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oligomeric	proteins	are	not	denatured	(left	arrow).	Oligomeric	aerolysin	was	incubated	at	70	
°C	 in	 the	presence	of	 thermolysin	 for	10	minutes	 followed	by	addition	of	sample	buffer	and	
loading	on	the	gel	(lanes	6‐8).	These	lanes	show	a	similar	band	pattern	to	those	published	in2,	
indicating	 that	most	 of	 the	 proteins	 are	 only	 partially	 digested	 heptamers	 (right	 arrow).	d,	
The	outer	β‐barrel	chain	tilt	angle	is	displayed	as	function	of	the	inner	β‐barrel	chain	tilt	angle	
for	 a	 range	 of	 aerolysin	 stoichiometry	 (s)	 according	 to	 equation	 1	 (see	 Methods).	 The	
measured	values	 for	 aerolysin	 inner	 and	outer	β‐barrel	 chain	 tilt	 angles	 are	displayed	with	
dashed	 lines.	 Only	 the	 acceptable	 range	 of	 chain	 tilt	 angles	 as	 defined	 in	 Methods	 is	
represented	(35	to	45°).	This	analysis	shows	that	the	smallest	possible	aerolysin‐like	protein	
oligomer	is	a	heptamer.		
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as	 in	c.	Of	note,	 the	contact	site	between	 the	 two	domains	4	 is	enlarged	whilst	 the	prestem	
loop	 gets	 unstructured.	 e,	 Structure	 of	 two	 consecutive	 subunits	 of	 the	 quasipore	 as	 in	 a	
highlighting	 the	 extensive	 contacts	 formed	 between	 subunits.	 In	 particular	 the	 β‐barrel	
elongation	 provides	 additional	 contacts	 whilst	 the	 collapse	 of	 the	 structure	 generates	 new	
contacts	 between	 domain	 2	 of	 the	 purple	 subunit	 and	 domain	 3	 of	 the	 following	 subunit	
(blue).	
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Supplementary	Note	1:	comparison	with	previous	atomic	models	
We	 previously	 reported	 atomic	 models	 for	 the	 prepore,	 post‐prepore	 and	 quasipore	
conformation,	 which	 were	 based	 on	 low‐resolution	 (~18	 Å)	 cryo‐EM	 maps	 coupled	 to	
dynamic	integrative	modelling	3.	Although	these	initial	models	correctly	highlighted	the	large	
collapse	taking	place	between	the	post‐prepore	and	the	quasipore	conformation,	and	revealed	
that	it	was	due	to	profound	rearrangements	in	domain	3	and	4,	they	missed	to	capture	some	
important	 features	 disclosed	 by	 our	 new	 high‐resolution	 structures	 (Sup.	 Fig.	 10).	 First,	 it	
missed	 the	existence	of	a	double	concentric	β‐barrel	 fold	at	 the	outside‐facing	mouth	of	 the	
pore,	of	which	the	inner	β‐barrel	develops	to	an	87‐Å	long	β‐barrel	spanning	the	whole	length	
of	 the	 pore.	 Second,	 domains	 1	 and	 2	 were	 swapped	 in	 the	 old	 models.	 Third,	 a	 β‐barrel	
strands	 inversion	 at	 the	 inner	 β‐barrel,	 which	 is	 the	 consequence	 of	 vast	 reorganization	
needed	to	form	the	double	β‐barrel	fold,	was	not	predicted.	
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