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1. Formalization of the heterogeneous association problem.  

As visualized in Figure S1, given a group of features 𝐹 = {𝑓𝐴, 𝑓𝐵, 𝑓𝐶 , 𝑓𝐷 , 𝑓𝐸 ⋯ }, the true 

associations among these features, represented as a set of signs 

𝑅 = {𝑟𝑋𝑌 = {1, −1}|𝑓𝑋 , 𝑓𝑦 ∈ 𝐹 }, form a signed graph 𝐺 = {𝐹, 𝑅}, with features as 

vertices and associations as edges (the graph at bottom-right). The data types of these 

features can be numeric, binary, ordinal, or nominal.  

To identify the relations among these features, a series of independent sampling efforts 

are carried on and 𝑁 datasets, denoted as 𝐷1, 𝐷2, ⋯ , 𝐷𝑁, are generated. Each dataset 

𝐷𝑙 ≡ {(𝑠𝑖, 𝑓𝑋)|𝑠𝑖 ∈ 𝑆𝑙, 𝑓𝑋 ∈ 𝐹𝑙} covers a specific subset of features 𝐹𝑙 ⊆ 𝐹 measured from 

a set of samples 𝑆𝑙 ≡ {𝑠𝑖}. Thus, the overall super dataset 𝐷{𝑆, 𝐹} ≡ ⋃ 𝐷𝑙
𝑁
𝑙=1 =

{(𝑠𝑖, 𝑓𝑋)|𝑠𝑖 ∈ 𝑆, 𝑓𝑋 ∈ F} where the set of all samples 𝑆 ≡ ⋃ 𝑆𝑙
𝑁
𝑙=1 . Datasets usually share 

some features but not samples. That is, ∃ 𝐹𝑙 , 𝐹𝑘 ⊆ 𝐹 that 𝐹𝑙⋂𝐹𝑘 ≠ ∅ but ∀ 𝑆𝑙, 𝑆𝑘 ⊆ 𝑆,

𝑆𝑙⋂𝑆𝑘 = ∅.  

The problem is to determine the association set 𝑅 according to the super dataset 𝐷{𝑆, 𝐹}. 

Theoretically, the goal is to maximize the similarity 𝑆𝑖𝑚(𝐺, �̂�) between the true set of 

associations 𝐺 and the estimated �̂� = {�̂�, �̂�}:  

argmax 
�̂�={�̂�,�̂�}

Sim(𝐺, �̂�) 

In reality, due to lack of reliable ground truth, we used the similarity between discovered 

associations on independent datasets as a proximate and empirical measure of the 

performance of the developed BUFAM-based RDN approach as well as the reliability of 

the discovered associations.  

The similarity was measured by the modified Jaccard similarity coefficient between the 

estimated and the true associations:  
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 𝐽(𝑅1, 𝑅2) ≡
|𝑅1∩𝑅2|

|𝐸(𝑅1)∪𝐸(𝑅2)|
 (1) 

where |∙| stands for the size of a set (the amount of elements in the set), and 𝐸(𝑅) ≡

{𝑒𝑋𝑌|𝑟𝑋𝑌 ∈ 𝑅} denotes a set of unsigned edges of the corresponding signed edges in 𝑅. 

Spectral analysis based similarity metrics
1,2

, which may provide marginal gain of 

measure accuracy, were not used in this work due to the tremendous computational cost 

as a result of the exponential complexity of such approaches.  

The three challenges due to data heterogeneity are:  

1) Heterogeneous association measurements due to the heterogeneous data types. 

That is, if two different statistical scores 𝐽𝐴,𝐵 and 𝐾𝐶,𝐷 are used to evaluate the 

association strength 𝑟𝐴,𝐵 and 𝑟𝐶,𝐷 with the statistical power 𝑃𝐽 and 𝑃𝐾, how to 

define a normalization function 𝑇(∙) so that 𝑃𝑇(𝐽) = 𝑃𝑇(𝐾). 

2) Heterogeneous statistical power due to heterogeneous data availability across 

features. That is, the normalization function 𝑇(∙) should be insensitive to sample 

sizes.  

3) Identify associations between features that do not share samples due to 

heterogeneous data availability. That is, for an existing association 𝑟𝑋𝑌 between a 

pair of features 𝑓𝑋 and 𝑓𝑌, if ∀ 𝐷𝑙 ⊆ 𝐷, {𝑓𝑋 , 𝑓𝑌} ⊄ 𝐹𝑙, how to identify 𝑟𝑋𝑌.  
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2. BUFAM p-value.  

The BUFAM p-value is defined as the exact p-value of the corresponding permutation 

test of a specific statistical score. Let  

𝑆 = (𝑠1, 𝑠2, ⋯ 𝑠𝑛) 

be the full set of all samples. Assume 𝑓 and 𝑔 are the two features of interest. 𝑆𝑓,𝑔, the 

largest subset of 𝑆 that shares both features,  

satisfies 

∀ 𝑠𝑖 ∈ 𝑆𝑓,𝑔, 𝑓(𝑠𝑖) ≠ NA and  𝑔(𝑠𝑖) ≠ NA 

and 

∀ 𝑠𝑗 ∈ 𝑆 but 𝑠𝑗 ∉ 𝑆𝑓,𝑔, either 𝑓(𝑠𝑖) = NA or 𝑔(𝑠𝑖) = NA 

where 𝑓(𝑠𝑖) and  𝑔(𝑠𝑖) are the values of features 𝑓 and 𝑔 of sample 𝑠𝑖, respectively. An 

NA value indicates the value of the corresponding feature for the specific sample is 

missing. Let 𝑟𝒇,𝒈 be a statistic score describing the association strength between features 

𝑓 and 𝑔 on 𝑆𝑓,𝑔:  

𝑟𝒇,𝒈 ≡ cor(𝒇, 𝒈) 

where cor( ∙ , ∙ ) generally represents an association measure (five measures were used in 

this work, including Spearman test
3
, one-way test

4
, Chi-square test

5
, Wilcoxon Mann 

Whitney rank sum test
6
, and linear by linear association test

7
 for corresponding data types 

as delineated in Figure 1 B), and the two vectors 𝒇 and 𝒈 represents the corresponding 

values of the features 𝑓 and 𝑔 for samples in 𝑆𝑓,𝑔, that is,  

𝒇 = {𝑓(𝑠𝑖)|𝑠𝑖 ∈ 𝑆𝑓,𝑔}  

and 

𝒈 = {𝑔(𝑠𝑖)|𝑠𝑖 ∈ 𝑆𝑓,𝑔}. 
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The negative control distribution for a specific association between two features were 

generated by bootstrapping. In detail, let  

�̂� = (�̂�(𝟏), �̂�(𝟐), ⋯ �̂�(𝒎)) 

be the negative control dataset of feature 𝑓 generated by resampling of 𝒇 for samples in 

𝑆𝑓,𝑔 for 𝑚 times. The corresponding statistical scores of the negative controls are  

�̂�𝒇,𝒈 ≡ {𝑟�̂�(𝒌),𝒈|�̂�(𝒌) ∈ �̂�}. 

The null hypothesis is that features 𝑓 and 𝑔 are independent, therefore the original 

statistic score 𝑟𝒇,𝒈 and that of the negative control 𝑟�̂�(𝒌),𝒈 (in which the data of feature 𝑓 

are randomly permuted) follow the same distribution; the alternative hypothesis is that 

features 𝑓 and 𝑔 are associated therefore 𝑟𝒇,𝒈 and the 𝑟�̂�(𝒌),𝒈 follow different distributions. 

The BUFAM p-value is defined as the two-tailed permutation p-value:  

�̂�𝑓,𝑔 ≡ min ( ∑ 𝟏𝑅𝑢
(𝑟�̂�(𝒌),𝒈)

𝑟
�̂�(𝒌),𝒈

∈ �̂�𝒇,𝒈

, ∑ 𝟏𝑅𝑙
(𝑟�̂�(𝒌),𝒈)

𝑟
�̂�(𝒌),𝒈

∈ �̂�𝒇,𝒈

) 𝑚⁄  

where  

𝑅𝑢 = {𝑟�̂�(𝒌),𝒈|𝑟�̂�(𝒌),𝒈 ∈ �̂�𝒇,𝒈 and 𝑟�̂�(𝒌),𝒈 ≥ 𝑟𝒇,𝒈} 

and  

𝑅𝑙 = {𝑟�̂�(𝒌),𝒈|𝑟�̂�(𝒌),𝒈 ∈ �̂�𝒇,𝒈 and 𝑟�̂�(𝒌),𝒈 ≤ 𝑟𝒇,𝒈} 

are the subsets of �̂�𝒇,𝒈 whose elements are no less or no greater than 𝑟𝒇,𝒈, respectively, 

and  

𝟏𝐴(𝑥) ≡ {
1 if 𝑥 ∈ 𝐴
0 if 𝑥 ∉ 𝐴

 

is the indicator function for 𝐴 ⊆ 𝑋{𝑥}.  
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3. Statistics of the signed RDN.  

Overall, there were 110 edges in the RDN, 45 of them represented positive associations 

(red), 24 negative (blue), and 41 not applicable (gray, mainly involving nominal 

features).  

Balance analysis for signed graph. A signed graph is called balanced if every circle in the 

graph has an even number of negative signs, otherwise it is called “frustrated”. Since the 

full analysis of balance (or, the degree of frustration) is an NP-hard (non-deterministic 

polynomial-time hard) problem, and most large signed graphs reflecting real-word 

associations were not fully balanced, we instead focused on the smallest circle (i.e., 

triangles) to detect immediate inconsistence. It is known that, as a simplified case of 

Harary’s Theorem
8
, a complete signed graph is balanced if and only if all embedded 

triangles are balanced. Therefore, screening triangles for frustration cases allows 

detection of the immediate (i.e., with smallest circle) and thus most significant 

imbalanced cases. As shown in Figure S6, among the 186 triangles, 32 had 3 positive 

edges, 59 had 1 positive and 2 negative edges, 47 had 1 positive and 2 N/A edges, 35 had 

1 negative and 2 N/A edges, and 14 had 3 N/A edges. All determined triangles (that is, 

without N/A edges) were found balanced. This result showed that the BUFAM approach 

was highly consistent across heterogeneous datasets and data types.  
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4. Modified gene set enrichment analysis for network module annotation.  

We customized the gene set enrichment analysis algorithms defined in Subramanian et. 

al. 2005 
9
 and Lamb et. al. 2006 

10
 by robustly including gene expression levels.  

Data preparation. The log2 transformed microarray-based gene expression data for each 

cohort were patient-wisely quantile normalized, and then by gene-wisely normalized 

using Z-statistics. Normalization of patient-wise quantile normalization neutralized the 

impact of outliers (i.e., genes of some patients might show extremely high or low 

expression levels comparing with the rest).  The gene-wise Z-statistics removed the 

intrinsic difference and variance of absolute gene expression levels among genes by 

centering the expression levels of each gene of a cohort at 0 and rescaling the variance to 

1. For genes that were measured by multiple probes, the average values were used. Such 

two-step normalization was important for incorporating the gene expression levels into 

the gene set enrichment analysis.  

Gene set enrichment analysis. Given the normalized gene expression data of descending 

order 𝑋 = {𝑥1 ≥ 𝑥2 ≥ ⋯ ≥ 𝑥𝑁} of a sample (patient) and the gene list of a signature 

𝑆 = {𝑔1, 𝑔2, ⋯ , 𝑔𝑀}, the empirical cumulative distribution functions of the expression 

levels of genes in and not in the signature 𝑆 were defined as  

𝑃ℎ𝑖𝑡(𝑆, 𝑖) =

∑ |𝑥𝑗|𝑔𝑗∈𝑆

𝑗≤𝑖

∑ |𝑥𝑗|𝑔𝑗∈𝑆

⁄  

and  

𝑃𝑚𝑖𝑠𝑠(𝑆, 𝑖) =

∑ |𝑥𝑗|𝑔𝑗∉𝑆

𝑗≤𝑖

∑ |𝑥𝑗|𝑔𝑗∉𝑆

⁄  
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respectively. The gene set enrichment score 𝐸𝑆 was defined as the largest difference 

between the two empirical cumulative distributions 𝑃ℎ𝑖𝑡 and 𝑃𝑚𝑖𝑠𝑠. Let the 𝑖𝑚𝑎𝑥’th gene 

be the one in the descending gene expression list 𝑋 where the largest difference was 

observed, that is,  

max(abs(𝑃ℎ𝑖𝑡 − 𝑃𝑚𝑖𝑠𝑠)) = abs(𝑃ℎ𝑖𝑡(𝑆, 𝑖𝑚𝑎𝑥) − 𝑃𝑚𝑖𝑠𝑠(𝑆, 𝑖𝑚𝑎𝑥)), 

we define 

𝐸𝑆 ≡ 𝑃ℎ𝑖𝑡(𝑆, 𝑖𝑚𝑎𝑥) − 𝑃𝑚𝑖𝑠𝑠(𝑆, 𝑖𝑚𝑎𝑥). 

The false discovery rate of the enrichment score between a patient and a signature was 

defined as the estimated exact p-value using the Monte Carlo negative controls generated 

by randomizing gene labels of the gene expression data 1,000 times, similar to the 

definition of the BUFAM p-value.  

Network module annotation. Each RDN module was annotated by the BioCarta signaling 

pathway signatures using a BUFAM-like approach. The goal was to identify BioCarta 

signaling signatures that were enriched in a RDN module. The null hypothesis was that a 

BioCarta signaling signature is not associated with a module, so the associations between 

the GSEA enrichment score (ES) of this signature and the features in the module follow 

the same distribution with those calculated from the resampled values. The alternative 

hypothesis was that the signature is associated with a significant amount of features in the 

module. Therefore, we first calculate the two-tailed permutation p-values for pairwise 

associations between module-related features and the 217 BioCarta signatures using 

Spearman associations for all samples across the three datasets that shared both features 

signatures. We used 1000-time permutation to analyze values of the feature and the 

original values of the signature ESs from the same samples as the negative control group, 
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as described in BUFAM algorithm. The p-values of each signature were summarized as 

the overall module-to-signature p-value. Signatures of permutation p-values ≤ 0.05 were 

used to annotate the module.  

KEGG
11,12

 and Reactome
13,14

 signaling pathway signatures were also used for 

comparison. As shown in Table S1 and Table S2, databases for each pathway showed 

distinct focuses, while the general biological meanings were consistent. Both databases 

support the concept that the ER module demonstrated strong associations with immune 

effects, checkpoint controls, and hormone- and immune-modulated cell growth events, 

while the HER2 module showed typical cell proliferation mediated by growth factor 

receptors. Protein degradation and oxidation functions (BioCarta: Proteasome; KEGG: 

Lysosome, Peroxisome; Reactome: Protein Oxidations) were also major characteristics of 

the HER2 module. The KEGG database provided more metabolic details, while 

Reactome signatures were either more general (such as “Immune System” and “Cytokine 

Reactions”) or more molecule-specific (such as “DAG” and “IP3”).  
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5. Statistical analysis of Kaplan–Meier survival curves. 

With respect to Figures S7 through S10, we applied log-rank tests and Cox proportional 

hazard tests to checking the significance of associations among the four treatment 

strategies and the immune subtypes. P-values of log-rank tests for Figure S7, S8, and S9 

were 0.106, 0.001, and 0.108, respectively. Thus, different treatment mechanisms can 

generate an evident survival diversity corresponding to the immune neutral subtype. In 

addition, Cox hazard ratios and related p-values between 3 immune subtypes (immune 

positive, immune negative, and immune neutral) and 4 treatment strategies 

(chemotherapy, tamoxifen, both, and no treatment) are calculated in Figure S11. Under 

the condition of no treatment, breast cancer patients of the immune-positive subtype had 

greater probability of survival, while those of the immune-negative subtype had a lower 

probability of survival. 

https://en.wikipedia.org/wiki/Kaplan%E2%80%93Meier_estimator
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6. Randomization test for Girvan-Newman’s modularity. 

To test if the two modules identified using Girvan-Newman approach were statistically 

significant, we used randomization to generate a negative control. We randomized the 

node labels across the two modules so that the generated two modules had the same 

numbers of nodes (15 and 17 nodes, respectively) for 10,000 times and calculated the 

modularity of each randomized control. The distribution of the modularity of the 

randomized control was shown in Figure S12. The position of the modularity of the 

Girvan-Newman approach (0.363) at the distribution was indicated by the red arrow. The 

exact p-value of the discovered modules is less than 0.0001.  

Modularity
15

 is defined as:  

𝑄 =
1

2𝑚
∑ [𝐴𝑣𝑤 −

𝑘𝑣𝑘𝑤

2𝑚
] 𝛿(𝑐𝑣, 𝑐𝑤) = ∑(𝑒𝑖𝑖 − 𝑎𝑖

2)

𝑐

𝑖=1𝑣𝑤

 

where 𝐴 is the adjacent matrix of a graph of 𝑛 nodes, 𝑚 edges, and 𝑐 modules 

(communities), 𝑣 and 𝑤 are two nodes, 𝑘𝑣 and 𝑘𝑤 are their degrees, and 𝑐𝑣 and 𝑐𝑤 are the 

modules they belong to, 𝑐𝑣, 𝑐𝑤 ∈ [1, 𝑐], and 𝑖 ∈ [1, 𝑐] is the 𝑖th module. The 𝛿-function is 

defined as:  

𝛿(𝑐𝑣, 𝑐𝑤) = {
1, if 𝑣 and 𝑤 belong to the same module

0, if 𝑛𝑜𝑡
 

The fraction of edges that connect to nodes in community 𝑖 is defined as:  

𝑎𝑖 =
1

2𝑚
∑ 𝑘𝑣𝛿(𝑐𝑣, 𝑖)

𝑣

 

and the fraction of edges that connect community 𝑖 and 𝑗 is defined as:  

𝑒𝑖𝑗 =
1

2𝑚
∑ 𝐴𝑣𝑤𝛿(𝑐𝑣, 𝑖)𝛿(𝑐𝑤, 𝑗)

𝑣𝑤
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7. Case Study: Comparison of BUFAM and Meta-analysis. 

A case, association between Metagene:Proliferation and Age , was further analyzed to 

demonstrate how associations could be discovered by BUFAM but not by traditional 

meta-analysis. Associations were test using BUFAM on the whole cohort, and WFUCCC 

and MDACC cohorts. A new dataset, TCGA RNA-seq (1,094 patients), was used as 

external validation. Results (Figure S13) showed clear association in BUFAM (p <= 

2.2e-16) and WFUCCC (p <= 0.001) cohorts but not in MDACC (p <= 0.11) cohort. The 

TCGA RNA-seq dataset strongly support the discovered association (p <= 0.0003). That 

is, traditional meta-analysis was not capable to identify this association (MDACC p <= 

0.11) due to smaller sample sizes and thus limited power. In contrast, BUFAM 

demonstrated strong statistical power (p <= 2.2e-16) and was able to identify this 

association.  
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Figure S1: Unified biomedical feature association analysis on heterogeneous big 

data.  
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Figure S2: Flowchart of BUFAM-based RDN modeling  
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Figure S3: Heterogeneous and sparse features across the three clinical biomedical 

big datasets.  
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Figure S4: The WFU EMR validation of association between the ER status and the 

ethnicity.  
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Figure S5: The WFU EMR validation of association between the clinical procedures 

and the ethnicity. (p-value <= , χ
2
 test) 
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Figure S6: Balance analysis for signed graph.  

Cases of embedded triangles were summarized per cases. Among the embedded 186 

triangles, 32 were with 3 positive edges, 59 with 1 positive and 2 negative edges, 47 with 

1 positive and 2 N/A edges, 35 with 1 negative and 2 N/A edges, and 14 with 3 N/A 

edges. All determined triangles (that is, without N/A edges) were found balanced.  
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Table S1. KEGG Module Annotation. 
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Table S1. Reactome Module Annotation. 
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Figure S7: The ER Kaplan-Meier survival analysis for the drug responses of the 

Immune Inert subtype patients.  
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Figure S8: The ER Kaplan-Meier survival analysis for the drug responses of the 

Immune Neutral subtype patients.  
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Figure S9: The ER Kaplan-Meier survival analysis for the drug responses of the 

Immune Active subtype patients.  

 

 

Treatment Responses: Immune Active Subtype

Time (year)

Su
rv

iv
al

 P
ro

b
ab

ili
ty

Chemotherapy
Tamoxifen
Both
None



 25 

Figure S10: The ER Kaplan-Meier survival analysis for the drug responses of the 

Immune Responsive subtype patients.  
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Figure S11: Cox's proportional hazards regression analysis.  

Cox’s proportional hazard ratios (beta values, left side) and p-values (right side) for 3 

immune subtypes (Immune Positive, Immune negative and Immune Neutral) and 4 

treatment strategies (Chemotherapy, Tamoxifen, both Chemotherapy and tamoxifen and 

no treatment) were demonstrated.  
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Knowledge Discovery Using Biomedical Relational Dependency Network 

 

Figure S12: Randomization control for the discovered modules using Girvan-

Newman approach.  

The distribution of the modularity scores of 10,000 randomization of node labels of the 

RDN were presented in the histogram. The position of the modularity of the Girvan-

Newman approach (0.363) at the distribution was indicated by the red arrow.   
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Figure S13: Case Study: BUFAM vs Meta-analysis.  

The association between Metagene:Proliferation and Age were analyzed using BUFAM 

and using WFUCCC and MDACC cohorts, and tested using TCGA RNA-seq data. 

Circle: median. Error bar: 95% CI.   
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