

Supplementary Figure 1. Representative micrographs showed homogeneity of the sample. A) Micrograph of negative staining EM full-length FANCD2-FANCI complex 0° tilt. B) Tilted micrograph (50° tilt) of the same area as in (A).

Supplementary Figure 2. Comparison of the human FANCD2- Δ Tower-FANCI complex and the mouse complex. A) Micrograph of Cryo-EM of full-length FANCD2-FANCI complex. B) Different orientations of Cryo-EM density map of FANCD2- Δ Tower-FANCI complex docked with the mouse FANCD2-FANCI crystal structure deleting amino acids 1144 – 1450 (PDB: 3S4W). Scale bar, 20 Å.

Supplementary Figure 3. The Tower domain of FANCD2 is functionally important but dispensable for the interaction with the FA core complex. A) Western blot analysis of PD20 cells complemented with Flag-HA-FANCD2 and Flag-HA-FANCD2- Δ Tower used in Figure 3A showing the expression level of FANCD2. B) Immunoprecipitation of Flag-HA-FANCD2 and Flag-HA-FANCD2- Δ Tower from PD20 cells, immunoblotting against FANCD2 and FANCA (component of the FA core complex). PD20 without complementation was used as a negative control. Cells were treated overnight with 160ng/ml MMC. C) Western blotting of the HeLa.Scramble, HeLa.shFANCD2 and HeLa.shFANCD2 complemented with EGFP tagged wild type, K561R, Δ Tower and Δ Tower-NLS FANCD2 used in Figure S3D showing the expression level of FANCD2. D) Clonogenic survival assay of HeLa.Scramble, HeLa.shFANCD2 complemented with EGFP tagged wild type, X561R, Δ Tower and Δ Tower-NLS FANCD2. The experiment was done in triplicate. Error bars show SD.

Supplementary Figure 4. The Tower domain of FANCD2 is important for monoubiquitination of FANCD2. A) Coomassie blue stain of purified recombinant FLAG-HA-UBA1 (E1), UBE2T (E2), FLAG-MBP-FANCL (E3) and 6xHis-ubiquitin. B) *In vitro* ubiquitination assay of full-length FANCD2-FANCI complex. Immunoblot using antibodies against Ubiquitin. C) *In vitro* ubiquitination assay of full-length FANCD2-FANCI complex. Immunoblot using antibodies against FANCI complex. Immunoblot using antibodies against FANCI.

Supplementary Figure 5. FANCD2 recruitment to DNA through the Tower domain precedes its monoubiquitination on lysine 561. A) Western blot analysis of HeLa-FANCD2 -/- complemented with mCherry-UHRF1 and EGFP-tagged wild type, K561R and Δ Tower-NLS FANCD2 used in Figure S5B showing the expression level of UHRF1 and FANCD2. B) HeLa-FANCD2 -/- cells expressing EGFP-tagged wild type, K561R and Δ Tower-NLS FANCD2 were pre-treated with TMP, and micro-irradiated at the indicated areas (white arrows). mCherry-UHRF1 was co-expressed in all three cell lines and used as positive controls for the introduction of ICLs. Wild type EGFP-FANCD2 was recruited to ICLs rapidly and strongly, EGFP-FANCD2- Δ Tower-NLS was observed. Representative fields shown. C) Quantification of the fluorophore-tagged proteins recruited to ICLs at the irradiated sites (8, 11 and 10 cells were quantified for EGFP-FANCD2, EGFP-FANCD2-K561R and EGFP-FANCD2- Δ Tower-NLS, respectively). Scale bar: 20µm. Error bars show SD.

а	R1236 K1247	
gilHomo	LINSPK-DASSSTEPTI.TRHTEVVEERVMMAELEKTVKKIEPGT-AADSOOTHEEKLLYW	1268
gilPan	LINSPK-DASSSTFPTLTRHTFVVFFRVMMAELEKTVKKIEPGT-AADSOOIHEEKLLYW	1286
gi Macaca	LINSPK-DVSSSTFPTLTRHTFVVFFRVMMAELEKTVKKIEPGT-AADSOOIHEEKLLYW	1198
gi Sus	LINSPTKDASSSTFPTLTRHTFVIFFRVMMAELEKTVKGLQVAT-AADSQQIHEEKLLYW	1268
gi Loxodonta	LINSPK-DASSSTFPTLTRHTFVIFFRVMMAELEKTVKGLQAGT-ATDQQQVHEEKLLYW	1268
gi Mus	LVSAPK-DAASSTFPTLTRHTFVIFFRVMMAELEKTVKGLQAGT-AADSQQVHEEKLLYW	1266
gi Monodelphis	LIQSSK-DASSSSFPTLTRQTFVVFFRVMMAELEKSVRSLQAGT-AADLPKVHEEKLLYW	1270
gi Rattus	LVNAPK-DASSSTFPTLTRHTFVIFFRVMMAELEKTVKGLQAGT-ATDSQQVHEEKLLYW	1271
gi Bos	LINSPK-EASSSTFPTLTWTTFVIFFRVMMAELEKTVKGLQAGT-AADSQQIHEEKLLYW	1282
gi Equus	LINSPK-DASSSTFPTLTRHTFVIFFRVMMAELEKTVKGLQAGT-AADSQQIHEEKLLYW	1266
gi Canis	LINSPK-DASSSMFPTLTRQSFVIFFRVMMAELEKTVKGLQAGT-AADSQQIHEEKLLYW	1265
gi Ailuropoda	LINSPK-DASSSTFPTLTRHTFVIFFRVMMAELEKTVKGLQAGT-AADAQQIHEEKLLYW	1268
gi Meleagris	LINCAK-DGCSSTYPTLSRQTFPVFFRVMMAQLESSVKSIPAGK-PSDSSEVQLEKLLKW	1265
gi Gallus	LINSAK-DGCSSTYPTLSRQTFPVFFRVMMAQLESSVKSIPAGK-PSDSGEVQLEKLLKW	1268
gi Drosophila	ILNT-K-DKALTSFPNFKKANFPLLFRGLCEVLIHSLSGQVSVDSRGDKLKLW	1287
gi Bombyx	LLES-K-NDTLRGLKCINKVNFPIIFRNLGTAVFEAAKRRLDKGMTNAEHLVLW	1165
gi Anolis	LINSSK-DGYSSTYPTLTRQTFPIFFRVMMTQLESSIKSISPGTASSDTREVQLEKLLQW	1312
gi Xenopus	LVNAAK-DAASSSYPTLTRQTFVVFFRVMMDKLEKCVKSIPNSK-KAETLQEQTEQLLSW	1261
gi Danio	LLNAAK-DANSRSWPTLNRQTFLVYYKCMMSELEKAVRKIPPSK-QMDNQEMQSEKLLTW	1270
b	K1296 K1299 K1307	
	$\downarrow \downarrow \downarrow$	
ni l II ama		1220
	NMAVRDFSILINLIKVFDSHFVLHVCLKIGRLFVEAFLKQCMPLLDFSFRAREDVLSLL	1246
		1250
gi Sus	NMAVRDFSTLINLIKVFDSRPVLHICLKVCRLEVEAFLKOCMPLLDFSFRKHREDVLSLL	1328
gi Loxodonta	NMAVRDESTLINI.TKVEDSHPVLHVCLKVCRLEVEAFLKOCMPLLDESERKHREDVLSLL	1328
ai Mus	NMAVRDESTLINIMKVEDSYPVIHVCLKYCRREVEAFI.KOCMPILDESERKHREDVISII	1326
gi Monodelphis	SMAVRDENTLINLVKVEDSREVINVCLKYGRLEVETELKOCMPLIDESERKHREDVLSLI	1330
gi Rattus	NMAVRDESTLINI,MKVEDSYPVI,HVCLKYGRREVEAFI,KOCMPI,LDESERKHRDDVLSLI,	1331
gilBos	NMAVRDFSTLTNLTKVFDSRPVLFACLKYGRLFVEAFLKOCMPLLDFSFRKHREDVLSLL	1342
gi Equus	NMAVRDFSILINLIKVFDSRPVLHVCLKYGRLFVEAFLKOCMPLLDFSFRKHREDVLSLL	1326
gi Canis	NMAVRDFSILINLIKVFDSRPVLHVCLKYGRLFVEAFLKOCMPLLDFSFRKHREDVLSLL	1325
gi Ailuropoda	NMAVRDFSILINLIKVFDSRPVLHVCLKYGRLFVEAFLKQCMPLLDFSFRKHREDVLSLL	1328
gi Meleagris	NIAVRNFHILINLVKVFDSRPVLSICLKYGRLFVEAFLKHAMPLLDHSFKKHRDDVQSLL	1325
gi Gallus	NIAVRNFHILINLVKVFDSRPVLSICLKYGRLFVEAFLKLAMPLLDHSFKKHRDDVQSLL	1328
gi Drosophila	ESAVDLLNGLLSIVQQVEQPRNFGLFLKHSLLFLKLLLQHGMSALESIVREDPERLTRFL	1347
gi Bombyx	RDIADILKSMTEIVKTQKSN-SLTAFFKNSMPILRLFTLQGIPILKLEFKNQTDEVLQIL	1224
gi Anolis	NMAVRDFHILVNLVKVFDSRPVLSVCLKYGRLFVETFLKHGMPLLDYSFKKHREDVQSLL	1372
gi Xenopus	NLAVRDFHILVNLVKVFDSRPVLSICLKYGRLFVETFLKLGMPLLDCCFKKQREDVQSLL	1321
gi Danio	NLAVRDFHILINLVKMFDSRPVLTVCLKYGRLFLESFLKLGMPLLDYSFKKHKEDVQGLL	1330
	HeLa-FANCD2 -/-	
	u EGEP	
С	-FANCD2	
	EGFP -K1296A	
	-FANCD2 /R1299A	
	-WT /K1307A	
	MARKE	
NC	χρό ^κ χο ^κ ΤΜΡ/UVA - + - +	
214 Pr	(kDa)	
NONOL NO	200 - EGFP-FANCD2-U	lb
Marker $\zeta^{r} \zeta^{r} \zeta^{r}$		
200 -	- EGFF-FANODZ	
	FANCD2	
	- FANCI	
110	116 -	
116 -		
97 -		
	55 - 👝 👝 🖝 🖝 - α-Tubulin	
	1 0 0 1	

Supplementary Figure 6. Residues K1296, R1299 and K1307 of the Tower domain of FANCD2 are highly conserved and critical for the *in vivo* ubiquitination of FANCD2. A) Sequence alignment of the C-terminal region of FANCD2 showing the conservation of the positive residues, R1236 and K1247 in the Tower domain. B) Sequence alignment of the C-terminal region of FANCD2 showing the conservation of the positive residues, K1296, R1299 and K1307, in the Tower domain. C) Coomassie purified recombinant wild type. R1236A/K1247A and blue stain of K1296A/R1299A/K1307A FANCD2-FANCI complex. D) HeLa-FANCD2 -/- cells complemented with EGFP-FANCD2 and EGFP-FANCD2 K1296A/R1299A/K1307A were treated with 500ng TMP, irradiated with 250J/m², 365nm UVA. Cells were harvested after 6 hours followed by whole cell lysis and immunoblotting using the indicated antibodies.

Supplementary Figure 7. Uncropped original images of immunoblotting results.