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Supplementary Figure 1. RNA editing detection pipeline. Editing detection was performed by 2 
comparing APOBEC1 wildtype and APOBEC1-/- RNA-seq datasets for each cell type. Putative 3 
C-to-U edit sites occur in the Apobec1 wild-type sample, but not in the APOBEC1-/-, and pass 4 
several stringent filters (see Methods for more details). 5 
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 8 

Supplementary Figure 2. Penalized complexity prior of the model for various values of its 9 
hyperparameter λ. 10 
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 12 
Supplementary Figure 3. Effect of varying ranges of editing rates on model. Histograms of 13 
variance of editing rates, editing rates and marginal editing rates for four artificial datasets, using 14 
editing rates within ranges we have observed from RNA-seq data. Each dataset consists of 20 15 
cells with 20 reads per cell. (a) Low range of editing, with single cell editing rates ranging from 0 16 
to 20%, and bulk editing rate set at 10%, (b) middle range of editing, with single cell editing 17 
rates ranging from 20-50%, and bulk editing rate set at 35%, (c) wide range of editing, with 18 
single cell editing rates ranging from 5-15% and 40-50%, with bulk editing rate set at 35%, and 19 
(d) wide range of editing, with single cell editing rates ranging from 5-15% and 40-50%, with 20 
bulk editing rate set at 10%. 21 
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 23 

Supplementary Figure 4. Schematic of single cell sequencing with unique barcodes per 24 
transcript. Briefly, to analyze editing of specific sites in single cells, reverse-transcription/PCR 25 
amplification was done with gene specific primers and the OneStep RT-PCR kit (Qiagen), using 26 
a modified protocol. Single transcript molecules were tagged with barcoded gene-specific 27 
primers that have an additional universal sequence, used in reverse transcription. Primers were 28 
then digested with exonuclease I. Afterwards, a mix of universal forward and gene specific 29 
reverse primers were added to the PCR mix and 35 to 40 cycles of PCR were performed. The 30 
PCR products were introduced into bacteria using a TOPO TA cloning kit (Invitrogen) and 31 
single bacterial colonies were sequenced using Sanger sequencing. The resulting sequences were 32 
then aligned to the reference transcriptome (Macvector) and PCR duplicates were eliminated 33 
using the barcodes. 34 



 35 
 36 
Supplementary Figure 5. Sanger sequencing of PCR amplicons from individual 37 
macrophages. (a) Amplicons (generated as indicated in Supplementary Fig. 4) display 38 
additional edited sites in transcripts outside of the predicted and simulated sites in B2m, Anxa5, 39 
and Cybb. (b) Amplicons from the Cybb transcript from additional single cells. 40 
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 42 
Supplementary Figure 6. Single cell PCR of lowly to moderately expressed transcripts 43 
reveals high rates of PCR duplication. Amplification of Rac1, a moderately expressed 44 
transcript, from a single cell reveals high rates of PCR duplication as indicated by the 45 
comparatively low rate of unique barcode sequences. The 29 sequences from cell #1 (left) 46 
collapsed to only 4 uniquely barcoded sequences (right). The percentage of unique barcodes 47 
from Rac1 amplicons across the 15 cells assayed is tabulated in Supplementary Table 2. 48 
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Supplementary Table 1. RNA editing detection pipeline performance. The number of hits as 50 
a function of filtering parameters for bulk, PCR-deduplicated RNA-seq data. With the vector 51 
approach, putative hits are filtered by a minimum magnitude (“mag”, of the vector containing the 52 
putative edit) and a minimum angle (“ang”, in radians) between the wildtype and APOBEC1-/- 53 
vectors at the same coordinate. Inverse hits are the number of hits yielded when treating the 54 
APOBEC1-/- dataset as the wildtype, and the wildtype as the APOBEC1-/-. The inferred false 55 
positive rate (FPR) is calculated as the number of inverse hits divided by the number of hits 56 
called with the correct comparison. 57 
 58 

Filters Hits %UTR3 Inverse hits Inferred FPR 
12mag,0.11ang 510 95% 16 3% 
12mag,0.24ang 56 95% 1 2% 
15mag,0.11ang 410 96% 11 3% 
15mag,0.24ang 47 98% 1 2% 
7.2mag,0.11ang 662 94% 22 3% 
No mag or angle filter 1752 94% 78 4% 
 59 
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Supplementary Table 2. Percentage of uniquely-barcoded sequences obtained from Rac1 61 
amplicons derived from single macrophages.  62 
 63 

Cell # Unique barcode % 
1 13% 
2 20% 
3 37% 
4 20% 
5 23% 
6 23% 
7 33% 
8 40% 
9 26% 
10 33% 
11 50% 
12 20% 
13 37% 
14 23% 
15 10% 

 64 
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Supplementary Methods 67 
Hierarchical Model for Editing Rates 68 
Denote by xi,j∈ ℕ0 = ℕ ∪ {0} the number of edited reads that were measured at genomic 69 
coordinate i in specific cell j, and denote by ni,j ∈ ℕ0 the corresponding total number of mapped 70 
reads (edited and unedited). We begin with two basic assumptions: 71 
 72 
(A1) The number ni,j of total mapped reads does not depend on the editing rate pi,j. 73 
(A2)  The event that a particular read corresponds to an edited sequence is statistically  74 

independent of the same event for all other reads, conditional upon the edit rate pi,j. 75 
 76 
With (A1), we assume that RNA-seq sampling of the transcriptome is unbiased, in that transcript 77 
detection is independent of sequence. While ideally detection of transcripts with RNA-seq 78 
should be agnostic of sequence, there are in actuality known biases to 3’ ends of transcripts with 79 
poly-A enrichment, for instance, and with GC-content1. The mappability of a region also affects 80 
measurement (if we can’t unambiguously map a read to a region, it isn’t counted). But since we 81 
expect reads containing an edit versus an unedited sequence from the same transcript to be 82 
sampled at equal frequency, this assumption holds for our purposes. (A2) is an “exchangeability” 83 
assumption2, which is satisfied if no transcripts are counted more than once. Since we remove 84 
PCR duplicates from alignments, we expect this assumption to be fulfilled. Under these 85 
assumptions the first component of our hierarchical model is a binomial distribution (for the 86 
number of edited reads): 87 

xi,j|pi,j,ni,j∼Bin(ni,j,pi,j)      (1) 88 
for each i = 1,2,...,I and j = 1,2,...,J. 89 
The second component of the hierarchy is used to couple together the different edit rate 90 
parameters {pi,j }. Denote by xi ∈ ℕ0 the number of edited reads that were measured at genome 91 
coordinate i in the bulk RNA-seq experiment, and denote by ni ∈ ℕ0 the corresponding total 92 
number of mapped reads. We then assume the following: 93 
(A3)  The edit rate pi ∈ [0, 1] for the bulk experiment is approximately equal to xi/ni.� 94 
(A4)  Our J single cells can be considered to be drawn independently at random from the 95 
 population of J’ cells comprising the bulk experiment, where J’ >> J. 96 
(A3) is satisfied if the number of total reads ni from the bulk experiment associated with site i is 97 
sufficiently large. (A4) supposes that the J single cells that we consider are “typical”, in a precise 98 
statistical sense. The combined effect of (A3) and (A4) is to place a hard statistical constraint on 99 
our hierarchical formulation, namely that 100 ॱ[pi,j] = pi = 

௫೔௡೔ ,      (2)  101 



where the randomness in pi,j occurs through the choice of the single cell j from the population (J’ 102 
possibilities). Such a constraint could be highly informative and a careful statistical analysis 103 
should therefore take this into account. However this class of problem does not appear to have 104 
been considered in the existing binomial regression literature, where pi would essentially be 105 
treated as an unknown parameter to be estimated. The remainder of this section details a novel 106 
modelling approach that accounts for the constraint in Equation (2). 107 
Denote by vi ∈ [0, pi(1 − pi)] the variance of the editing rates at location i across the J’ cells that 108 
were involved in the bulk experiment. Information sharing among the J editing rates { pi,j } in 109 
our (non-standard) setting was facilitated using a beta probability distribution 110 

pi,j |pi,vi ∼Beta*(pi,vi).      (3)  111 
Here Beta∗(p, v) is the standard beta distribution Beta(a, b), where a, b > 0, reparametrized in 112 
the mean-variance parameterization; i.e. 113 
;݌)ܲ      ܽ, ܾ) =  ௣ೌషభ(ଵି௣)್షభ஻(௔,௕) ,    (4) 114 
where B(a, b) is the Beta function and 115 
    ܽ = ቂ௣(ଵି௣)௩ − 1ቃ ܾ    ,݌ = ቂ௣(ଵି௣)௩ − 1ቃ (1 −  116 (5)  .(݌
From Equation (2) we are able to fix pi = xi /ni and thus Equation (5) represents a parametric 117 
statistical model with one degree of freedom. Denote this distribution by B(vi), where the 118 
dependence on pi (assumed known) is suppressed for clarity. The remaining unknown parameter 119 
vi is highly interpretable; indeed this is the quantity of scientific interest, with vi = 0 120 
corresponding to identical editing rates across the J single cells and vi = pi(1 − pi) corresponding 121 
to statistically independent pi,j |pi,vi ∼ Uniform(0, 1) error rates across the J single cells. 122 
The statistical specification is completed with one final assumption: 123 
(A5)  The edited sites indexed by i (and measurements thereof) can be treated independently. 124 
(A5) improves interpretability and permits us to analyze each genomic location on an individual 125 
basis. Since there is evidence that RNA editing can occur processively along transcripts3, there is 126 
in actuality correlation in the editing rates across edited genomic coordinates i that occur on the 127 
same gene. However it is far from clear how such association should be encoded into inference 128 
and we leave this as an open direction for further research. 129 
Bayesian Inference. The previous section specified a hierarchical statistical model such that, for 130 
each location i, the model is parametrized by the edit rates pi,1, . . . , pi,J and their variance vi. 131 
Under (A5) we can restrict attention to just a single genomic location i; in this section we leave 132 
the i index implicit to improve clarity of the notation. Below we discuss how to estimate 133 



parameters θ = { p1, . . . , pJ , v} from their associated data D = {(xj , nj )}. (Data from the bulk 134 
experiment are assumed fixed and known throughout.) 135 
Given that our analysis is primarily exploratory, we elected to follow the Bayesian paradigm and 136 
we focus here on posterior inference for the model parameters θ. In brief, the Bayesian approach 137 
begins by placing a prior probability distribution 138 
(ߠ)ܲ      =  ܲ൫݌ଵ, … ,  139 (6)    (ݒ)ܲ (ݒ௃ห݌
over model parameters and then applying Bayes’ rule 140 
(ܦ|ߠ)ܲ      =  ௉(஽|ఏ)௉(ఏ)௉(஽)      (7) 141 
in order to obtain the posterior distribution P(θ|D). Formally the prior distribution P(θ) encodes 142 
our (possibly subjective) a priori uncertainty with respect to the model parameters. The first term 143 
in Equation (6) is simply the beta density that was specified earlier in Equation (3), whilst the 144 
second term P(v) requires elicitation. In this paper we take a Bayesian approach to prior 145 
elicitation. 146 
Derivation of the PC Prior. PC priors can be described as a fusion between conventional 147 
subjective Bayesian analysis and objective Bayesian techniques4, meaning that they aim to 148 
provide useful statistical regularization in the absence of subjective prior knowledge by 149 
providing a semi-automatic approach to prior construction in hierarchical models. PC priors 150 
specifically are predicated on the mantra that simpler “base” models should be preferred to more 151 
complex alternatives. PC priors, recently proposed by5, have a natural connection to the well-152 
known Jeffreys’ priors6 in the sense that they are invariant to reparameterizations. However, 153 
compared to Jeffrey’s priors there is a more explicit connection with Occam’s razor that fits 154 
elegantly with the scientific null hypothesis (v = 0) that we investigate in this work. Below we 155 
construct a PC prior p(v) for the unknown variance parameter. 156 
A PC prior is defined by explicitly stating a “base model” ℳ, with respect to which B(v) is a 157 
more complex alternative. For us, the base model ℳ is the ℬ(v0) distribution where v0 = 0. i.e. 158 
there is no randomness in the probability model. This coincides with the scientific null 159 
hypothesis v = 0 and captures Occam’s principle. Then the Kullback-Leibler divergence 160 
KL(ℬ(v)|| ℳ) between these distributions is computed. Define the (pseudo-)distance 161 ݀(ݒ) =   ඥ2ܮܭ(ℬ(ݒ)||ℳ) 

Finally the PC prior is defined by placing an exponential distribution P(d) = λe−λd on the 162 
distance d. This explicitly penalizes model complexity, quantified in terms of distance to the base 163 
model. The PC prior density follows via the chain rule: 164 
(ݒ)ܲ      = ఒௗ(௩)ି݁ߣ ቚడௗ(௩)డ௩ ቚ      165 
Since the Kullback-Leibler distance is parametrization invariant, it follows that so is the PC 166 
prior. Below we derive a closed-form expression for P(v). 167 



Begin by noting that the Kullback-Leibler divergence between two beta densities Beta(a, b), 168 
Beta(a0,b0), in the standard parametrization, is given by 169 log ቀ஻(௔బ,௕బ)஻(௔,௕) ቁ + (ܽ − ܽ଴)߰(ܽ) + (ܾ − ܾ଴)߰(ܾ) + (ܽ଴ − ܽ + ܾ଴ − ܾ)߰(ܽ + ܾ). (8) 170 
Here ߰(ݕ) = ௗ ୪୭୥ ୻(௬)ௗ௬  denotes the digamma function, the derivative of the gamma function. Next 171 
we aim to take the limit v0 → 0 in Equation (8), corresponding to a0, b0 → ∞. In this limit we can 172 
appeal to Sterling’s approximation to obtain 173 

,଴ܽ)ܤ     ܾ଴)~ √ଶగ௔బೌబషభమ௕బ್ బషభమ(௔బା௕బ)ೌబశ್బషభమ.    (9) 174 
This implies that asymptotically 175 ܮܭ(Beta(ܽ, ܾ)|หBeta(ܽ଴, ܾ଴)൯  ~  ܽ଴ log(ܽ଴) + ܾ଴ log(ܾ଴) − (ܽ଴ + ܾ଴)log (ܽ଴ + ܾ଴) 

     −ܽ଴߰(ܽ) − ܾ଴߰(ܾ) + (ܽ଴ + ܾ଴)߰(ܽ + ܾ).         (10) 176 
 177 
From the definition of a0 and b0 in terms of p and v0, given in (5), we obtain 178         ܮܭ(Beta(ܽ, ܾ)|หBeta(ܽ଴, ܾ଴)൯  ~ ௣(ଵି௣)௩బ [߰(ܽ + ܾ) − (ܽ)߰݌ − (1 −  179 (11)        [(ܾ)߰(݌
and hence 180 

ቄଶ௣(ଵି௣)௩బ ~(ݒ)݀   [߰(ܽ + ܾ) − (ܽ)߰݌ − (1 − ቅଵ/ଶ[(ܾ)߰(݌
.    (12) 181 

Finally we assume an exponential distribution where   182 
 ܲ(݀) =  ൜ି݁ߣܥఒௗ whenever 0 < ݀ < ݀௠௔௫0 otherwise              (13) 183 

where C-1 = ׬ ௗ೘ೌೣ଴ݕ݀ ఒ௬ି݁ߣ   is a normalising constant resulting from the truncation of the 184 
exponential distribution, dmax = maxv∈V 

d(v) and 185 
ቄ ~ ߣ        ௩బଶ௣(ଵି௣)ቅଵ/ଶ

.        (14) 186 
The PC prior with hyper-parameter λ is given by 187 

ܽ)߰]ߣ−}expߣ ~(ݒ)ܲ   + ܾ) − (ܽ)߰݌ − (1 −  ଵ/ଶ  (15) 188{[(ܾ)߰(݌



×  ተ ݒ߲߲ [߰(ܽ + ܾ) − (ܽ)߰݌ − (1 − (∗)ଵ/ଶᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ[(ܾ)߰(݌ ተ 
for all v ∈ V and P(v) = 0 otherwise. The term (∗) can be obtained using the chain rule: 189 

  (∗) = ௣(ଵି௣)ห௣మటభ(௔)ା(ଵି௣)మటభ(௕)ିటభ(௔ା௕)หଶ௩మ[ట(௔ା௕)ି௣ట(௔)ି(ଵି௣)ట(௕)]భమ    (16)  190 
where ߰ଵ(ݕ) = ௗట(௬)ௗ௬ = ௗమ ୪୭୥ ୻(௬)ௗ௬మ  is the trigamma function. The PC prior derived above is fully 191 
specified up to one hyper-parameter λ. Supplementary Fig. 2 displays the PC prior for a range of 192 
values of its hyper-parameter λ. 193 
Following the recommendation in 5 we set λ subjectively in terms of ℙ[v > v

L
] < 0.01. The 194 

quantity v
L corresponds to the level of variability in the editing rates p1,...,pJ would be considered 195 

a priori unlikely at the 1% level. Results in this paper were based on a conservative prior that 196 
assumes little variability (v

L = 0.142). 197 
Computational Implementation. Bayesian inference is based on the posterior distribution of 198 
parameters θ given data D, however the associated probability density function P(θ|D) in our 199 
case is not available in closed-form. We therefore employed standard sampling techniques based 200 
on Markov chain Monte Carlo (MCMC)7 to obtain an empirical approximation to the posterior 201 
distribution that becomes exact in the ergodic limit. Efficient MCMC proposals were constructed 202 
by exploiting beta-binomial conjugacy, since the joint probability density 203 ܲ൫൛݌௝ൟ, ,ݒ ൛ݔ௝ൟห൛ ௝݊ൟ൯ = ,௝ൟ݌൛|{௝ݔ})ܲ(ݒ|{௝݌})ܲ(ݒ)ܲ  =                                       204 (17)  (ݒ (ݒ)ܲ  ∏ Beta∗(݌௝; ,݌ ;௝ݔ)Bin(ݒ ௝݊, ௝)௝௝ୀଵ݌  (18) 205 
implies that 206 ܲ൫൛݌௝ൟ, ௝ൟห൛ݔ൛|ݒ ௝݊ൟ൯  ∝ (ݒ)ܲ  ∏ Beta(݌௝; ܽ + ,௝ݔ ܾ + ௝݊ − ௝)௝௝ୀଵݔ  (19) 207 
where a, b are the beta distribution parameters corresponding to p, v in the mean-variance 208 
parameterization. Here we write Beta(pj ; a + xj , b + nj − xj) to denote the probability density 209 
function of a beta distribution with parameters a + xj , b + nj – xj, evaluated at the location pj , 210 
with similar notation used in the transformed beta and binomial cases. It follows that we can 211 
construct an efficient Metropolis-within-Gibbs algorithm where {pj}|v can be sampled exactly 212 
and v|{pj} requires a Metropolis-Hastings step. For the Metropolis-Hastings step we employed 213 
the logit-transform�    214 
↦ ݒ      logit ቀ ௩௣(ଵି௣)ቁ                       (20) 215 



to provide support for the unnormalized distribution of v|{pj} over the real line. In particular, the 216 
random adaptive Metropolis (RAM) sampler was used to sample from v|{pj}, see8. 217 
For each reported simulation, 11,000 Gibbs iterations were run, of which the first 1,000 were 218 
discarded as burn-in. At each Gibbs step, a single RAM iteration was run in order to exploit the 219 
Beta-Binomial conjugacy of the second Gibbs step. 220 
Development of credible intervals. We formulate a classification rule in order to decide 221 
whether a genomic location is likely to display variable editing rates or otherwise, based on our 222 
available data D. For this purpose we chose to consider the 100(1 − α)% highest posterior density 223 
(HPD) credible interval 224 

(ܦ)ఈ,௜ܫ                 = {0 ≤ ௜ݒ ≤ ௜(1݌ − .௜)s݌ t. (ܦ|ݒ)ܲ >  ௜},   (21) 225ߜ
defined such that δi is the largest number satisfying 226 

׬                               ݒ݀(ܦ|ݒ)ܲ = 1 − ூഀ,೔(஽) ߙ ,       (22) 227 
where P(v|D) is the posterior of v. 228 
A classification rule is then constructed according to 229 

(ܦ)ఈ,௜ݎ   =  ൜0 if 0 ∈  I஑,୧(D)1 otherwise           (23) 230 
where rα,i(D) = 1 corresponds to variable editing rates and rα,i(D) = 0 corresponds to non- 231 
variable editing rates. That is, we classify a genomic location i as a location with variable editing 232 
rate when the 100(1 − α)% HPD credible interval does not contain the base model v = 0. 233 
In practice, the credible interval of v has been approximated via an iterative algorithm. For 234 
successive increments of δi, the algorithm alternates between numerical root finding of P(v|D) = 235 
δi with respect to v and numerical integration of the integral on the right-hand side of (22). The 236 
algorithm stops after reaching a pre-defined level of relative tolerance. 237 
 238 
 239 
 240 
  241 
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