Table S1. Plasmids							
Name	Marker/Vector [®] /Promoter	Protein	Primers [§]	Construction [†]			
pJR368	URA3/CEN/SIR4p	Sir4	_	From J. Rine (UC Berkeley)			
pPCM14tetO	(URA3,ADE2,LEU2/	NA	-	From P. Megee (UC Denver)			
	CEN/NA)						
pGAD-C1	LEU2/2µ/ADH1p	Gal4 _{AD}	-	(1)			
pBTM116	TRP1/2µ/ADH1p	lexA	-	(())			
pBTM116H	HIS3/2µ/ADH1p	lexA	-	(2)			
pCSW22	HIS3/2µ/ADH1p	lexA-Sir2 ⁷⁸⁻⁵⁶²		6677			
pCSW23	HIS3/2µ/ADH1p	lexA-Sir2 ²⁴³⁻⁵⁶² -H364Y	-	cc??			
pCSW55	$TRP1/2\mu/ADH1p$	lexA-Sir2 ²⁴³⁻⁵⁶² -H364Y	-	cc??			
pYFC1	HIS3/2µ/ADH1p	lexA-Sir2 ⁴⁹⁹⁻⁵⁶²	-	(C))			
pYFC6	HIS3/2µ/ADH1p	lexA-Hst1 ⁴⁴⁰⁻⁵⁰³	-	6677			
pYFC10	HIS3/2µ/ADH1p	lexA-Sir2499-562-AKAA	3/4	The AKAA mutation was placed in			
				pCSW23 by P-MPGR using pYFC1			
		~ ~ ~ 264 562		as template.			
pYFC12	HIS3/2µ/NA	Sir ^{2³⁰⁴⁻³⁰²} -AKAA	5/6,7/8	A Sir2 fragment with AKAA			
				mutation was cloned into pRS423			
•VEC12		$S:-2^{364-562}$ AV A A		by P-MPGR.			
prfC13	HISS/INU/INA	SIFZ -AKAA		A 2μ fragment was removed from pVEC12 by Afel direction and			
				religation			
nYEC20	HIS3/2u/ADH1n	lex A-Sir ²⁴³⁻⁵⁶² -H364Y-	20/6 7/21	The $AKAA$ mutation was placed in			
p11020	шээлгриярттр	AKAA	20/0, //21	pCSW23 by P-MPGR using			
				pCSW23 as template.			
pYFC21	TRP1/2u/ADH1p	lexA-Sir2 ²⁴³⁻⁵⁶² -H364Y-		Marker swap of pYFC20 by P-			
1	<i>F</i>	AKAA		MPGR.			
pYFC29	HIS3/Int/NA	Sir2 ³⁶⁴⁻⁵⁶² -AKAK	9/10	The sir2 mutation was placed in			

				<i>Pst</i> I-cut pYFC12 by p-MPGR. A 2μ fragment was removed by <i>Afe</i> I digestion and religation.
pYFC30	HIS3/Int/NA	Sir2 ³⁶⁴⁻⁵⁶² -AKDK	11/12	«»
pYFC31	HIS3/Int/NA	Sir2 ³⁶⁴⁻⁵⁶² -EKAK	13/14	(())
pT2-4-14	LEU2/2µ/ADH1p	GAL4 _{AD} -ESC8 ⁶⁴⁰⁻⁷¹⁴	-	Isolated from library (1).

high-copy plamid (2µ), low-copy plasmid (CEN) or integration vector (Int).
 Primers used for P-MPGR are listed in Table S2.
 P-MPGR (PCR-Mediated Plasmid Gap Repair)

Table S2. PCR primers

#	Name	Sequence (5'-3')
3	lexA Cter	CTGTTGCCAGAAAATAGCGA
4	R primer for	GACATACACGCCtgcagcCTTagcTTGGCATTT
	AKAA	
	mutant	
5	Forward	gtaatacgactcactatagggcgaattgggtaccgggcATGGCTCTTTTGCTACTGCCAC
	Sir2 at NcoI	
6	Reverse Sir2	ATCTGATGTAACGACATACACGCCtgcagcCTTagcTTGGCATTTAAAGTTCTTGTTCTTC
	at AKAA	
7	Forward	gctgcaGGCGTGTATGTCGTTACATCAGAT
	Sir2 before	
	AKAA	
8	Reverse Sir2	caattaaccctcactaaagggaacaaaagctggagctcTTTGAATGTATGGATGCGTTAAATG
0	after orf	
9	AKAK-F	GAACGATTTGAAGAACAAGAACTTTAAATGCCAAgctAAGgctAAGGGCGTGTATGTCGTTACATCAGATGAACATCCCA
10	AKAK-R	
11	AKDK-F	GAACGATTTGAAGAACAAGAACTTTAAATGCCAAgctAAGGATAAGGGCGTGTATGTCGTTACATCAGATGAACATCCCA
12	AKDK-R	TGGGATGTTCATCTGATGTAACGACATACACGCCCTTATCCTTagcTTGGCATTTAAAGTTCTTGTTCTTCAAATCGTTC
13	EKAK-F	GAACGATTTGAAGAACAAGAACTTTAAATGCCAAGAGAAGgctAAGGGCGTGTATGTCGTTACATCAGATGAACATCCCA
14	EKAK-R	
20	Sir2-63801	Gccaatatggttttacctccag
21	ADH1-t-R	ТААТАААААТСАТАААТС
22	al-1 (rtPCR)	cattctaggtactgagattgatgaaa
23	al-2 (rtPCR)	cgtgcttggggtgatattgat
24	KCC4-f	TTGGTGAAACACTGGGCTTT
25	KCC4-r	GGCGTATTCCAGGATAAGGTA
26	a2-3'	GCGGATGGGTTGGTATTTAA
27	a2-5'	ACAAATCTAGAAATTACCAGAGCTATC
28	549.7 New S	TGAAGATGACATTGCTCCTTT
29	549.7 New	TGGATAATGGATCTGAAACCG
	AS	
30	534 S	ACAAGCATCATTCATAGCCT
31	534 AS	ATCGTGGCTAGGACATTTTG

Table	S3 .	Yeast	strains
-------	-------------	-------	---------

Name	Genotype	Reference
W303-1A	MATa ade2-1 can1-100 his3-11,15 leu2-3,112 trp1-1 ura3-1	(3)
YDS631	W303-1A MAT α adh4::URA3:: $C_{1-3}A$	(4)
L40	МАТа his3-Δ200 trp1-901 leu2-3,112 ade2 lys2-801am URA3::(8xlexA ^{op})-lacZ LYS2::(4xlexA ^{op})-HIS3	(5)
MC52	W303-1A MATa URA3::ADE2-TelVIIL SUM1-1	(6)
PMY127	W303-1A his3-11,15::(GAL1p-RecR::HIS3) _n LEU2::tetR-GFP::leu2-3,112 bar1	(7)
DMY2800	W303-1A IGS2::TRP1p-URA3::LEU2	(8)
DMY2804	W303-1A IGS1::TRP1p-URA3::LEU2	(())
DMY2831	DMY2800 sir2 <i>Δ</i> ::kanMX6	····
DMY2835	DMY2804 <i>sir2</i> Δ:: <i>kanMX6</i>	((5)
GCY310	GCY317 esc8Δ::kanMX	(9)
GCY317	W303-1A hmrΔA::ADE2::HMRI	
GA-2050	W303-1A MATα hmrΔEB-4lex ^{op} -TRP1::HMRI	(10)
THC74	W303-1A URA3 HML::URA3p-ADE2	(11)
CSW10	W303-1A RS::HMRE- a 2 a 1-HMRI-TRP1-256xlac ^{op} ::RS (LEU2::GAL1p- R) ₂ ::leu2-3,112 ADE2::HIS3p-lacGFP::ade2-1	(12)
CRC83	CSW10 <i>MATα scc1-73</i>	· · · · ·
CSW42	W303-1A RS::6xlex ^{op} ssEB- a 2 a 1-256xlac ^{op} -TRP1-hmr \DeltaI::RS (LEU2::GAL1p-	(2)
	R_{2} :: $leu2$ -3,112 ADE2::HIS3p-lacGFP::ade2-1 bar1 Δ :: $hisG$ sir2 Δ :: $klURA3$	
CSW84	CSW10 sir2∆::hphMX	((3)
CSW98	GA-2050 $sir2\Delta$::hphMX	
CSW116	W303-1A MATa MCD1-TAP::natMX	· · · · ·
CSW157	GA-2050 $sir4\Delta$::kanMX	
CCC1	YDS631 sir2Δ::kanMX	(13)

CCC3	THC74 $sir2\Delta$::kanMX	····
YFC1	CSW10 sir2-AKAA::HIS3	This study
YFC3	DMY2800 sir2-AKAA::HIS3	(())
YFC7	CSW116 sir2-AKAA::HIS3	
YFC8	CSW84 MATa SUM1-1 URA3::ADE2-TelVIIL	6677
YFC9	CSW116 sir2A::hphMX	6699
YFC12	YDS631 sir2-AKAA::HIS3	(())
YFC13	DMY2804 sir2-AKAA::HIS3	6677
YFC18	CSW10 esc8∆::kanMX	6677
YFC21	CSW42 esc8∆::kanMX	6677
YFC24	THC74 sir2-AKAA::HIS3	6677
YFC35	L40 $sir2\Delta$:: $kanMX$	(())
YFC43	CSW84 esc8∆::kanMX	(())
YFC44	GCY317 sir2-AKAA::HIS3	6677
YFC45	CSW42 ioc3∆::kanMX	(())
YFC95	CSW116 esc8∆::kanMX	6677
YFC96	РМY127 esc8A::kanMX	6677
YFC97	YFC8 hst1 <i>\Delta::kanMX</i>	6677
YFC101	CSW116 MATa SUM1-1 sir2∆::hphMX	6677
YFC103	YFC101 hst1Δ::kanMX	6677
YFC108	PMY127 mcm21A::kanMX	6677
YFC109	W303-1A RS::HMRE-a2a1-HMRI-TRP1-256xlac ^{op} ::RS (LEU2::GAL1p-	"
	$R)_2$::leu2-3,112 ADE2::HIS3p-lacGFP::ade2-1 SUM1-1 scc1-73 sir2 Δ ::hphMX	
YFC116	GCY317 sir2Δ::hphMX	
YFC117	GCY310 sir2 Δ ::hphMX	····
	1	

YFC128	YFC45 esc8Δ::hphMX	· · · · ·
YFC143	$CSW42 rfm1\Delta$::kanMX	· · · · ·
YFC135	CSW42 isw1 A::kanMX	· · · · ·
YFC145	CSW42 ioc4A::kanMX	6677
YFC130	CSW10 ioc3∆::kanMX	· · · · ·
YFC133	CSW10 isw1 A::kanMX	(C))
YFC144	CSW10 ioc4∆::kanMX	(C))
YFC137	CSW10 sir2-AKAK::HIS3	(C))
YFC138	CSW10 sir2-AKDK::HIS3	· · · · ·
YFC139	CSW10 sir2-EKAK::HIS3	····
YFC140	GCY317 sir2-AKAK::HIS3	····
YFC141	GCY317 sir2-AKDK::HIS3	· · · · ·
YFC142	GCY317 sir2-EKAK::HIS3	····
YFC150	$CSW10 mat \Delta::nat MX$	(())
YFC151	$CSW84 mat \Delta::nat MX$	· · · · ·
YFC152	$YFC1 mat\Delta::natMX$	"
YFC153	YFC18 mat∆::natMX	· · · · ·
YFC154	CSW10 MCD1-TAP::natMX	· · · · ·
YFC155	CSW84 MCD1-TAP::natMX	····
YFC156	YFC1 MCD1-TAP::natMX	····
YFC157	YFC18 MCD1-TAP::natMX	<c>></c>

All strains were derived from W303-1A except L40 and YFC35.

References for Tables

- 1. **James P, Halladay J, Craig EA.** 1996. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics **144**:1425-1436.
- 2. Wu CS, Chen YF, Gartenberg MR. 2011. Targeted sister chromatid cohesion by Sir2. PLoS Genet 7:e1002000.
- 3. Thomas BJ, Rothstein R. 1989. Elevated recombination rates in transcriptionally active DNA. Cell **56:**619-630.
- 4. **Chien C-T, Buck S, Sternglanz R, Shore D.** 1993. Targeting of Sir1 protein establishes transcriptional silencing at *HM* loci and telomeres in yeast. Cell **75:**531-541.
- 5. **Hollenberg SM, Sternglanz R, Cheng PF, Weintraub H.** 1995. Identification of a new family of tissue specific basic helix-loop-helix proteins with a two-hybrid system. MCB **15**:3813-3822.
- 6. **Chi M-H, Shore D.** 1996. *SUM1-1*, a dominant suppressor of *SIR* mutations in *Saccharomyces cerevisiae*, increases transcriptional silencing at telomeres and *HM* mating-type loci and decreases chromosome stability. MCB **16**:4281-4294.
- 7. **Megee PC, Koshland D.** 1999. A functional assay for centromere-associated sister chromatid cohesion. Science **285**:254-257.
- 8. **Tanny JC, Moazed D.** 2001. Coupling of histone deacetylation to NAD breakdown by the yeast silencing protein Sir2: Evidence for acetyl transfer from substrate to an NAD breakdown product. PNAS **98:**415-420.
- 9. **Cuperus G, Shore D.** 2002. Restoration of silencing in *Saccharomyces cerevisiae* by tethering of a novel Sir2-interacting protein, Esc8. Genetics **162**:633-645.
- 10. **Taddei A, Hediger F, Neumann FR, Bauer C, Gasser SM.** 2004. Separation of silencing from perinuclear anchoring functions in yeast Ku80, Sir4 and Esc1 proteins. EMBO **23:**1301-1312.
- 11. **Cheng T-H, Gartenberg MR.** 2000. Yeast heterochromatin is a dynamic structure that requires silencers continuously. Genes & Dev 14:452-463.
- 12. Chang CR, Wu CS, Hom Y, Gartenberg MR. 2005. Targeting of cohesin by transcriptionally silent chromatin. Genes & Dev 19:3031-3042.
- 13. Chou CC, Li YC, Gartenberg MR. 2008. Bypassing Sir2 and *O*-acetyl-ADP-ribose in transcriptional silencing. Mol Cell **31**:650-659.

Figure S1 – The cohesion proficient domain of Sir2 (amino acids 499-562) is not sufficient for targeted silencing. Strains GA-2050 (wt), CSW98 (*sir2* Δ) and CSW157 (*sir4* Δ) expressing lexA-Sir2⁴⁹⁹⁻⁵⁶² (pYFC1), lexA-Sir2⁷⁸⁻⁵⁶² (pCSW22) or lexA alone (pBTM116H) were spotted on SC-trp,-his plates to measure silencing and on SC-his as a loading control. lexA-Sir2⁴⁹⁹⁻⁵⁶² does not nucleate silent chromatin but lexA-Sir2⁷⁸⁻⁵⁶² does. Similar results were obtained for lexA-Sir2⁷⁸⁻⁵⁶² when the chimera was tethered to a locus that lacks the *HMR I* silencer (Chia-Ching Chou, PhD Thesis, 2008).

Figure S2 Chen Gartenberg, 2016

lexA- Sir2 ⁴⁹⁹⁻⁵⁶²	lexA- Sir2 ⁴⁹⁹⁻⁵⁶² AKAA								
ĺ	_	anti-lexA							
		anti-PGK1	l						
SIR2	sir2- AKAA	SIR2 (esc8 Δ)	sir2∆	sir2∆	sir2∆	sir2– AKAK	sir2– AKDK	sir2– EKAK	1
-	-	-		* 7		-			anti-Sir2
-			-			_		-	anti-PGK1
	lexA- Sir2 ⁴⁹⁹⁻⁵⁶²	lexA- Sir2 ⁴⁹⁹⁻⁵⁶² Sir2 ⁴⁹⁹⁻⁵⁶² AKAA	lexA- lexA- Sir2 ⁴⁹⁹⁻⁵⁶² Sir2 ⁴⁹⁹⁻⁵⁶² AKAA anti-lexA anti-PGK1 SIR2 sir2- SIR2 AKAA (esc8A)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \operatorname{lexA-} & \operatorname{lexA-} \\ \operatorname{Sir2^{499-562}} & \operatorname{Sir2^{499-562}} \\ \operatorname{AKAA} \\ & \end{array} \\ anti-\operatorname{lexA} \\ anti-\operatorname{PGK1} \\ \end{array}$ $\begin{array}{c} \operatorname{SIR2} & \operatorname{sir2-} & \operatorname{SIR2} & \operatorname{sir2\Delta} & \operatorname{sir2\Delta} & \operatorname{sir2-} & \operatorname{sir2-} \\ \operatorname{AKAA} & (\operatorname{esc8\Delta}) \\ \end{array}$	$\begin{array}{c} \text{lexA-} & \text{lexA-} \\ \text{Sir2}^{499-562} & \text{Sir2}^{499-562} \\ \text{AKAA} \\ \hline \end{array} \\ \text{anti-lexA} \\ \text{anti-PGK1} \\ \hline \end{array} \\ \begin{array}{c} \text{SIR2} & sir2- & \text{SIR2} & sir2\Delta & sir2\Delta & sir2- & sir2- \\ AKAA & (esc8\Delta) \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \text{Sir2} & \text{Sir2-} & \text{Sir2-} & sir2- \\ AKAK & AKDK & EKAK \\ \hline \end{array} \\ \hline \end{array}$

Figure S2 – Sir2 protein levels in the strains used in this study. A) Levels of lexA-Sir2 chimeras. Immunoblotting was performed with strain CSW42 (*sir2A*) expressing either lexA-Sir2⁴⁹⁹⁻⁵⁶² (pYFC1) or lexA-Sir2⁴⁹⁹⁻⁵⁶²-AKAA (pYFC10). B) Levels of full length Sir2. Strains CSW10 (wt), CSW84 (*sir2A*), YFC1 (*sir2-AKAA*), YFC18 (*esc8A*), YFC137 (*sir2-AKAK*), YFC138 (*sir2-AKDK*), and YFC139 (*sir2-EKAK*) were used. Sir2 levels were not affected by mutation of the EKDK motif or deletion of *ESC8*.

Figure S3 – Cohesin binding at *HMR* in DNA circles. ChIP of Mcd1-TAP was performed with strains YFC154 (wt), YFC155 (*sir2* Δ), YFC156 (*sir2-AKAA*) and YFC157 (*esc8* Δ) two hours after the addition of galactose to form DNA circles. p values for student's t-test are reported relative to the wild-type strain.

Figure S4 – Positions of the EKDK motif within crystal structures of Sir2 alone and Sir2 with Sir4. Mutated residues are shown in red; the cohesion proficient domain of Sir2 is shown in black and the remainder of crystalized Sir2 is shown in grey. The Sir4 fragment is shown in green. Structures are based on coordinates from PDB accession numbers 2HJH and 4AIO).

Figure S5 Chen Gartenberg, 2016

Α.

lexA-Sir2²⁴³⁻⁵⁶²-H364Y/Gal4^{AD}-Esc8⁶⁴⁰⁻⁷¹⁴ lexA-Sir2243-562-H364Y/Gal4AD

 $lexA/Gal4^{AD}$

lexA/Gal4^{AD}-Esc8⁶⁴⁰⁻⁷¹⁴ 68

SC-trp-leu

SC-trp-leu-his 1 mM 3-aminotriazole

B.

 $lexA\text{-}Sir2^{243\text{-}562}\text{-}H364Y/Gal4^{\mathrm{AD}}$ $lexA\text{-}Sir2^{243\text{-}562}\text{-}H364Y/Gal4^{\rm AD}\text{-}Esc8^{640\text{-}714}$ lexA-Sir2²⁴³⁻⁵⁶²-H364Y-AKAA/Gal4^{AD} lexA-Sir2²⁴³⁻⁵⁶²-H364Y-AKAA/Gal4^{AD}-Esc8⁶⁴⁰⁻⁷¹⁴

SC-trp-leu

SC-trp-leu-his 10 mM 3-aminotriazole

Figure S5 – Two-hybrid interaction between Esc8 and Sir2. Candidate interacting factors were isolated according to protocol in Materials and Methods. **A**) Strain YFC35 (*sir2A*) expressing pairwise combinations of lexA-Sir2²⁴³⁻⁵⁶²-H364Y (pCSW55), GAL4_{AD}-Esc8⁶⁴⁰⁻⁷¹⁴ (pT2-4-14), lexA alone (pBTM116) and GAL_{AD} alone (pGAD-C1) were spotted on SC-trp-leu as a loading control and SC-trp-leu-his plus 1 mM 3-AT to score interactions. **B**) Strain YFC35 (*sir2A*) expressing pairwise combinations of lexA-Sir2²⁴³⁻⁵⁶²-H364Y (pCSW55), lexA-Sir2²⁴³⁻⁵⁶²-H364Y-AKAA (pYFC21), GAL4_{AD}-Esc8⁶⁴⁰⁻⁷¹⁴ (pT2-4-14) and GAL_{AD} alone (pGAD-C1) were spotted on SC-trp-leu as a loading control and SC-trp-leu as a loading control and SC-trp-leu as the spotted on SC-trp-leu as for the spotted on SC-trp-leu as a loading control and SC-trp-leu as the spotted on SC-trp-leu as a loading control and SC-trp-leu as the spotted on SC-trp-leu as a loading control and SC-trp-leu-his plus 10 mM 3-AT to score interactions. The *AKAA* mutation does not disrupt the association of Esc8 with Sir2.

Figure S6 Chen Gartenberg, 2016

Figure S6 – Cohesion of silent chromatin nucleated by lexA-Sir2⁷⁸⁻⁵⁶² requires Isw1 but not Esc8 or the Ioc proteins. Cohesion of DNA circles bearing lexA sites was evaluated in strains CSW42 (*sir2* Δ), YFC135 (*sir2* Δ *isw1* Δ), YFC21 (*sir2* Δ *esc8* Δ), YFC128 (*sir2* Δ *ioc3* Δ *esc8* Δ) and YFC145 (*sir2* Δ *ioc4* Δ) expressing lexA-Sir2⁷⁸⁻⁵⁶² (pCSW22). Strain CSW42 expressing lexA alone (pBTM116H) was included as a negative control. Cohesion mediated by tethered Sir2 does not require ESC8, IOC3 or IOC4 even though lexA-Sir2⁷⁸⁻⁵⁶² nucleates silent chromatin when targeted to DNA (See figure S1).