Supporting information

Two fatty acyl reductases involved in moth pheromone biosynthesis

Antony, B., Ding, B-J., Moto, K-I., Aldosari, S.A. and Aldawood, A.S.

Fig. S1. Quantitative PCR results showing relative expression of SexpgFAR I and SexpgFAR II in the pheromone gland of 2-3d old female moth at mid-scotophase. The actin gene expression is used to normalize the gene expression level in the PG and used as control gene. In the analysis of the relative pgFAR expression change in, the actin gene was taken as the calibrator. The mean relative expression scores were calculated from the raw cycle threshold (ΔC_T) values. The transcripts with same letters are not significantly different (P < 0.05).

Fig. S2. Functional assay and GC-MS analysis of yeast (*InvSc1*) transformed with the pgFAR construct and supplemented with 0.5 mM C14:COOMe and C16:COOMe (**A**), Z11-16:COOMe (**B**) and E14-16:COOMe (**C**). The total ion chromatogram (TIC) shows the fatty alcohol products extracted from the yeast cells after a 48 h incubation at 30 °C and 300 rpm. Yeast cells transformed with an empty vector (negative control) or *B. mori* pgFAR (positive control)¹⁶ ensured that the production of alcohol in yeast cells was due to the recombinant pgFAR gene. RT: retention time; IS: internal standard (250 ng 15:OAc). The authentic standards used in this assay were 16:OH, 14:OH, Z11-16:OH and E14-16:OH.

Fig. S3A-H. Functional assay and GC-MS analysis of yeast (*InvSc1*) transformed with the pgFAR construct and supplemented with 0.5 mM *E*11-14:COOMe (**A**), *Z*9-14:COOMe (**B**), *Z*11-14:COOMe (**C**), *Z*9*Z*11-14:COOMe (**D**), *Z*9*E*12-14:COOMe (**E**), *Z*9*E*11-14:COOMe (**F**), *E*10*E*12-14:COOMe (**G**) and *Z*9*Z*12-14:COOMe (**H**). Yeast cells transformed with the empty vector (negative control) ensured that the production of alcohol in yeast cells was due to the recombinant pgFAR gene. The authentic standards used in this experiment were *E*11-14:OH (**A**), *Z*9-14:OH (**B**), *Z*11-14:OH (**C**), *Z*9*Z*11-14:OH (**D**), *Z*9*E*12-14:OH (**E**), *Z*9*E*11-14:OH (**F**), *E*10*E*12-14:OH (**G**) and *Z*9*Z*12-14:OH (**H**).

Fig. S4. Functional assay and GC-MS analysis of yeast (*InvSc1*) transformed with the pgFAR construct and supplemented with 0.5 mM *E*12-14:COOMe and *Z*12-14:COOMe. The total ion chromatogram (TIC) shows the fatty alcohol products that were extracted from the yeast cells after a 48 h incubation at 30 °C and 300 rpm. Yeast cells transformed with the empty vector (negative control) ensured that the production of alcohol in the yeast cells was due to the recombinant pgFAR gene. RT: retention time; IS: internal standard (250 ng 15:OAc). The authentic standards used in this experiment were *E*12-14:OH and *Z*12-14:OH (Pherobank, The Netherlands).

Fig. S5. Functional assay and GC-MS analysis of yeast (*InvSc1*) transformed BmopgFAR construct supplemented with a blend of equal concentration (0.5 mM total) of C14: COOMe, *E*11-14:COOMe, *Z*9-14:COOMe, *Z*11-14:COOMe, *Z*9*E*11-14:COOMe, *Z*9*E*12-14:COOMe, *Z*9*E*11-14:COOMe, *E*10*E*12-14:COOMe and *Z*9*Z*12-14:COOMe in 5mL selective media. Total ion chromatogram (TIC) showing fatty alcohol products extracted from yeast cells after 48 h incubation at 30 °C, 300rpm. RT: retention time; IS: internal standard (250 ng 15:OAc). *B. mori* pgFAR reduces 14:acid and 16:acid compounds naturally present in the yeast, reduced to alcohol.

No.	Spodoptera species	Pheromone compound	Reference
1	Spodoptera androgea	79-14: OAc	1
1	spouopiera anarogea	Z9F12-14·OAc	
2	Spodoptera cilium Guenée	Z9E12-14:OAc	2
3	Spodoptera depravata Butler	Z9E12-14:OAc	3
5		Z9-14:OAc	
4	Spodoptera descoinsi Lalanne Cassou	Z9-14:OAc	4
-	& Silvain	Z11-14:OAc	
		Z9E12-14:OAc	
		<i>E</i> 9 <i>E</i> 12-14:OAc	
		<i>Z</i> 9 <i>E</i> 11-14:OAc	
		Z11-16:OAc	
		Z9-14:Ald	
5	Spodoptera dolichos Fabricius	Z9-14:OAc	1
		Z9E12-14:OAc	
6	Spodoptera eridania Stoll	Z9-14:OAc	5
		Z9E12-14:OAc	
		Z9Z12-14:OAc	
		Z9E11-14:OAc	
		Z11-16:OAc	
		Z9-14:OH	
7	Spodoptera evanida Guenée	Z9-14:OAc	1
		<i>Z</i> 9 <i>E</i> 12-14:OAc	
8	Spodoptera exempta Walker	Z9-14:OAc	6
		<i>Z9E</i> 12-14:OAc	
		Z9-14:Ald	
		Z9-14:OH	
		Z11-16:OAc	
		Z11-14:OAc	
9	Spodoptera exigua Hübner	Z9E12-14:OAc	7
		Z9-14:OAc	
		Z11-16:OAc	
		<i>Z</i> 9 <i>E</i> 12-14:OH	
		Z9-14:OH	
		Z11-16:OH	
10	Spodoptera frugiperda Smith	Z7-12:OAc	8
		<i>E</i> 7-12:OAc	
		12:OAc	
		Z9-12:OAc	
		Z9-14:OAc	
		Z10-14:OAc	
		14:OAc	
		Z11-16:OAc	
		Z11-14:OAc	

Table S1: List of the *Spodoptera* species with pheromone compounds identified.

11	Spodoptera latifascia Walker	Z9-12:OAc	4
		Z11-14:OAc	
		Z9E12-14:OAc	
		<i>E</i> 9 <i>E</i> 12-14:OAc	
		Z9E11-14:OAc	
		Z11-16:OAc	
		Z9-14:Ald	
12	Spodoptera littoralis Boisduval	Z9E11-14:OAc	9
		Z9-14:OAc	
		<i>E</i> 11-14:OAc	
		14:OAc	
		Z11-14:OAc	
		<i>Z9E</i> 12-14:OAc	
		<i>E</i> 10 <i>E</i> 12-14:OAc	
13	Spodoptera litura Fabricius	Z9E11-14:OAc	10
		<i>Z</i> 9 <i>E</i> 12-14:OAc	
		Z9-14:OAc	
		<i>E</i> 11-14:OAc	
14	Spodoptera pectinicornis Hampson	Z7-12:OAc	11
15	Spodoptera praefica Grote	Z7-12:OAc	12
		Z7-12:OH	
		Z9-14:OAc	
		Z11-16:OAc	
16	Spodoptera sunia Guenée	Z9-14:OAc	13
		<i>Z</i> 9 <i>E</i> 12-14:OAc	
		Z9-14:OH	
		Z11-16:OAc	
17	Spodoptera triturata Walker	Z9-14:OAc	2
		<i>Z</i> 9 <i>E</i> 12-14:OAc	
		<i>E</i> 9-14:OAc	
18	Spodoptera albula Walker	Z9-14:OAc	14
		Z9E12-14:OAc	
		Z9-14:OH	
		Z11-16:OAc	

References

- 1 Lalanne Cassou, B., Silvain, J., Monti, L. & Malosse, C. Description of a new species of Spodoptera from French Guiana: *Spodoptera descoinsi* (Lepidoptera: Noctuidae: Amphipyrinae), discovered with sexual attractants. *Annales de la Societe Entomologique de France (France)* (1994).
- 2 Campion, D. Sex pheromones and their uses for control of insects of the genus Spodoptera in *Internationaal Symposium over Fytofarmacie en Fytiatrie* (1975).
- 3 Kurihara, M., Usui, K., Uchiumi, K. & Tatsuki, S. Sex-pheromone of the lawn grass cutworm moth, *Spodoptera depravata* (Butler) (Lepidoptera, Noctuidae). *Appl. Entomol. Zool.* **35**, 323-324 (1991).

- 4 Monti, L., Lalanne-Cassou, B., Lucas, P., Malosse, C. & Silvain, J.-F. Differences in sex pheromone communication systems of closely related species: *Spodoptera latifascia* (walker) and *S. descoinsi* lalannecassou & silvain (Lepidoptera: Noctuidae). *J. Chem. Ecol.* **21**, 641-660 (1995).
- 5 Teal, P., Mitchell, E., Tumlinson, J., Heath, R. & Sugie, H. Identification of volatile sex pheromone components released by the southern armyworm, *Spodoptera eridania* (Cramer). *J. Chem. Ecol.* **11**, 717-725 (1985).
- 6 Cork, A., Murlis, J. & Megenasa, T. Identification and field testing of additional components of female sex pheromone of African armyworm, *Spodoptera exempta* (Lepidoptera: Noctuidae). *J. Chem. Ecol.* **15**, 1349-1364 (1989).
- 7 Acín, P., Rosell, G., Guerrero, A. & Quero, C. Sex pheromone of the Spanish population of the beet armyworm *Spodoptera exigua*. J. Chem. Ecol. **36**, 778-786 (2010).
- 8 Unbehend, M. *et al.* Geographic variation in sexual attraction of Spodoptera frugiperda corn-and rice-strain males to pheromone lures. *PLOS ONE* **9**, e89255 (2014).
- 9 Munoz, L., Rosell, G., Quero, C. & Guerrero, A. Biosynthetic pathways of the pheromone of the Egyptian armyworm *Spodoptera littoralis*. *Physiol. Entomol.* **33**, 275-290 (2008).
- 10 Sun, F. & Hu, Y. The sex pheromone communication system of *Spodoptera litura* (Fabricius). *Acta. Entomol. Sin.* **45**, 404-407 (2001).
- 11 Van Hai, T., Son, P. K., Inomata, S.-I. & Ando, T. Sex attractants for moths of Vietnam: Field attraction by synthetic lures baited with known lepidopteran pheromones. *J. Chem. Ecol.* **28**, 1473-1481 (2002).
- 12 Landolt, P. J., Smithhisler, C., Adams, T. & Zack, R. S. An improved multi component sex attractant for trapping male western yellowstriped armyworm, *Spodoptera praefica* (Grote) (Lepidoptera: Noctuidae). *Agric. For. Entomol.* **5**, 333-339 (2003).
- 13 Bestmann, H., Attygalle, A., Schwarz, J., Vostrowsky, O. & Knauf, W. Identification of sex pheromone components of *Spodoptera sunia* Guenée (Lepidoptera: Noctuidae). *J. Chem. Ecol.* **14**, 683-690 (1988).
- 14 Meagher, R. L., Brambila, J. & Hung, E. Monitoring for exotic *Spodoptera* species (Lepidoptera: Noctuidae) in Florida. *Fla. Entomol.* **91**, 517-522 (2008).

Forward (5'-3')	Reverse (5'-3')	Application
Os_F1_deg:	FAR_Gen_R:	Degenerate PCR
ACN GGH TTY MTD GGV AA	GMTTTKGTGTANGYRTAYGTRTTHGG	-
Os_F2_deg:	FAR_Gen_R:	Degenerate PCR
YAYRTDTCBACWGCHTA	GMTTTKGTGTANGYRTAYGTRTTHGG	-
FAR_LAT_F:	FAR_Gen_R:	Degenerate PCR
ACNGGNGSNACNGGNTT	GMTTTKGTGTANGYRTAYGTRTTHGG	-
Os_F1_deg:	Os_R2_deg:	Degenerate PCR
ACN GGH TTY MTD GGV AA	RTADGCWGTVGAHAYRT	
Sex_FARI_RACE_F1:	Sex_FARI_RACE_R1:	RACE
ATGTCGCAGCCAATGTTCAGTTT	TAGGCTGTGGAAATATGGACAAATGC	
Sex_FARI_RACE_F2:	Sex_FARI_RACE_R2:	Nested RACE
GGCATTTGTCCATATTTCCACAG	AAACTGAACATTGGCTGCGACA	
SlitFARI_RACE_F1:	SlitFARI_RACE_R1:	RACE
ATGTGGCAGCCAGTGTCCAGTTT	TAGGCGGTGGACACATGGACAAAGGC	
SlitFARI_RACE_F2:	SlitFARI_RACE_R2:	Nested RACE
GGCCTTTGTCCATGTGTCCACCG	AAACTGGACACTGGCTGCCACA	
SexpgFARI FL_F:	SexpgFARI FL_R:	Functional gene
TAAAATGACGTATAGACAAATAAATG	TTAACTACGTTTCTTCATTAAGAACT	expression
SlitpgFARI FL_F:	SlitpgFARI_FL_Rev	Functional gene
TAAAATGACGTATAGACAAATAAATG	TCT TTA AAT TAA TAA ATT ATG TAC	expression
SlitpgFAR II_RACE_F	SlitpgFAR II_RACE_R	RACE
GTGGTCATTCACTCAGCAGCCACA	CCAGTTCGCCAGCCAGCCTC	
SexpgFARII_RACE_F	SexpgFARII_RACE_R	RACE
GTGGTCATCCATTCAGCAGCAACT	CCAGTTCGCCAACCAGCCCC	
SlitpgFARII_FL_F	SlitpgFARII_FL_R	Functional gene
ATGGTTGTGTTGACTTCGAA	TTA TTT TAT CTT TTC CAA AAA C	expression
SexpgFARII_FL_F	SexpgFARII_FL_R	Functional gene
ATGGTTGTGTTGACTTCGAA	TTATTTTTTTTTTTCCAAAAAC	expression
SexpgFARIqrt_F:	SexpgFARIqrt_R:	Quantitative
TTCCTTCAGCAGCCACAGCA	CCTTCGCCGAGAAGCACTC	PCR
SexpgFARIIqrt_F:	SexpgFARIIqrt_R:	Quantitative
GAT CAG AGA GAA AAA GGG AC	GTA TGC TGT CGA TAT GTG GAT G	PCR
Sp_beta actin_F:	Sp_beta actin_R:	House-keeping
CCGTCCCCATCTACGAAGGTTACG	GCGGTGGCCATCTCCTGCTC	gene/quantitative
		PCR
Bmori_pgFRA_F:	Bmori_pgFRA_R:	Functional gene
GAT CCA AGA TGT CAC ACA ATG	CTA TAA TTT ATT TTT GAA CAG ATG	expression
GAA CTT TG	CTT GTT GA	

Table S2: Polymerase Chain Reaction primers used in this study.

Supporting information

Two *fatty acyl reductases* involved in moth pheromone biosynthesis Antony et al.,

S1 Materials and Methods

Chemicals. Tetradecanoic acid methyl ester (C14:COOMe) and hexadecanoic acid Me (C16:COOMe) were purchased from Sigma (Dorset, England). Pentadecyl acetate (15:OAc), (*E*)-14-hexadecenoic acid Me (*E*14-16:COOMe), (*Z*)-9-tetradecenoic acid Me (*Z*9-14:COOMe), (*E*)-12-tetradecenoic acid Me (*E*12-14:COOMe), (*Z*)-12-tetradecenoic acid Me (*Z*12-14:COOMe), (*Z*)-9-hexadecenoic acid Me (*Z*9-16:COOMe), (*E*)-11-tetradecenoic acid Me (*E*11-14:COOMe), (*Z*)-9-hexadecenoic acid Me (*Z*11-14:COOMe), (*Z*)-11-tetradecenoic acid Me (*Z*11-16:COOMe), (*Z*)-11-hexadecenoic acid Me (*Z*11-16:COOMe), (*E*)-11-hexadecenoic acid Me (*E*11-16:COOMe), (*Z*,*Z*)-9,11-tetradecadienyl acid Me (*Z*9211-14:COOMe), (*Z*,*E*)-9,12-tetradecadienyl acid Me (*Z*9211-14:COOMe), (*Z*,*Z*)-9,11-tetradecadienyl acid Me (*Z*9212-14:COOMe), (*Z*,*Z*)-9,12-tetradecadienyl acid Me (*Z*9212-14:COOMe), (*Z*,*Z*)-9,12-tetradecadienyl acid Me (*Z*9212-14:COOMe) and the corresponding fatty alcohols (used as authentic standards) were purchased from Pest Control of India Private Limited (Mumbai, India) and Pherobank (Netherlands). (*Z*)-7-dodecenyl acid Me (*Z*7-12:COOMe), (*Z*)-5-decenyl acid Me (*Z*5-10:COOMe), and the corresponding alcohols were kindly provided by the pheromone group of Lund University.

Functional Assay and GC-MS analysis. The functional assays were carried out in a yeast expression system following the procedures we previously described^{15,16,17}. Briefly, the open reading frames of the *S. exigua, S. littoralis* and *B mori pgFAR* genes were cloned into the shuttle vector pYES2.1/V5-His TOPO (Invitrogen), and the resulting recombinant vectors were used to transform yeast of the INVSc1 strain of *S. cerevisae* (Invitrogen). When testing the conversion of individual precursors, aliquots of yeast cultures were suspended in induction medium containing 0.5 mM of the FAME methyl-ester precursor diluted in ethanol, and fatty alcohol products were extracted and analysed by gas chromatography-mass spectrometry under the conditions described below. When testing the alcohol production of yeast supplemented with precursor blends in the ratio as found in female pheromone glands^{7,9} the total concentration of precursors was 0.5 mM and the culture medium was 5 ml, whereas all other parameters were kept unchanged.

Yeast cell extracts were subjected to GC-MS analysis on a Agilent 7850A GC coupled to a mass detector (Agilent 5975C) and equipped with a medium-polar INNOWax column (100% polyethylene glycol, 30×0.25 mm I.D., film thickness 0.25 mm, Agilent Technologies, USA). The GC-MS was operated in electron impact mode (70 eV), the injector was configured in splitless mode at 220°C, and helium was used as carrier gas (velocity: 30 cm/s). The oven temperature was set to 80°C for 1 min, then increased at a rate of 10°C/min up to 210°C, followed by a hold at 210°C for 15 min, and then increased at a rate of 10°C/min up to 230°C, followed by a hold at 230°C for 20 min.

- 15 Lassance, J. M. *et al.* Functional consequences of sequence variation in the pheromone biosynthetic gene pgFAR for Ostrinia moths. *Proc. Natl. Acad. Sci.USA* **110**, 3967-3972, doi:10.1073/pnas.1208706110 (2013).
- 16 Lassance, J.-M. *et al.* Allelic variation in a fatty-acyl reductase gene causes divergence in moth sex pheromones. *Nature* **466**, 486-489 (2010).

17 Liénard, M. A., Hagström, Å. K., Lassance, J.-M. & Löfstedt, C. Evolution of multicomponent pheromone signals in small ermine moths involves a single fatty-acyl reductase gene. *Proc. Natl. Acad. Sci. USA* **107**, 10955-10960 (2010).