8.6 Hz, 2H, ArH), 7.75 — 7.86 (m, 6H, ArH), 10.25 (s, 1H,
AcNH); *C NMR (101 MHz, DMSO-dq): 524.1, 25.4, 27.5, 28.1, 28.6, 28.7, 28.9, 28.9, 28.9, 29.0, 32.2,
35.2, 67.9, 114.9, 119.1, 123.2, 124.2, 141.7, 146.1, 147.5, 161.1, 168.7; HRMS (ESI+) calc. for

Cy6H37BrN3;0; [M + H]": 502.2064, found: 502.2049.

(E)-N-(4-((4-((12-(ethylamino)dodecyl)oxy)phenyl)diazenyl)phenyl)acetamide (S8):

O~
g iy
S
o
AcHN

N-(4-((4-((12-bromododecyl)oxy)phenyl)diazenyl)phenyl)acetamide (S7, 60 mg, 119 umol) was added
to ethylamine (2M in THF, 4.0 mL) and the resulting solution was stirred at room temperature for
16 h. After completion of the reaction, sat. ag. NaHCO; solution (20 mL) was added to the reaction
mixture, the phases were separated and the aqueous layer was extracted with EtOAc (3 x 20 mL). The
combined organic layers were dried over MgSQ,, solvents were partially evaporated and the product
was precipitated with pentane, to give $8 (34 mg, 61% vyield) as an orange solid. Mp. 109-111 °C; *H
NMR (400 MHz, CDCl3) 6 0.97 (t, J = 7.1 Hz, 3H, NCH,CHs), 1.18 — 1.47 (m, 18H, alkylH), 1.74 (m, 2H,
alkylH), 2.09 (s, 3H, CH5CO), 2.44 (t, J = 7.0 Hz, 2H, NHCH,); 2.48 (t, J = 7.6 Hz, 2H, NHCH,CHj3); 4.06 (t,
J = 6.5 Hz, 2H, OCH,), 7.09 (d, J = 9.0 Hz, 2H, ArH), 7.75 — 7.86 (m, 6H, ArH), 10.25 (s, 1H, AcNH); **C
NMR (101 MHz, CDCl;) 6 15.1, 24.1, 25.4, 26.9, 28.6, 28.7, 29.0, 29.0, 29.0, 29.0, 29.5, 29.5, 43.5,
49.2, 67.9, 115.0, 119.1, 123.2, 124.2, 141.7, 146.1, 147.5, 161.1, 168.7;, HRMS (ESI+) calc. for
CysHa3N,0O, [M + H]": 467.3381, found: 467.3371.



N-(4-((E)-(4-((12-((5-(1,3-dimethyl-2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene)-4-hydroxypenta-
1,3-dien-1-yl)(ethyl)amino)dodecyl)oxy)phenyl)diazenyl)phenyl)

acetamide (8):
(0]
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(E)-N-(4-((4-((12-(ethylamino)dodecyl)oxy)phenyl)diazenyl)phenyl)acetamide (S8, 19 mg, 41 umol)
was suspended in tetrahydrofuran (0.4 mL). 5-(Furan-2-ylmethylene)-1,3-dimethylpyrimidine-
2,4,6(1H,3H,5H)-trione (S1, 10 mg, 45 umol, 1.10 equiv.) was subsequently added to the suspension
at room temperature, followed by H,0 (three drops). The reaction mixture was stirred for 60 min at
room temperature resulting in a dark purple solution.

Upon consumption of the starting material (*H NMR), the reaction mixture was diluted with
tetrahydrofuran (3.0 mL) and addition of cold pentane (100 mL) to the solution resulted in
precipitation of product 6. The resulting dark purple crystals were collected by filtration and washed
subsequently with cold pentane (3 x 10 mL) and diethylether (3 x 10 mL) to furnish 8 (21.4 mg, 75%
yield) as a mixture of protomers. Protomers have been observed before with donor-acceptor
Stenhouse adducts.* Mp. 111-112 °C; *H NMR (400 MHz, CDCl5) 6 1.17 — 1.40 (m, 17H; alkylH #4 —
#10; NCH,CHg, #14), 1.41 — 1.52 (m, 2H; alkylH, #3), 1.56 — 1.66 (m, 2H; alkylH, #11), 1.76 — 1.86 (m,
2H; alkylH, #2), 2.18 — 2.21 (m, 3H; CH5CO), 3.36 (s, 6H; 2 x NCH3), 3.25 — 3.47 (m, 4H; CH,NCH,, #12 —
#13), 4.04 (t, J = 6.5 Hz, 2H; OCH,, #1), 6.02 (t, J = 12.3 Hz, 1H, vinylH), 6.58 (t, J = 12.0 Hz, 1H, vinylH),
6.98 (d, J = 9.0 Hz, 2H, ArH), 7.08 (s, 1H, vinylH), 7.10 (dd, J = 28.5, 12.3 Hz, 1H, vinylH), 7.65 — 7.73
(m, 2H, ArH), 7.83 — 7.89 (m, 4H, ArH), 12.55 and 12.56 (two s, 1H, OH); *C NMR (101 MHz, CDCl;) &
12.4, 14.6, 15.4, 24.8, 25.9, 26.0, 26.1, 26.1, 26.5, 27.0, 27.3, 28.4, 28.6, 29.1, 29.1, 29.1, 29.2, 29.3,
29.3,29.3,29.4, 29.4, 29.5, 29.5, 29.6, 29.7, 44.4, 49.5, 52.3, 57.4, 66.0, 68.3, 68.4, 68.5, 98.3, 102.9,
103.1, 114.8, 114.9, 119.9, 120.0, 123.7, 124.7, 138.7, 140.4, 146.6, 146.6, 147.0, 149.1, 151.5, 152.1,
157.1, 157.3, 161.6, 163.6, 163.7, 165.2, 168.7; HRMS (ESI+) calc. for C3sHs3NgOg [M + H]': 701.4021,
found: 701.4003.



5-((2Z,4E)-5-(dibutylamino)-2-hydroxypenta-2,4-dien-1-ylidene)-1,3-dimethylpyrimidine-

2,4,6(1H,3H,5H)-trione (9):
\
\ OHO N (0]
\/\/NM;/H(\"‘T\
o

S1 (1.00 g, 4.27 mmol) was suspended in tetrahydrofuran (10 mL). Subsequently, di-n-butylamine
(719 pL, 4.27 mmol) was added to the suspension at room temperature, followed by water (few
drops). The reaction mixture was stirred for 30 min. at room temperature. The color of the reaction
mixture turned dark purple. Upon consumption of the starting material (TLC), all volatiles were
evaporated under reduced pressure. The dark purple residue was taken up in dichloromethane
(20 mL) and 1M ag. HCl-solution (20 mL) was added. The phases were separated and the aqueous
phase was extracted with CH,Cl, (3 x 20 mL). The combined organic extracts were washed
subsequently with 1M ag. HCl-solution (20 mL), sat. ag. NaHCOs-solution (20 mL), water (20 mL) and
sat. aq. NaCl-solution (20 mL) and were dried over MgSQ,, filtered and concentrated in vacuo.
Compound 9 was obtained as dark purple solid (1.13 g, 73% yield). *"H NMR (400 MHz, CDCl;) 6 0.96
(t, J = 7.4 Hz, 3H, N(CH,)sCHs), 0.97 (t, J = 7.3 Hz, 3H, N(CH,)sCHgs), 1.35 (m, 4H, 2 x NCH,CH,CH,CHs),
1.66 (m, 4H, 2 x N(CH,),CH,CHs), 3.33 (s, 3H, NCHs), 3.34 (s, 3H, NCHs), 3.36 — 3.43 (m, 4H, 2 x
NCH,(CH,),CHs), 6.05 (t, J = 12.3 Hz, 1H, vinylH), 6.73 (dd, J = 12.4, 1.4 Hz, 1H, vinylH), 7.12 (s, 1H,
vinylH), 7.20 (d, J = 12.3 Hz, 1H, vinylH), 12.53 (m, 1H, OH); *C NMR (101 MHz, CDCl;) § 13.5, 13.6,
19.6, 20.1, 28.1, 28.2, 29.1, 30.9, 49.4, 57.4, 97.4, 103.2, 137.3, 146.2, 151.6, 151.8, 158.2, 163.1,
164.8; HRMS (ESI+) calc. for CigH3oN304 [M + H]*: 364.2231, found: 364.2234.



Determination of the Photochemical Quantum Yield!

The quantum yield (¢s70) for the photoswitching process of compound 3 at wavelengths A = 370 nm
(trans-cis; Supplementary Table 1, entry 4, MARL 260019 UV EMITTER, TO-46, 100DEG, ) was
determined in toluene (58.3 uM) at room temperature. The determined value is a result of triplicate
measurements. The switching process was followed by UV-vis spectroscopy and the change in
absorbance determined at A, = 360 nm. Care was taken that the toluene solution containing 3
absorbs > 95% of the incident light (Absorbance > 1.98). Furthermore, short irradiation times were
used to keep conversions low (~10%, linear regime of At and AA). The incident light intensity was
determined using standard ferrioxalate actinometry™® under identical irradiation conditions

11b

(Reference value: @, 3656 = 1.217°). The quantum yield was determined as ¢ = 0.15.



Binding Studies

Phase-Transfer
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In a 4 mL vial with cap, compound 8 (1-2 mg) was dissolved in toluene (1.0 mL). Basic aqueous K,COs-
solution (pH > 9) was added (1.0 mL). The biphasic mixture was stirred vigorously for 30 min. under
white light (halogen) irradiation (Supplementary Table 1, entry 13; Plusline ES Small 160W 3100 Im,

). Phase transfer of compound 8 from the organic layer to the aqueous layer is apparent through
color change. No remaining DASA was detected by 'H-NMR spectroscopy. The organic layer was
lyophilized overnight to obtain a mixture of cyclized-8 and K,COs.

UV-vis Studies on Host-Guest Binding!.2

UV-vis titrations were performed to assess the binding of the azobenzene moiety of cyclized-8 to a-
CD. To a solution A (11 uM cyclized-8), a solution B (11 uM cyclized-8; 4 mM a—CD) was added
stepwise and the change in the absorption spectrum quantified.

The following titrations were performed:

Binding:
- Thermally adapted cyclized-8 (Supplementary Table 3, Supplementary Figure 63)
- PSS 365 nm cyclized-8 (Supplementary Table 4, Supplementary Figure 64)
Controls:
- Control experiment 1 (Supplementary Table 5, Supplementary Figure 65)

Rationale: An intermediate ratio of cis/trans-cyclized-8 would be expected to show an
intermediate change of the absorption spectra upon binding.

- Control experiment 2
Rationale: Irradiation of solution A, but not B should result in a more pronounced change of
the absorption spectra upon binding during titration as the concentration of cyclized-8
remains unaltered, but the ratio of cis/trans changes.

0 20s 365 nm cyclized-8 (Supplementary Table 6, Supplementary Figure 66)
0 PSS 365 nm cyclized-8 (Supplementary Table 7, Supplementary Figure 67)
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