Supporting Information

Charged Non-Classical Antifolates with Activity Against Gram-positive and Gram-negative Pathogens

Eric Scocchera^{‡1}, Stephanie M. Reeve^{‡1}, Santosh Keshipeddy¹, Michael N. Lombardo¹, Behnoush Hajian¹, Adrienne E. Sochia², Jeremy B. Alverson², Nigel D. Priestley², Amy C. Anderson^{*1} & Dennis L. Wright^{*1}

¹Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Rd, Storrs, Connecticut 06269-3060

²Deptartment of Chemistry, University of Montana, Missoula, MT 59812

dennis.wright@uconn.edu

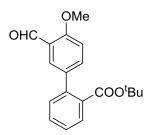
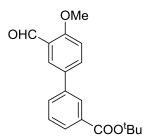
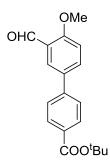
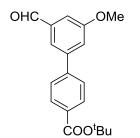

amy.anderson@uconn.edu

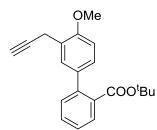
Table of Contents


General Experimental	S2
Synthetic Procedures and Experimental for Compounds 1-11	S3-S27
Table S1. Enzyme Inhibition Values with Standard Deviations	S28
Table S2. Data Collection and Structure Refinement Statistics	S29
Table S3. Minimum Bactericidal Concentrations	S30
Table S4. MIC Values in <i>E. coli</i> wild-type and <i>E. coli</i> ΔacrB	S30
Figure S1. Electron Density of active site residues	S31
Biological Materials and Methods	S32-S37
Copies of ¹ H and ¹³ C NMR Spectra	S38-S79
Copies of HPLCs	S80-S99

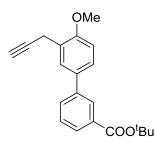
General Experimental. All reactions, unless specified, were conducted under an atmosphere of Argon in glassware that had been flame dried. Methylene chloride (CH₂Cl₂) was used from Baker Cycle-Tainers, anhydrous toluene, *tert*-butyl methyl ether (MTBE), dioxane, triethylamine and dimethylformamide (DMF) were purchased from Sigma-Aldrich. Josiphos was purchased from STREM, pyridine boronic acid from Frontier Scientific, MeMgBr (3.0 M in diethyl ether); CuBr·Me₂S from Sigma-Aldrich and was recrystallized from Me₂S prior to use. Where appropriate, control of temperature was achieved with a Neslab Cryocool CC-100 II immersion cooler, icebath or a heated oil bath. ¹H NMR spectra were recorded at 400 MHz, and/or at 500 MHz and calibrated to the CDCl₃ peak at 7.28 ppm. ¹³C NMR spectra were recorded at 100MHz, and/or at 125 MHz and calibrated to the CDCl₃ peak at 77.23 ppm. Chemical shifts are reported in units of parts per million (ppm). High-resolution mass spectra were obtained on the JMS-AX505HA instruments and/or on an AccuTOF instrument at the University of Connecticut. Flash chromatography was performed on Silica Gel, 40 microns, 32-63 flash silica and/or -NH₂ capped spherical silica gel. Thin layer chromatography was performed on silica gel (Silica Gel 60 F₂₅₄) glass plates and the compounds were visualized by UV and/or potassium permanganate stain.


Synthetic Methods


3'-Formyl-4'-methoxy-biphenyl-2-carboxylic acid tert-butyl ester (1a). In a screw cap pressure vessel fitted with a stir bar was added 2-(tert-Butoxycarbonylphenyl) boronic acid (1.00 g, 4.98 mmol), 3-Bromo-5-methoxybenzaldehyde (1.28 g, 4.98 mmol), Pd(PPh₃)₄ (0.29 g, 0.25 mmol, 5% Pd), Cs₂CO₃ (4.09 g, 12.45 mmol), anhydrous dioxane (20 mL), and water (2 mL). The mixture was degassed by bubbling argon through for 15 min, sealed, and heated to 100 °C for 4 h, when TLC showed consumption of aryl bromide. Reaction diluted with saturated brine, and extracted 3x with EtOAc. Combined organic layers dried over NaSO₄ and filtered. Filtrate concentrated and purified by flash column chromatography (SiO₂, 40 g, 5% EtOAc/hexanes) to afford bicyclic ester **1a** as a slightly yellow solid (1.34 g, 86%); ¹H NMR (500 MHz, CDCl₃) δ 10.55 (s, 1H), 7.86 (d, J = 2.4 Hz, 1H), 7.84 (dd, J = 7.7, 1.4 Hz, 1H), 7.57 (dd, J = 8.5, 2.4 Hz, 1H), 7.53 (td, J = 7.6, 1.5 Hz, 1H), 7.44 (td, J = 7.6, 1.3 Hz, 1H), 7.35 (dd, J = 7.7, 1.3 Hz, 1H), 7.08 (d, J = 8.5 Hz, 1H), 4.03 (s, 3H), 1.38 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 189.5, 167.6, 161.1, 140.5, 136.0, 134.5, 132.7, 130.9, 130.6, 129.9, 128.7, 127.3, 124.4, 111.4, 81.5, 55.9, 27.8; HRMS (DART [M+H]⁺) *m/z* 313.1433 (calculated for C₁₉H₂₁O₄, 313.1440).


3'-Formyl-4'-methoxy-biphenyl-3-carboxylic acid tert-butyl ester (1b). According to the general Suzuki coupling procedure, 3-(tert-Butoxycarbonylphenyl) boronic acid (0.50 g, 2.25 mmol), 3-Bromo-5-methoxybenzaldehyde (0.48 g, 2.25 mmol), Pd(PPh₃)₄ (0.13 g, 0. 11 mmol, 5% Pd), Cs₂CO₃ (1.47 g, 4.5 mmol), anhydrous dioxane (10 mL), and water (1 mL) were added to 50 mL screw cap pressure vessel. The mixture was degassed by bubbling argon through for 15 min, sealed, and heated to 100 °C for 4 h, when TLC showed consumption of aryl bromide. Reaction diluted with saturated brine, and extracted 3x with EtOAc. Combined organic layers dried over NaSO₄ and filtered. Filtrate concentrated and purified by flash column chromatography (SiO₂, 20 g, 5% EtOAc/hexanes) to afford bicyclic ester **1b** as a slightly yellow solid (0.52 g, 74%); ¹H NMR (500 MHz, CDCl₃) δ 10.57 (s, 1H), 8.23 (t, J = 1.9 Hz, 1H), 8.14 (d, J = 2.5 Hz, 1H), 8.00 (dt, J = 7.7, 1.4 Hz, 1H), 7.87 (dd, J = 8.6, 2.5 Hz, 1H), 7.77 (dt, J = 7.7, 1.4 Hz, 1H), 7.52 (t, J = 7.7 Hz, 1H), 7.14 (d, J = 8.6 Hz, 1H), 4.03 (s, 3H), 1.67 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 189.7, 165.7, 161.5, 139.7, 134.4, 133.0, 132.7, 130.7, 128.8, 128.3, 127.6, 127.0, 125.0, 112.3, 112.3, 81.3, 55.9, 28.2, 28.2; HRMS (DART [M+H]⁺) m/z 313.1434 (calculated for $C_{19}H_{21}O_4$, 313.1440).

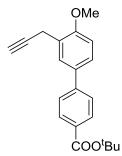
3'-Formyl-4'-methoxy-biphenyl-4-carboxylic acid tert-butyl ester (1c). According to the general Suzuki coupling procedure, 4-(tert-Butoxycarbonylphenyl) boronic acid (1.00 g, 4.98 mmol), 3-Bromo-5-methoxybenzaldehyde (1.28 g, 4.98 mmol), Pd(PPh₃)₄ (0.29 g, 0.25 mmol, 5% Pd), Cs₂CO₃ (4.09 g, 12.45 mmol), anhydrous dioxane (20 mL), and water (2 mL) were added to 50 mL screw cap pressure vessel. The mixture was degassed by bubbling argon through for 15 min, sealed, and heated to 100 °C for 4 h, when TLC showed consumption of aryl bromide. Reaction diluted with saturated brine, and extracted 3x with EtOAc. Combined organic layers dried over NaSO₄ and filtered. Filtrate concentrated and purified by flash column chromatography (SiO₂, 40 g, 5% EtOAc/hexanes) to afford bicyclic ester 1c as a slightly yellow solid (1.23 g, 79%); ¹H NMR (500 MHz, CDCl₃) δ 10.53 (s, 1H), 8.12 (d, J = 1.9 Hz, 1H), 8.06 (d, J = 8.1 Hz, 2H), 7.83 (d, J = 10.5 Hz, 1H), 7.63 (d, J = 10.5 Hz 8.1 Hz, 2H), 7.10 (d, J = 8.7 Hz, 1H), 4.00 (s, 3H), 1.63 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 189.5, 165.5, 161.7, 143.3, 134.4, 132.7, 130.8, 130.0, 126.9, 126.3, 125.0, 112.3, 81.1, 55.9, 28.2; HRMS (DART [M+H]⁺) m/z 313.1412 (calculated for C₁₉H₂₁O₄, 313.1440).


5'-Formyl-3'-methoxy-biphenyl-4-carboxylic acid tert-butyl ester (1d). According to the general Suzuki coupling procedure, 4-(tert-Butoxycarbonylphenyl) boronic acid (0.50 g, 2.25 mmol), 3-Bromo-4-methoxybenzaldehyde (0.48 g, 2.25 mmol), Pd(PPh₃)₄ (0.13 g, 0. 11 mmol, 5% Pd), Cs₂CO₃ (1.47 g, 4.5 mmol), anhydrous dioxane (10 mL), and water (1 mL) were added to 50 mL screw cap pressure vessel. The mixture was degassed by bubbling argon through for 15 min, sealed, and heated to 100 °C for 4 h, when TLC showed consumption of aryl bromide. Reaction diluted with saturated brine, and extracted 3x with EtOAc. Combined organic layers dried over NaSO₄ and filtered. Filtrate concentrated and purified by flash column chromatography (SiO₂, 20 g, 5% EtOAc/hexanes) to afford bicyclic ester 1d as a slightly yellow solid (0.54 g, 77%); ¹H NMR (500 MHz, CDCl₃) δ 10.09 (s, 1H), 8.12 (d, J = 8.4 Hz, 2H), 7.74 (m, 1H), 7.70 (d, J = 8.4 Hz, 2H), 7.45 (d, J = 1.7 Hz, 2H),3.97 (s, 3H), 1.66 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 191.9, 165.4, 160.7, 143.4, 142.5, 138.4, 131.7, 130.1, 126.9, 122.3, 120.2, 111.7, 81.3, 55.8, 55.7, 28.2; HRMS (DART [M+H]⁺) m/z 313.1450 (calculated for C₁₉H₂₁O₄, 313.1440).

4'-Methoxy-3'-prop-2-ynyl-biphenyl-2-carboxylic acid *tert*-butyl ester (2a). In a dried RB flask fitted with a stir bar under argon atmosphere, methoxymethyl triphenylphosphonium chloride (1.37 g, 4.00 mmol) was dissolved in dry THF (10 mL) and cooled to 0 °C. Sodium *tert*-butoxide (0.39 g, 4.00 mmol) was added (reaction turned dark red) and stirred for 20 min. Aldehyde (0.50 g, 1.60 mmol) dissolved in dry THF (5 mL) was added (reaction turned orange). TLC showed SM consumption after 30 min. Reaction quenched with saturated NH₄Cl and extracted with EtOAc (3 x 15 mL). Combined organic layer washed with brine, dried over NaSO₄ and filtered. Filtrate passed through a column of silica gel (10% EtOAc in hexanes) to afford a mixture of enol ether isomers, which were immediately hydrolyzed in the subsequent step.

In a dried RB flask fitted with a stir bar under argon atmosphere was added enol ether (0.48 g, 1.41 mmol) in MeCN (20 mL). Sodium iodide (0.23 g, 1.55 mmol) added and cooled to -20 °C. TMSCI (0.17 g, 1.55 mmol) added, stirred at -20 °C for 30 min, when TLC showed SM consumption. Reaction diluted with EtOAc (20 mL) and Na₂S₂O₃ (10 mL), stirred until reaction warmed to rt. Organic layer separated and aqueous phase extracted with EtOAc (3 x 20 mL). Combined organic layers washed with brine, dried over NaSO₄ and filtered. Filtrate concentrated and used without further purification.

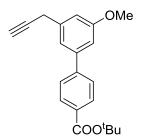
In a dried RB flask fitted with a stir bar under argon atmosphere was added aldehyde (0.28 g, 0.86 mmol) in MeOH (5 mL). Ohira-Bestmann reagent (0.33 g, 1.72 mmol) was added (turned vellow/green) and cooled to 0 °C. Powdered K₂CO₃ (0.36 g, 2.58 mmol) added and stirred at 0 °C for 2 h, when TLC showed consumption of SM. Reaction diluted with brine (5 mL) and extracted with EtOAc (3 x 15 mL). Combined organic layer washed with brine, dried over NaSO₄ and filtered. The filtrate was concentrated and purified by flash column chromatography (SiO₂, 10 g, 5% EtOAc/hexanes) to afford bicyclic alkyne 2a as a white solid (0.20 g, 39% yield 3 steps); ¹H NMR (500 MHz,CDCl₃) δ 7.81 (dd, J = 7.7, 1.4 Hz, 1H), 7.54 (dd, J= 2.4, 1.2 Hz, 1H), 7.52 (td, J = 7.5, 1.3, 1H), 7.42 (td, J = 7.5, 1.3 Hz, 1H), 7.38 (dd, J = 7.5, 1.3 Hz, 1H), 7.25 (dd, J = 8.3, 2.3 Hz, 1H), 6.93 (d, J = 8.3 Hz, 1H), 3.93 (s, 3H), 3.66 (d, J = 2.7 Hz, 2H), 2.19 (t, J = 2.7 Hz, 1H), 1.37 (s, 9H); ¹³C NMR (126) MHz, CDCl₃) δ 168.2, 156.2, 141.8, 134.2, 133.1, 130.7, 130.6, 129.6, 129.3, 129.3, 127.9, 126.8, 124.0, 109.7, 81.7, 81.2, 70.7, 55.6, 55.6, 27.8, 19.3. HRMS (DART $[M]^+$) m/z 322.1573 (calculated for C₂₁H₂₃O₃ 322.1569).


4'-Methoxy-3'-prop-2-ynyl-biphenyl-3-carboxylic acid *tert*-butyl ester (2b). In a dried RB flask fitted with a stir bar under argon atmosphere, methoxymethyl triphenylphosphonium chloride (0.88 g, 2.56 mmol) was dissolved in dry THF (8 mL) and cooled to 0 °C. Sodium *tert*-butoxide (0.25 g, 2.56 mmol) was added (reaction

turned dark red) and stirred for 20 min. Aldehyde (0.40 g, 1.28 mmol) dissolved in dry THF (4 mL) was added (reaction turned orange). TLC showed SM consumption after 30 min. Reaction quenched with saturated NH₄Cl and extracted with EtOAc (3 x 15 mL). Combined organic layer washed with brine, dried over NaSO₄ and filtered. Filtrate passed through a column of silica gel (10% EtOAc in hexanes) to afford a mixture of enol ether isomers, which were immediately hydrolyzed in the subsequent step.

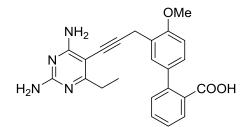
In a dried RB flask fitted with a stir bar under argon atmosphere was added enol ether (0.39 g, 1.15 mmol) in MeCN (15 mL). Sodium iodide (0.21 g, 1.38 mmol) added and cooled to -20 °C. TMSCI (0.15 g, 1.38 mmol) added, stirred at -20 °C for 30 min, when TLC showed SM consumption. Reaction diluted with EtOAc (20 mL) and Na₂S₂O₃ (10 mL), stirred until reaction warmed to rt. Organic layer separated and aqueous phase extracted with EtOAc (3 x 20 mL). Combined organic layers washed with brine, dried over NaSO₄ and filtered. Filtrate concentrated and used without further purification.

In a dried RB flask fitted with a stir bar under argon atmosphere was added aldehyde (0.30 g, 0.92 mmol) in MeOH (5 mL). Ohira-Bestmann reagent (0.35 g, 1.84 mmol) was added (turned yellow/green) and cooled to 0 °C. Powdered K₂CO₃ (0.38 g, 2.76 mmol) added and stirred at 0 °C for 2 h, when TLC showed consumption of SM. Reaction diluted with brine (5 mL) and extracted with EtOAc (3 x 15 mL). Combined organic layer washed with brine, dried over NaSO₄ and filtered. The filtrate was concentrated and purified by flash column chromatography (SiO₂, 10 g, 5% EtOAc/hexanes) to afford bicyclic alkyne **2b** as a white solid (0.13 g, 31%


yield 3 steps); ¹H NMR (500 MHz, CDCl₃) δ 8.25 (s, 1H), 7.96 (d, *J* = 7.8 Hz, 1H), 7.82 (d, *J* = 2.2 Hz, 1H), 7.79 – 7.74 (m, 1H), 7.53 (dd, *J* = 8.4, 2.2 Hz, 1H), 7.50 (t, *J* = 7.7 Hz, 1H), 6.96 (d, *J* = 8.5 Hz, 1H), 3.91 (s, 3H), 3.67 (d, *J* = 2.6 Hz, 2H), 2.24 (t, *J* = 2.6 Hz, 1H), 1.66 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 165.9, 156.6, 140.9, 132.7, 132.5, 130.7, 130.7, 130.7, 128.6, 127.8, 127.7, 127.7, 127.6, 127.6, 126.6, 125.0, 110.4, 81.8, 81.1, 70.7, 55.6, 28.2, 19.3; HRMS (DART [M]⁺) *m/z* 322.1578 (calculated for C₂₁H₂₃O₃ 322.1569).

4'-Methoxy-3'-prop-2-ynyl-biphenyl-4-carboxylic acid *tert*-butyl ester (2c). In a dried RB flask fitted with a stir bar under argon atmosphere, methoxymethyl triphenylphosphonium chloride (1.37 g, 4.00 mmol) was dissolved in dry THF (10 mL) and cooled to 0 °C. Sodium *tert*-butoxide (0.39 g, 4.00 mmol) was added (reaction turned dark red) and stirred for 20 min. Aldehyde (0.50 g, 1.60 mmol) dissolved in dry THF (5 mL) was added (reaction turned orange). TLC showed SM consumption after 30 min. Reaction quenched with saturated NH₄Cl and extracted with EtOAc (3 x 15 mL). Combined organic layer washed with brine, dried over NaSO₄ and filtered. Filtrate passed through a column of silica gel (10% EtOAc in hexanes) to afford a mixture of enol ether isomers, which were immediately hydrolyzed in the subsequent step.

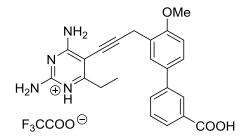
In a dried RB flask fitted with a stir bar under argon atmosphere was added enol ether (0.50 g, 1.47 mmol) in MeCN (20 mL). Sodium iodide (0.26 g, 1.76 mmol) added and cooled to -20 °C. TMSCI (0.19 g, 1.76 mmol) added, stirred at -20 °C for 30 min, when TLC showed SM consumption. Reaction diluted with EtOAc (20 mL) and Na₂S₂O₃ (10 mL), stirred until reaction warmed to rt. Organic layer separated and aqueous phase extracted with EtOAc (3 x 20 mL). Combined organic layers washed with brine, dried over NaSO₄ and filtered. Filtrate concentrated and used without further purification.


In a dried RB flask fitted with a stir bar under argon atmosphere was added aldehyde (0.34 g, 1.03 mmol) in MeOH (7 mL). Ohira-Bestmann reagent (0.40 g, 2.06 mmol) was added (turned yellow/green) and cooled to 0 °C. Powdered K₂CO₃ (0.43 g, 3.09 mmol) added and stirred at 0 °C for 2 h, when TLC showed consumption of SM. Reaction diluted with brine (5 mL) and extracted with EtOAc (3 x 15 mL). Combined organic layer washed with brine, dried over NaSO₄ and filtered. The filtrate was concentrated and purified by flash column chromatography (SiO₂, 12 g, 5% EtOAc/hexanes) to afford bicyclic alkyne **2c** as a white solid (0.23 g, 45% yield 3 steps); ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, *J* = 8.2 Hz, 2H), 7.85 (d, 1H), 7.66 (d, *J* = 8.2 Hz, 2H), 7.52 (dd, *J* = 8.6, 2.4 Hz, 1H), 6.93 (d, *J* = 8.5 Hz, 1H), 3.89 (s, 3H), 3.67 (d, *J* = 2.7 Hz, 2H), 2.27 (t, *J* = 2.5 Hz, 1H), 1.66 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 165.8, 156.9, 156.9, 144.8, 132.4, 130.2, 129.9, 129.9, 127.8, 126.7, 126.4, 125.0, 125.0, 110.4, 81.7, 77.4, 77.1, 76.9, 70.9, 55.5, 28.3, 19.4; HRMS (DART [M]*) *m/z* 322.1539 (calculated for C₂₁H₂₃O₃ 322.1569).

3'-Methoxy-5'-prop-2-ynyl-biphenyl-4-carboxylic acid *tert*-butyl ester (2d). In a dried RB flask fitted with a stir bar under argon atmosphere, methoxymethyl triphenylphosphonium chloride (1.76 g, 5.12 mmol) was dissolved in dry THF (12 mL) and cooled to 0 °C. Sodium *tert*-butoxide (0.49 g, 5.12 mmol) was added (reaction turned dark red) and stirred for 20 min. Aldehyde (0.64 g, 2.05 mmol) dissolved in dry THF (7 mL) was added (reaction turned orange). TLC showed SM consumption after 30 min. Reaction quenched with saturated NH₄Cl and extracted with EtOAc (3 x 15 mL). Combined organic layer washed with brine, dried over NaSO₄ and filtered. Filtrate passed through a column of silica gel (10% EtOAc in hexanes) to afford a mixture of enol ether isomers, which were immediately hydrolyzed in the subsequent step.

In a dried RB flask fitted with a stir bar under argon atmosphere was added enol ether (0.56 g, 1.64 mmol) in MeCN (20 mL). Sodium iodide (0.27 g, 1.80 mmol) added and cooled to -20 °C. TMSCI (0.20 g, 1.80 mmol) added, stirred at -20 °C for 30 min, when TLC showed SM consumption. Reaction diluted with EtOAc (20 mL) and Na₂S₂O₃ (10 mL), stirred until reaction warmed to rt. Organic layer separated and aqueous phase extracted with EtOAc (3 x 20 mL). Combined organic layers washed with brine, dried over NaSO₄ and filtered. Filtrate concentrated and used without further purification.

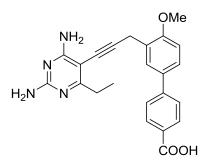
In a dried RB flask fitted with a stir bar under argon atmosphere was added aldehyde (0.38 g, 1.15 mmol) in MeOH (7 mL). Ohira-Bestmann reagent (0.44 g, 2.30 mmol) was added (turned yellow/green) and cooled to 0 °C. Powdered K₂CO₃ (0.48 g, 3.45 mmol) added and stirred at 0 °C for 2 h, when TLC showed consumption of SM. Reaction diluted with brine (5 mL) and extracted with EtOAc (3 x 15 mL). Combined organic layer washed with brine, dried over NaSO₄ and filtered. The filtrate was concentrated and purified by flash column chromatography (SiO₂, 12 g, 5% EtOAc/hexanes) to afford bicyclic alkyne **2d** as a white solid (0.22 g, 34% yield 3 steps); ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, *J* = 8.5 Hz, 2H), 7.67 (d, *J* = 8.5 Hz, 2H), 7.23 (s, 1H), 7.07 (s, 1H), 7.00 (s, 1H), 3.92 (s, 3H), 3.71 (d, *J* = 2.6 Hz, 2H), 2.27 (t, *J* = 2.7 Hz, 1H), 1.66 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 165.7, 160.3, 144.9, 141.9, 138.3, 131.1, 129.9, 127.0, 119.4, 113.1, 111.6, 81.6, 81.1, 70.9, 55.5, 28.3, 25.0. HRMS (DART [M]⁺) *m/z* 322.1572 (calculated for C₂₁H₂₃O₃ 322.1569).



6-Ethyl-5-[3-(2-methoxy-5-(2-carboxyphenyl)-phenyl)-prop-1-ynyl]-pyrimidine-

2,4-diamine (3a). In a screw cap vial fitted with a stir bar and a septum, was added alkyne (0.10 g, 0.31 mmol), iodo-ethylpyrimidine (0.06 mg, 0.24 mmol), Pd(PPh₃)₂Cl₂ previously doped with 10% Cul by weight (0.01 g, 0.02 mmol), and KOAc (0.23 g, 2.38 mmol). DMF (3 mL) added and argon bubbled through the stirring solution for

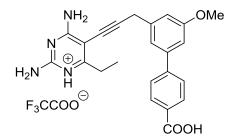
10 min. Vial sealed and heated to 50 °C until complete by TLC (2-3 h). Dried in vacuo using toluene as an azeotrope. Residue washed with saturated sodium bicarbonate, extracted 3x with EtOAc. Organic layer washed with brine, dried over sodium sulfate, and filtered. Filtrate concentrated and purified by flash column chromatography (coupled product eluted with 90% EtOAc in hexanes). Material carried forward with no further purification.


TFA (0.5 mL) added to ester dissolved in DCM (1 mL). Stirred until complete by TLC (30 min). Reaction dried in vacuo to remove excess TFA. Column run on residue. Carboxylic acid eluted with 8% MeOH in DCM to give a white solid (0.043 g, 42% 2 step yield); ¹H NMR (500 MHz, DMSO- d_6) δ 7.71 (d, J = 7.3 Hz, 1H), 7.56 (t, J = 7.5 Hz, 1H), 7.50 – 7.46 (m, 1H), 7.43 (t, J = 7.5 Hz, 1H), 7.36 (d, J = 7.6 Hz, 1H), 7.23 (dd, J = 8.3, 2.0 Hz, 1H), 7.06 (d, J = 8.4 Hz, 1H), 6.38 (bs, 2H), 6.21 (bs, 2H), 3.88 (s, 3H), 3.85 (s, 2H), 2.55 (q, J = 7.5 Hz, 2H), 1.04 (t, J = 7.5 Hz, 3H). ¹³C NMR (126 MHz, DMSO) δ 170.3, 164.9, 156.4, 141.2, 133.5, 132.8, 131.2, 130.8, 129.5, 129.2, 128.2, 127.3, 125.1, 110.7, 95.7, 88.6, 76.7, 56.0, 29.1, 21.1, 12.8; HRMS (DART [M+H]⁺) *m/z* 403.1744 (calculated for C₂₃H₂₃N₄O₃ 403.1770).

6-Ethyl-5-[3-(2-methoxy-5-(3-carboxyphenyl)-phenyl)-prop-1-ynyl]-pyrimidine-2,4-diamine-trifluoroacetate salt (3b). In a screw cap vial fitted with a stir bar and a septum, was added alkyne (0.10 g, 0.31 mmol), iodo-ethylpyrimidine (0.06 mg, 0.24

mmol), Pd(PPh₃)₂Cl₂ previously doped with 10% Cul by weight (0.01 g, 0.02 mmol), and KOAc (0.23 g, 2.38 mmol). DMF (3 mL) added and argon bubbled through the stirring solution for 10 min. Vial sealed and heated to 50 °C until complete by TLC (2-3 h). Dried in vacuo using toluene as an azeotrope. Residue washed with saturated sodium bicarbonate, extracted 3x with EtOAc. Organic layer washed with brine, dried over sodium sulfate, and filtered. Filtrate concentrated and purified by flash column chromatography (coupled product eluted with 90% EtOAc in hexanes). Material carried forward with no further purification.

TFA (0.5 mL) added to ester dissolved in DCM (1 mL). Stirred until complete by TLC (30 min). Reaction dried in vacuo to remove excess TFA. Column run on residue. Carboxylic acid eluted with 8% MeOH in DCM to give a white solid (0.48 g, 53% yield 2 steps). Compound isolated as the TFA salt; ¹H NMR (500 MHz, DMSO- d_6) δ 8.48 (s, 1H), 8.16 (s, 1H), 7.91 (d, J = 7.7 Hz, 1H), 7.88 (d, J = 7.8 Hz, 1H), 7.78 – 7.75 (m, 1H), 7.73 (s, 1H), 7.67 – 7.63 (m, 1H), 7.59 (t, J = 7.7 Hz, 1H), 7.17 (d, J = 8.5 Hz, 1H), 3.93 (s, 2H), 3.91 (s, 3H), 2.71 (q, J = 7.5 Hz, 2H), 1.18 (t, J = 7.6 Hz, 3H); ¹³C NMR (126 MHz, DMSO) δ 167.7, 164.9, 164.9, 159.0 (q, J = 31.3), 157.0, 154.5, 140.6, 131.9, 131.0, 129.8, 128.1, 127.6, 127.2, 127.0, 125.3, 111.8, 98.6, 91.8, 72.2, 56.2, 25.6, 21.0, 12.4; HRMS (DART [M+H]⁺) *m/z* 403.1748 (calculated for C₂₃H₂₃N₄O₃ 403.1770).

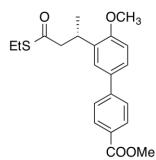


6-Ethyl-5-[3-(2-methoxy-5-(4-carboxyphenyl)-phenyl)-prop-1-ynyl]-pyrimidine-

2,4-diamine (3c). In a screw cap vial fitted with a stir bar and a septum, was added alkyne (0.10 g, 0.31 mmol), iodo-ethylpyrimidine (0.06 mg, 0.24 mmol), Pd(PPh₃)₂Cl₂ previously doped with 10% Cul by weight (0.01 g, 0.02 mmol), and KOAc (0.23 g, 2.38 mmol). DMF (3 mL) added and argon bubbled through the stirring solution for 10 min. Vial sealed and heated to 50 °C until complete by TLC (2-3 h). Dried in vacuo using toluene as an azeotrope. Residue washed with saturated sodium bicarbonate, extracted 3x with EtOAc. Organic layer washed with brine, dried over sodium sulfate, and filtered. Filtrate concentrated and purified by flash column chromatography (coupled product eluted with 90% EtOAc in hexanes). Material carried forward with no further purification.

TFA (1 mL) added to ester dissolved in DCM (1 mL). Stirred until complete by TLC (30 min). Reaction dried in vacuo to remove excess TFA. Column run on residue. Carboxylic acid eluted with 8% MeOH in DCM to give a white solid (0.039 g, 43% yield 2 steps); ¹H NMR (500 MHz, CDCl₃: Methanol- d_4) δ 8.08 (d, J = 8.4 Hz, 2H), 7.76 (d, J = 2.3 Hz, 1H), 7.68 (d, J = 8.4 Hz, 2H), 7.61 (dd, J = 8.5, 2.4 Hz, 1H), 7.10 (d, J = 8.6 Hz, 1H), 3.95 (s, 3H), 3.95 (s, 2H), 2.79 (q, J = 7.6 Hz, 2H), 1.28 (t, J = 7.6 Hz, 3H); ¹³C NMR (126 MHz, DMSO) δ 171.8, 165.0, 161.6, 157.3, 144.2, 131.7,

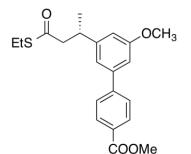
130.4, 127.9, 127.7, 127.0, 126.5, 126.3, 111.7, 95.7, 88.5, 76.9, 56.2, 29.3, 21.1, 11.0; HRMS (DART [M+H]⁺) *m/z* 403.1746 (calculated for C₂₃H₂₃N₄O₃ 403.1770).


6-Ethyl-5-[3-(3-methoxy-5-(4-carboxyphenyl)-phenyl)-prop-1-ynyl]-pyrimidine-

2,4-diamine-trifluoroacetate salt (3d). In a screw cap vial fitted with a stir bar and a septum, was added alkyne (0.10 g, 0.31 mmol), iodo-ethylpyrimidine (0.06 mg, 0.24 mmol), Pd(PPh₃)₂Cl₂ previously doped with 10% Cul by weight (0.01 g, 0.02 mmol), and KOAc (0.23 g, 2.38 mmol). DMF (3 mL) added and argon bubbled through the stirring solution for 10 min. Vial sealed and heated to 50 °C until complete by TLC (2-3 h). Dried in vacuo using toluene as an azeotrope. Residue washed with saturated sodium bicarbonate, extracted 3x with EtOAc. Organic layer washed with brine, dried over sodium sulfate, and filtered. Filtrate concentrated and purified by flash column chromatography (coupled product eluted with 90% EtOAc in hexanes). Material carried forward with no further purification.

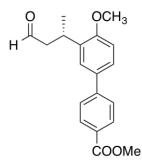
TFA (1 mL) added to ester dissolved in DCM (1 mL). Stirred until complete by TLC (30 min). Reaction dried in vacuo to remove excess TFA. Column run on residue. Carboxylic acid eluted with 8% MeOH in DCM to give as a white solid (0.045 g, 49% yield 2 steps). Compound isolated as the TFA salt; ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.5-7.0 (bs, 4H), 8.04 (d, *J* = 7.7 Hz, 2H), 7.81 (d, *J* = 7.7 Hz, 2H), 7.36 (s, 1H), 7.18 (s, 1H), 7.06 (s, 1H), 4.01 (s, 2H), 3.86 (s, 3H), 2.75 – 2.61 (m, 2H), 1.18 (t, *J* = 7.4

Hz, 3H); ¹³C NMR (126 MHz, DMSO) δ 167.6, 164.9, 160.5, 158.6 (q, *J* = 31.3), 144.6, 141.1, 139.5, 130.4, 127.4, 119.5, 114.1, 111.1, 98.0, 90.8, 73.4, 55.8, 26.5, 26.0, 12.6; HRMS (DART [M+H]⁺) *m/z* 403.1777 (calculated for C₂₃H₂₃N₄O₃ 403.1770).


Synthesis of 3*S*-(2-Methoxy-5-(4-carbomethoxyphenyl)-phenyl)-thiobutyric acid S-ethyl ester

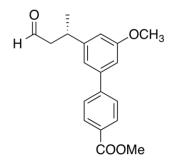
To 4-(Methoxycarbonyl)phenylboronic acid (680 mg, 3.78 mmol), Pd(PPh₃)₄ (291 mg, 0.252 mmol), and Cs₂CO₃ (1.06 g, 3.78 mmol) was added followed by 3*S*-(5-Bromo-2-methoxy-phenyl)-thiobutyric acid S-ethyl ester **4S** (400 mg, 1.26 mmol) dissolved in dioxane (9 mL). To the reaction mixture was added water (2.5 mL) and stirred at 89 °C for 14 h. Later the reaction mixture was quenched with water (10 mL) and extracted with EtOAc (3 x 30 mL). The combined organic extracts were dried (Na₂SO₄) and concentrated. Purification by flash chromatography on silica gel (Hexane/EtOAc 80:20) provided 3*S*-(2-Methoxy-5-(4-carbomethoxyphenyl)-phenyl)-thiobutyric acid S-ethyl ester as a colorless semi-solid (390 mg, 83% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.12 (d, *J* = 8.4 Hz, 2H), 7.66 (d, *J* = 8.4 Hz, 2H), 7.50 (d, *J* = 8.4, 2.5 Hz, 1H), 7.46 (d, *J* = 2.2 Hz, 1H), 6.98 (d, *J* = 8.4 Hz, 1H), 3.98 (s, 3H), 3.94 (s, 3H), 3.79 (sextet, *J* = 7.0 Hz, 1H), 3.02 (dd, *J* = 14.7, 5.9 Hz, 1H), 2.90 (q, *J* = 7.4

Hz, 2H), 2.84 (dd, J = 14.6, 8.7 Hz, 1H), 1.38 (d, J = 6.9 Hz, 3H), 1.25 (t, J = 7.4 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 198.6, 167.1, 157.3, 145.5, 134.0, 132.2, 130.1, 128.2, 126.6, 126.2, 126.1, 111.0, 55.5, 52.1, 50.5, 31.2, 23.3, 19.7, 14.8; HRMS (DART, M⁺+H) *m*/*z* 373.1456 (calculated for C₂₁H₂₅O₄S, 373.1474).


Synthesis of 3*S*-(3-Methoxy-5-(4-carbomethoxyphenyl)-phenyl)-thiobutyric acid S-ethyl ester

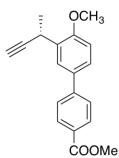
To 4-(Methoxycarbonyl)phenylboronic acid (680 mg, 3.78 mmol), Pd(PPh₃)₄ (291 mg, 0.252 mmol), and Cs₂CO₃ (1.06 g, 3.78 mmol) was added followed by 3*S*-(5-Bromo-3-methoxy-phenyl)-thiobutyric acid S-ethyl ester **5S** (400 mg, 1.26 mmol) dissolved in dioxane (9 mL). To the reaction mixture was added water (2.5 mL) and stirred at 89 °C for 14 h. Later the reaction mixture was quenched with water (10 mL) and extracted with EtOAc (3 x 30 mL). The combined organic extracts were dried (Na₂SO₄) and concentrated. Purification by flash chromatography on silica gel (Hexane/EtOAc 80:20) provided 3*S*-(3-Methoxy-5-(4-carbomethoxyphenyl)-phenyl)-thiobutyric acid S-ethyl ester as a colorless semi-solid (402 mg, 86% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.10 (d, *J* = 8.2 Hz, 2H), 7.65 (d, *J* = 8.2 Hz, 2H), 7.08 (s, 1H), 7.00 (s, 1H), 6.82 (s, 1H), 3.93 (s, 3H), 3.85 (s, 3H), 3.42 (sextet, *J* = 7.0 Hz, 1H), 2.87 (m, 4H), 1.36 (d, *J* = 7.0 Hz, 3H), 1.21 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (125 MHz,

CDCl₃) δ 197.9, 166.8, 160.2, 147.7, 145.6, 141.5, 130.0, 129.0, 127.1, 118.4, 112.4, 110.9, 55.3, 52.0, 37.1, 23.3, 21.5, 14.8; HRMS (DART, M⁺+H) *m*/*z* 373.1483 (calculated for C₂₁H₂₅O₄S, 373.1474).


Synthesis of 3*S*-(2-Methoxy-5-(4-carbomethoxyphenyl)-phenyl)-butyraldehyde (6*S*)

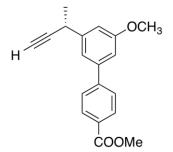
To 3*S*-(2-Methoxy-5-(4-carbomethoxyphenyl)-phenyl)-thiobutyric acid S-ethyl ester (203 mg, 0.649 mmol) dissolved in CH₂Cl₂ (3 mL) was added 10% Pd/C (687 mg, 0.649 mmol Pd) followed by Et₃SiH (0.310 mL, 1.95 mmol) and stirred vigorously at rt for 30-40 min. The reaction monitored by TLC and filtered through the celite and washed with CH₂Cl₂ (2 x 20 mL). The solution was concentrated and purified by flash chromatography on silica gel (hexane/EtOAc 60:40) to yield **6S** as colorless oil (172 mg, 85% yield); ¹H NMR (500 MHz, CDCl₃) δ 9.77 (t, *J* = 2.2 Hz, 1H), 8.11 (d, *J* = 8.5 Hz, 2H), 7.64 (d, *J* = 8.5 Hz, 2H), 7.48 (m, 2H), 6.97 (d, *J* = 8.3 Hz), 3.96 (s, 3H), 3.91 (s, 3H), 3.83 (sextet, *J* = 7.0 Hz, 1H), 2.82 (ddd, *J* = 16.3, 6.5, 2.1 Hz, 1H), 2.70 (ddd, *J* = 16.3, 7.8, 2.4 Hz, 1H), 1.40 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 202.3, 167.0, 157.0, 145.4, 133.9, 132.4, 130.1, 128.3, 126.5, 126.3, 125.9, 111.0, 55.5, 52.0, 50.5, 28.0, 20.3; HRMS (DART, M⁺+H) *m/z* 313.1431 (calculated for C₁₉H₂₁O₄, 313.1440).

Synthesis of 3S-(3-Methoxy-5-(4-carbomethoxyphenyl)-phenyl)-butyraldehyde



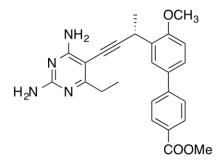
To 3S-(2-Methoxy-5-(4-carbomethoxyphenyl)-phenyl)-thiobutyric acid S-ethyl ester (400 mg, 1.07 mmol) dissolved in CH₂Cl₂ (6 mL) was added 10% Pd/C (1.13 g, 1.07 mmol Pd) followed by Et₃SiH (0.62 mL, 3.22 mmol) and stirred vigorously at rt for 30-40 min. The reaction monitored by TLC and filtered through the celite and washed with CH₂Cl₂ (2 x 30 mL). The solution was concentrated and purified by flash chromatography on silica gel (hexane/EtOAc 60:40) to yield **7S** as colorless oil (300 mg, 89% yield); ¹H NMR (500 MHz, CDCl₃) δ 9.76 (t, *J* = 1.8 Hz, 1H), 8.12 (d, *J* = 8.4 Hz, 2H), 7.66 (d, *J* = 8.4 Hz, 2H), 7.09 (dd, *J* = 1.3, 1.3 Hz, 1H), 7.01 (dd, *J* = 1.7, 1.7 Hz, 1H), 6.84 (ddd, *J* = 16.8, 6.8, 1.7 Hz, 1H), 2.72 (ddd, *J* = 16.8, 7.7, 2.0 Hz, 1H), 1.38 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 201.5, 166.9, 160.3, 147.9, 145.5, 141.8, 130.1, 129.1, 127.2, 118.4, 112.5, 110.8, 55.4, 52.1, 51.6, 34.4, 22.1; HRMS (DART, M⁺+H) *m/z* 313.1430 (calculated for C₁₉H₂₁O₄, 313.1440).

Synthesis of 4-[4-Methoxy-3-(1S-methyl-prop-2-ynyl)-phenyl]-methylbenzoate

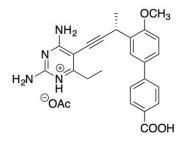

(8S)

To (S)-aldehyde **6S** (0.14 g, 0.45 mmol) dissolved in DMF (2 mL) was added NfF (0.30 mL, 1.68 mmol) at -15 °C followed by the phosphazene base (0.75 mL, 2.46 mmol) and stirred vigorously at rt for 18 h. The reaction mixture was quenched with water (10 mL) and extracted with EtOAc (3 x 10 mL). The combined organic extracts were dried (Na₂SO₄) and concentrated. Purification by flash chromatography on silica gel (hexane/EtOAc 70:30) provided (S)-alkyne **8S** as white solid (0.11 g, 83 % yield); R-isomer [α] $_{D^{21}}$ = - 83.9 (*c*, 1.36, CHCl₃)/ S-isomer [α] $_{D^{21}}$ = + 81.9 (*c*, 1.30, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.14 (d, *J* = 8.5 Hz, 2H), 7.92 (d, *J* = 2.4 Hz, 1H), 7.70 (d, *J* = 8.5 Hz, 2H), 7.54 (dd, *J* = 8.5, 2.4 Hz, 1H), 6.97 (d, *J* = 8.5 Hz, 1H), 1.54 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 167.1, 156.4, 145.4, 132.4, 131.6, 130.1, 128.3, 126.7, 126.6, 110.8, 87.3, 69.9, 55.6, 52.1, 25.6, 22.7; HRMS (DART, M⁺+H) *m*/z 295.1321 (calculated for C₁₉H₁₉O₃, 295.1334).

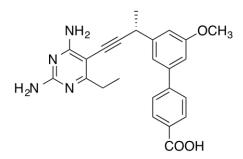
Synthesis of 4-[5-Methoxy-3-(1S-methyl-prop-2-ynyl)-phenyl]-methylbenzoate



To (S)-aldehyde **7S** (0.30 g, 0.96 mmol) dissolved in DMF (4 mL) was added NfF (0.64 mL, 3.60 mmol) at -15 °C followed by the phosphazene base (1.60 mL, 5.28 mmol) and stirred vigorously at rt for 12 h. The reaction mixture was quenched with water (10 mL) and extracted with EtOAc (3 x 10 mL). The combined organic extracts were dried (Na₂SO₄) and concentrated. Purification by flash chromatography on silica gel (hexane/EtOAc 70:30) provided (R)-alkyne **9***R* as white solid (197 mg, 70 % yield); R-isomer [α]_{D²¹} = + 13.4 (*c*, 1.09, CHCl₃)/ S-isomer [α]_{D²¹} = - 8.7 (*c*, 1.17, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 8.14 (d, *J* = 8.4 Hz, 2H), 7.69 (d, *J* = 8.4 Hz, 1H), 7.27 (dd, *J* = 1.3, 1.3 Hz, 1H), 7.06 (dd, *J* = 1.6, 1.6 Hz, 1H), 7.05 (dd, *J* = 1.6, 1.6 Hz, 1H), 3.98 (s, 3H), 3.92 (s, 3H), 3.86 (dq, *J* = 7.1, 2.5 Hz, 1H), 2.35 (d, *J* = 2.5 Hz, 1H), 1.61 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 166.9, 160.3, 145.5, 144.9, 141.7, 130.1, 129.1, 127.2, 118.5, 112.4, 111.4, 86.7, 70.6, 55.4, 52.1, 31.8, 24.2; HRMS (DART, M⁺+H) *m/z* 295.1316 (calculated for C₁₉H₁₉O₃, 295.1334).


Synthesis of 6-Ethyl-5-[3S-(2-methoxy-5-(4-carbomethoxyphenyl)-phenyl)-but-

1-ynyl]-pyrimidine-2,4-diamine


To (S)-alkyne 8S (0.040 g, 0.136 mmol), iodo-ethyl pyrimidine (0.027 g, 0.104 mmol), KOAc (102 mg, 1.04 mmol) and PdCl₂(PPh₃)₂ (6.0 mg, 0.0083 mmol) previously doped with 10% Cul was added followed by DMF (2.0 mL) and stirred at 70 °C for 6 h. The reaction mixture was guenched with saturated NaHCO₃ (5 mL) and extracted with (4 x 10 mL) EtOAc. The combined organic layers concentrated by azeotroping with toluene (3 x 10 mL) and purified by gradient flash chromatography (100 % EtOAc followed by 1% MeOH in CH₂Cl₂) to yield coupled pyrimidine as pale yellow solid (30 mg); ¹H NMR (500 MHz, CDCl₃) δ 8.12 (d, J = 8.4 Hz, 2H), 7.89 (d, J = 2.4 Hz, 1H), 7.67 (d, J = 8.4 Hz, 2H), 7.56 (dd, J = 8.4, 2.4 Hz, 1H), 7.01 (d, J = 1.48.5 Hz, 1H), 5.16 (br s, 2H), 4.84 (br s, 2H), 4.51 (q, J = 7.0 Hz, 1H), 3.98 (s, 3H), 3.97 (s, 3H), 2.76 (q, J = 7.6 Hz, 2H), 1.62 (d, J = 7.0 Hz, 3H), 1.27 (t, J = 7.6 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.3, 167.0, 164.4, 160.7, 156.4, 145.2, 132.5, 132.1, 130.1, 128.4, 126.7, 126.6, 126.5, 110.9, 101.8, 90.8, 74.8, 55.6, 52.1, 29.7, 27.1, 22.9, 12.5; HRMS (DART, M⁺+H) m/z 431.2078 (calculated for C₂₅H₂₇N₄O₃, 431.2083).

Synthesis of 6-Ethyl-5-[3S-(2-methoxy-5-(4-carboxyphenyl)-phenyl)-but-1ynyl]-pyrimidine-2,4-diamine-acetate salt (10*S*)

To coupled pyrimidine (30 mg, 0.069 mmol) dissolved in MeOH (1.4 mL) and THF (0.15 mL) was added LiOH (10.0 mg, 0.418 mmol) dissolved in water (0.45 mL) and stirred at 32 °C for 24 h. The reaction mixture was quenched with saturated NH₄Cl and extracted with EtOAc (4 x 10 mL). The combined organic layers concentrated and purified by gradient flash chromatography (5-10% MeOH in CH₂Cl₂ followed by 1% AcOH + 9 % MeOH in CH₂Cl₂) to yield acid **10S** as white solid (12 mg, 28% over 2 steps); R-isomer [α]_D²¹ = - 63.2 (*c*, 0.33, DMSO-d₆)/ S-isomer [α]_D²¹ = + 59.1 (*c*, 0.30, DMSO-d₆); ¹H NMR (500 MHz, DMSO-d₆) δ 7.97 (d, *J* = 8.0 Hz, 2H), 7.85 (d, *J* = 2.2 Hz, 1H), 7.57 (m, 3H), 7.12 (d, *J* = 8.5 Hz, 1H), 6.19 (br s, 2H), 6.04 (s, 2H), 4.42 (q, *J* = 7.0 Hz, 1H), 3.91 (s, 3H), 2.61 (q, *J* = 7.5 Hz, 2H), 1.52 (d, *J* = 7.0 Hz, 3H), 1.14 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (125 MHz, DMSO-d₆) δ 176.6, 172.1, 164.8, 161.7, 156.1, 141.3, 133.0, 132.2, 130.2, 126.6, 126.4, 125.5, 112.1, 101.2, 88.6, 75.9, 56.2, 29.3, 27.1, 24.2, 23.4, 12.8; HRMS (DART, M⁺+H) *m/z* 417.1908 (calculated for C₂₄H₂₅N₄O₃, 417.1927).

Synthesis of 6-Ethyl-5-[3*S*-(3-methoxy-5-(4-carboxyphenyl)-phenyl)-but-1ynyl]-pyrimidine-2,4-diamine (11*R*)

To (R)-alkyne **9***R* (0.040 g, 0.136 mmol), iodo-ethyl pyrimidine (0.027 g, 0.104 mmol), KOAc (102 mg, 1.04 mmol) and PdCl₂(PPh₃)₂ (6.0 mg, 0.0083 mmol) previously doped with 10% Cul was added followed by DMF (2.0 mL) and stirred at 70 °C for 6 h. The reaction mixture was guenched with saturated NaHCO₃ (5 mL) and extracted with (4 x 10 mL) EtOAc. The combined organic layers concentrated by azeotroping with toluene (3 x 10 mL) and purified by gradient flash chromatography (100 % EtOAc followed by 1% MeOH in CH₂Cl₂) to yield coupled pyrimidine as pale yellow solid (40 mg); To coupled pyrimidine (40 mg, 0.093 mmol) dissolved in MeOH (1.6 mL) and THF (0.2 mL) was added LiOH (13.4 mg, 0.56 mmol) dissolved in water (0.6 mL) and stirred at 32 °C for 24 h. The reaction mixture was guenched with saturated NH₄Cl and extracted with EtOAc (4 x 10 mL). The combined organic layers concentrated and purified by gradient flash chromatography (5-10% MeOH in CH₂Cl₂ followed by 1% AcOH + 9 % MeOH in CH₂Cl₂) to yield acid **11***R* as white solid (24 mg, 55% over 2 steps); R-isomer $[\alpha]_{D^{22}} = -6.6$ (c, 0.85, DMSO-d₆)/ Sisomer $[\alpha]_{D^{22}} = +5.83$ (c, 0.19, DMSO-d₆); ¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, J = 7.5 Hz, 2H), 7.67 (d, J = 7.5 Hz, 2H), 7.37 (s, 1H), 7.11 (s, 1H), 7.05 (s, 1H), 6.24 (br

s, 2H), 6.16 (br s, 2H), 4.16 (q, J = 7.0 Hz, 1H), 3.85 (s, 3H), 2.58 (q, J = 7.5 Hz, 2H), 1.56 (d, J = 7.0 Hz, 3H), 1.13 (t, J = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 172.1, 164.7, 161.7, 160.4, 146.4, 141.9, 130.3, 126.5, 118.2, 112.4, 110.9, 100.9, 88.3, 76.6, 55.7, 32.8, 29.4, 25.1, 12.9; HRMS (DART, M⁺+H) m/z 417.1973 (calculated for C₂₄H₂₅N₄O₃, 417.1927).

HPLC Purity

Purity analysis were performed with a reversed phase high performance liquid chromatography on a Shimadzu Prominence 20 instrument fitted with a Luna 5µ C18(2) 100 Å column (5 µM, 4.6 mm x 250 mm, Phenomenex) and using UV diode array detection at 254 nm. Two separate determinations (Method A: isocratic: 40/60/0.1 MeCN/H₂O/TFA and Method B: isocratic: 60/40/0.1 MeOH/H₂O/TFA or 80/20/0.1 MeOH/H₂O/TFA) were made to determine compound purity. Flow rate was 1.0 mL/min for Method A and 1.0 mL/min for Method B. Compounds were diluted in HPLC grade methanol and filtered prior to analysis. Sample concentrations were 1 mg/ml. All final tested compounds were at least 95% pure according to both methods.

Biological Supplemental Information

Cmnd	Rp	D.	R2	Ar	So K. (pM)	Ec.K. (nM)	Hu K. (nM)
Cmpd	-	R ₁	_		Sa K _i (nM)	Ec K _i (nM)	Hu K _i (nM)
3a	Н	OCH3	Н	о-СООН	53.47 <u>+</u> 4.5	2.12 <u>+</u> 0.09	2494 <u>+</u> 46
3b	Н	OCH ₃	Н	<i>т</i> -СООН	23.38 <u>+</u> 1.2	5.72 <u>+</u> 0.22	346 <u>+</u> 13
3с	Н	OCH₃	Н	р-СООН	4.8 <u>+</u> 1.5	0.979 <u>+</u> 0.07	200 <u>+</u> 7
3d	Н	Н	OCH₃	р-СООН	1.64 <u>+</u> 0.09	5.52 <u>+</u> 0.09	158 <u>+</u> 9
105	S-CH ₃	OCH ₃	Н	р-СООН	5.51 <u>+</u> 0.3	1.93 <u>+</u> 0.22	376.6 <u>+</u> 21
10 <i>R</i>	R-CH₃	OCH ₃	Н	р-СООН	32.2 <u>+</u> 2.9	3.14 <u>+</u> 0.44	451 <u>+</u> 11
11 <i>R</i>	R-CH₃	Н	OCH ₃	р-СООН	1.34 <u>+</u> 0.10	0.914 <u>+</u> 0.02	234.2 <u>+</u> 14
115	S- CH₃	Н	OCH ₃	р-СООН	2.09 <u>+</u> 0.15	1.81 <u>+</u> 0.11	388 <u>+</u> 23
ТМР					3.43 <u>+</u> 0.45	0.22 <u>+</u> 02	45738.5 <u>+</u> 0.6

Table S1. Enzyme Inhibition Values with Standard Deviations

	Sa(WT):NADPH: 3c	Sa(WT):NADPH: 3d
PDB ID	5HF0	5HF2
Space group	P6122	P6122
No. monomers in asymmetric unit	1	1
Unit cell (<i>a, b, c</i> in Å)	79.09, 79.09, 107.93 90.0, 90.0, 120.0	79.02, 79.02, 108.25 90.0, 90.0, 120.0
Resolution (Å)	32.65-2.24 (2.28-2.24)	25.15-1.81 (1.87-1.81)
Completeness % (last shell, %)	100 (99.9)	99.8 (100)
Unique reflections	10,059	18,798
Redundancy (last shell)	14 (14.2)	12.32 (12.03)
Rsym, (last shell)	0.055 (0.144)	0.110 (0.644)
<i σ=""> (last shell)</i>	68.5 (31.9)	11.7 (2.3)
R-factor/Rfree	0.1703/ 0.2167	0.1991/0.2322
No. of atoms (protein, ligands, solvent)	1,499	1,489
Rms deviation bond lengths (Å), angles (deg)	0.008, 1.912	0.009. 1.810
Average B factor for protein (Å2)	22.34	28.01
Average B factor for ligand (Å2)	17.46 α-NADPH 16.91 β-NADPH 31.29 Inhibitor	24.65 α-NADPH 24.93 Inhibitor
Average B factor for solvent molecules (Å2)	25.25	35.10
Residues in most favored regions (%) ^a	96.86	98.73
Residues in additional allowed regions (%) ^a	3.14	1.27
Residues in disallowed regions (%) ^a	0	0
Collection Location	SSRL Beamline 7-1	Rigaku HighFlux-007

Table S2. Data collection and structure refinement statistics

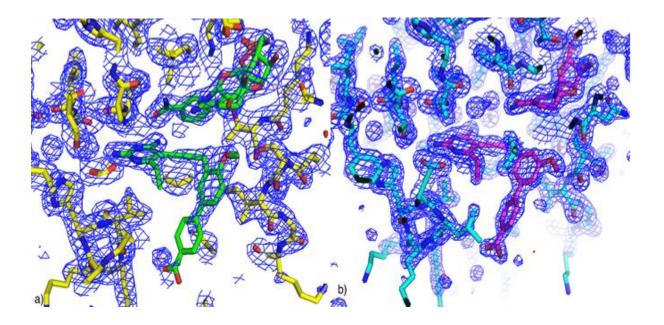

Compound	S. aureus MIC (µg/mL)	S. aureus MBC (µg/mL)
3d	0.0195	0.0391
11 <i>R</i>	0.0098	0.0195
11 <i>S</i>	0.0098	0.0195

 Table S3. Minimum Bactericidal Concentrations

Table S4. MIC values (μ g/mL) in *E. coli* wild-type and *E. coli* Δ acrB

Compound	E. coli BW25113	JW0451
3a	>32	>32
3b	>20	>20
3c	>20	>20
3d	>20	>20
10 <i>S</i>	>20	>20
10 <i>R</i>	20	20
11 <i>R</i>	10	5
11 <i>S</i>	10	10
ТМР	0.3125	0.0391
MTX	>40	>40

In order to examine whether the COOH-PLAs are subject to efflux by the common AcrB efflux pump, we compared MIC values in a parent *E. coli* strain with those in a strain in which AcrB is deleted (JW0451) (Table S4). As the MIC values against the JW0451 strain are similar to the parent strain and not the NR698 strain (Table 1), it is likely that the compounds are not subject to efflux by AcrB.

Figure S1: Electron density (2Fo-Fc) of the active site residues. Panel a) shows density for the Sa(WT)DHFR:NADPH:**3c**, shown at 1.0σ and panel b) density for the Sa(WT)DHFR:NADPH:**3d**, shown at 1.5σ .

Materials and Methods

Protein Expression and Purification

Recombinant *Sa*DHFR and *Ec*DHFR in PET-41a(+) were over-expressed in *E. coli* BL21 (DE3) (Invitrogen) cells and purified using nickel affinity chromatography (5Prime) using previously reported conditions.¹ Protein was desalted using a PD-10 column (GE Healthcare) into buffer containing 20 mM Tris pH 7.0, 20 % glycerol, 0.1 mM EDTA, 2 mM DTT, the protein was flash frozen and stored in aliquots at -80 °C.

Recombinant HuDHFR purified using methotrexate affinity chromatography according to previously reported conditions.²

Enzymatic Assays

Sa, Ec, and human DHFR Assays

IC₅₀ values for *Sa, Ec* and human DHFR enzymes were determined using enzyme inhibition assays by monitoring the rate of NADPH oxidation by DHFR via absorbance at 340 nM. The reaction was performed at room temperature in buffer containing 20 mM TES pH 7.0, 50 mM KCl, 0.5 mM EDTA, 10 mM β -ME and 1mg/ mL BSA with 0.1 mM NADPH and 2 µg/mL enzyme. Inhibitor in DMSO was added to the enzyme/NADPH mixture and incubated for 5 minutes prior to the addition of 0.1 mM dihydrofolate in 50 mM TES. T h e e n z y m a t i c a c t i v i t y i s determined via Equation 1 and the IC₅₀ is determined using Equation 2.

¹ Frey, K. M., et al. (2009) Crystal Structure of Wild-type and Mutant Methicillin-resistant Staphyloccocus aureus Dihydrofolate Reductase Reveal an Alternate Conformation of NADPH That May Be Linked to Trimethoprim Resistance. *J. Mol. Bill.* 387, 1289-1309.

² Kristen Lamb, et al. (2013) Elucidating Features that Drive the Design of Selective Antifolates Using Crystal Structures of Human Dihydrofolate Reductase. *Biochemistry*, 52(41), 7318-7326.

$$Activity = \left(\frac{(A_0 - A_1)^{10.001}}{(T_1 - T_0)}\right) / 60 \tag{1}$$

Where 0.041 is a term derived by the absorbance coefficient of NADPH, ϵ =6.2x10³ Lmol⁻¹cm⁻¹.

$$IC_{50}(nM) = \left(\frac{(/nk./otume/(100-\% Activity)) \cdot 50}{(550)}\right) * Inh \ Conc.$$
(2)

The assay was preformed in triplication and average IC_{50} and the standard deviation from the mean are reported. The IC_{50} values were converted to K_i using K_M values of Sa DHFR of 17.5 μ M³, Ec DHFR of 1.1 μ M⁴ and Human DHFR of 30 μ M⁵.

Cell Based Assays

S. aureus MICs

Minimum inhibitory concentrations were determined according to Clinical and Laboratory Standards Institute's guideline for Standard Micro-dilution broth assay using a final inoculum of 5 x 10^5 CFU/mL of ATCC strain 43300 in Isosensitest Broth (Oxoid). The MIC was defined as the lowest concentration of inhibitor to visually inhibit growth. Growth was monitored at A₆₀₀ after 18h of incubation at 37°C. MICs were confirmed, colorimetrically, using Presto Blue (Life Technologies).

E. coli

Minimum inhibitory concentrations were determined using *E. coli* (ATCC 25922) and the microdilution broth assay with an inoculum of 1 x 10^5 CFU/mL in Isosensitest Broth (Oxoid). Growth was monitored at A₆₀₀ using the Alamar Blue assay; the MIC

⁴ Iwakura, M., Tanaka, T. (1992) Dihydrofolate Reductase from Bacillus subtilis and its Artificial Derivatives: Expression, Purification, and Characterization. *J. Biochem.* 111, 638-642.

³ Reeve, S. M., et al. (2015) Protein Design and algorithms predict viable resistance to an experimental antifolate. *PNAS*, *112*(*3*), 749-754.

⁵ Blakely, R. L. (1995) Eukaryotic dihydrofolate reductase. *Adv. Enzymol. Relat. Mol. Biol., 70,* 23-102.

is defined as the lowest concentration of inhibitor to completely inhibit growth. Strains *E. coli* BW25113 and JW0451 were obtained from the Coli Genetic Stock Center, Yale University; strain NR698 was a gift from Dr. Thomas Silhavy (Princeton) and Dr. Daniel Kahne (Harvard); cell growth inhibition was evaluated using similar procedures as *E. coli* ATCC 25922.

CYP Inhibition

Human Cytochrome P450 3A4 and 2D6 inhibition assays were run in 96-well microtiter plates using CYP3A4/BQ and CYP2D6/AMMC High Throughput Inhibitor Screening Kits (Gentest, Woburn, MA). Briefly, the ability to inhibit CYP catalytic activity was measured by following the presence of a fluorescent substrate. Inhibitor concentrations ranged from 0.02 to 50 µM. Reactions were terminated after 30 minutes by addition of 75 µL of a 4:1 acetonitrile/0.5 M Tris base solution. The BQ (CYP3A4 substrate) metabolite 7-hydroxyquinoline was measured at 409 nm excitation and 530 nm. The AMMC (CYP2D6 substrate) metabolite 3-[-2-(N,N-diethylamino)ethyl]-7-hydroxy-4-methylcoumarin hydrochloride metabolite was measured at 390 nm excitation and 460 nm emission. IC₅₀ values were calculated via linear interpolation with inhibitor concentrations and corresponding percent inhibition values.

Microsomal stability

Compounds (0.5 μ g/ml) were incubated with mouse liver microsomes (0.5 mg/mL; MLM; BD Biosciences, San Jose, CA) in 0.1 M potassium phosphate buffer (pH 7.4) and 200 μ g/ml HPMC A4M in the presence of an NADPH regenerating system at 37°C. The NADPH regenerating system consisted of NADP+ (1.3 mM), glucose 6-

phosphate (3.3 mM), and glucose-6-phosphate dehydrogenase (0.5 U/mL). The metabolic reaction was initiated by the addition of microsomes and quenched by the addition of an equal volume of ice-cold acetonitrile at seven time points: 0, 10, 20, 30, 40, 60, and 90 minutes. Samples were centrifuged at 15,000 rpm for 10 minutes, supernantants were collected and spiked with an internal standard (diltiazem, 500 ng/mL) then analyzed using a Shimadzu Prominence 20 high-performance liquid chromatography (HPLC) instrument (Shimadzu, Kyoto, Japan) fitted with a Luna 5 μ m C18(2) 100Å column (5 μ M, 4.6 × 250 mm; Phenomenex, Torrance, CA) and a UV diode array detection at 254 nm. The area under the curve for the parent compound determined and normalized using the internal standard. The amount of parent compound remaining was determined using a standard curve. Data was plotted and the metabolic half-life was calculated following first order kinetics.

SaDHFR Crystallization

SaDHFR:NADPH:3c

Purified SaDHFR at18 mg/mL protein was co-crystallized with 2 mM NADPH and 1 mM **3c** in DMSO via the hanging drop method. The mixture of protein and cofactor was incubated on ice for 3 hours. Equal volumes of protein solution were added to an optimized buffer solution containing 0.1 M MES, pH 5.5, 0.2 M sodium acetate, 17% PEG 10,000 and 12.5% gamma-butyrolactone. When stored at 4°C, crystals typically formed within 7 days. Crystals were harvested and frozen in cryo-protectant buffer containing 25% glycerol. Data were collected remotely on beamline 7-1 at Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory. Data were indexed and scaled using HKL2000. Phaser was used to identify

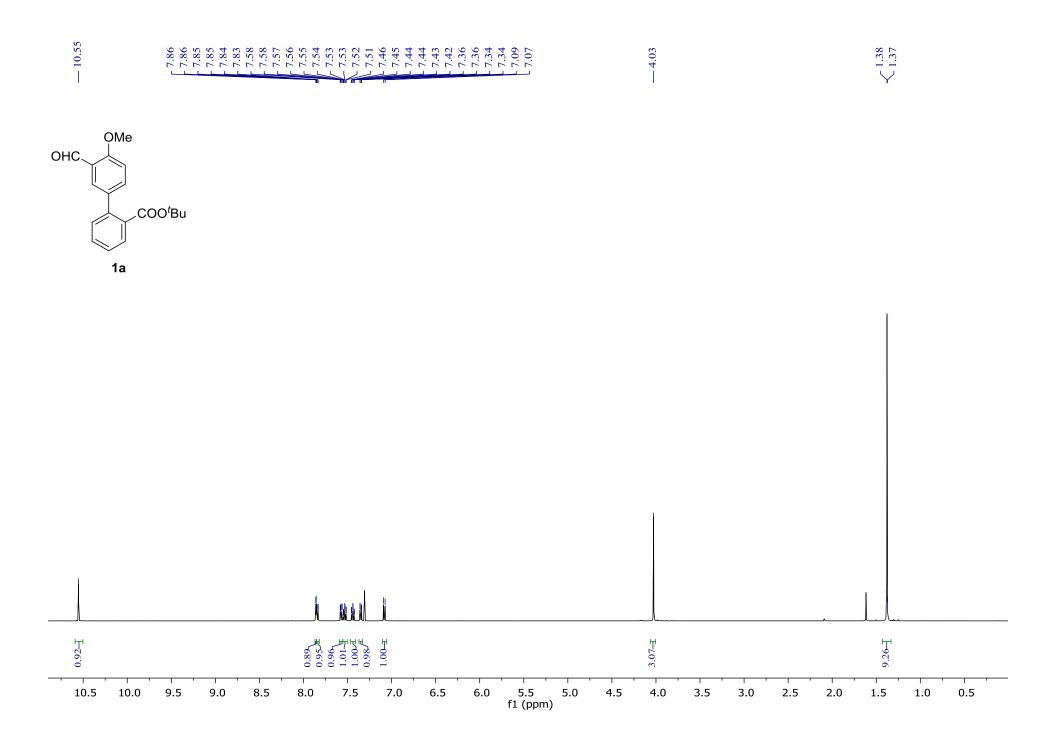
molecular replacement solutions using PDB ID: 3F0Q as a probe. Coot and Phenix were used for structure refinement until acceptable R_{Work} and R_{Free} were achieved.

SaDHFR:NADPH:3d

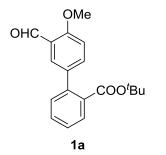
Purified SaDHFR was co-crystallized with 2 mM NADPH and 1mM **3d** in DMSO via hanging drop method. Crystallization details were similar to those used above except for a change in buffer to 0.1M MES, pH 5.0. Data were collected on the Rigaku Highflux Homelab system at the University of Connecticut's Protein X–Ray Crystallography Facility. Data were indexed and scaled using Structure Studio (d*Trek). Similar to above, Phaser⁶ was used for molecular replacement; Coot and Phenix⁷ were used for structure refinement.

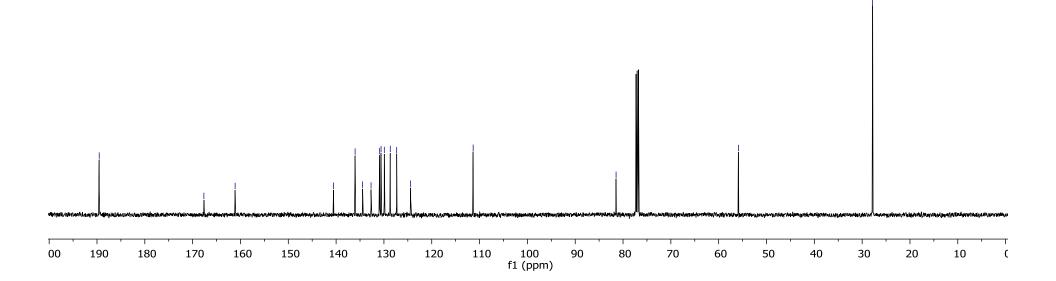
Bacteriostatic/Bactericidal Determination

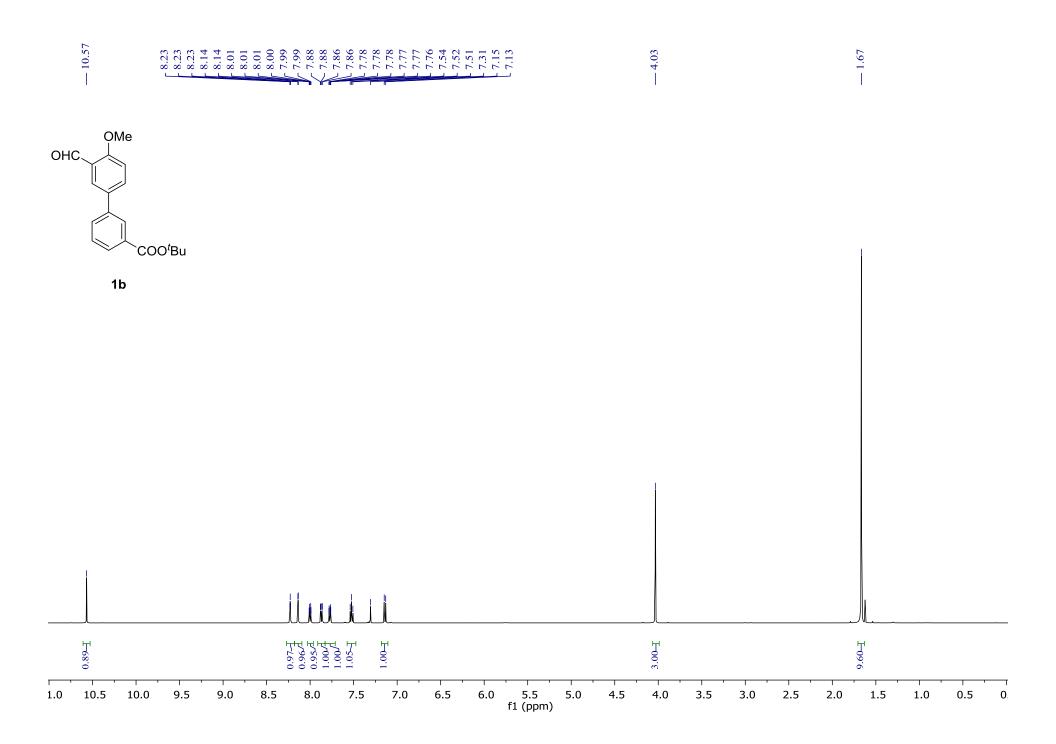
The minimum bactericidal concentrations were determined by plating 20 μ L of culture on non-antibiotic LB agar at 1x, 2x, 4x and 8x MIC when MIC was determined using an inoculum of 1x10^5 CFU/mL. The MBC is defined as the concentration there is a \geq 99% decrease of bacteria. Compounds with a MBC/MIC <4 are considered bactericidal.⁸

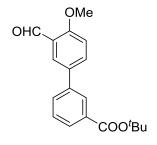

⁶ McCoy A. J. (2007) Solving structures of protein complexes by molecular replacement with Phaser *Acta Crystallogr. D. Biol. Crystallogr.* 63 (pt1): 32-41.

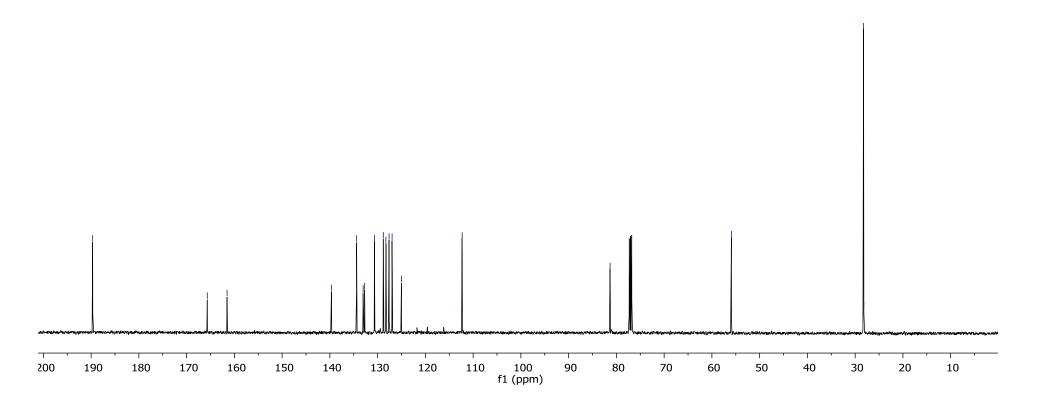
⁷ Adams P. D., et al. (2010) PHENIX: A comprehensive Python-based system for macromolecular structure solution. *Acta Crystallogr. D. Biol. Crystallogr.* 66 (Pt 2): 213-221.

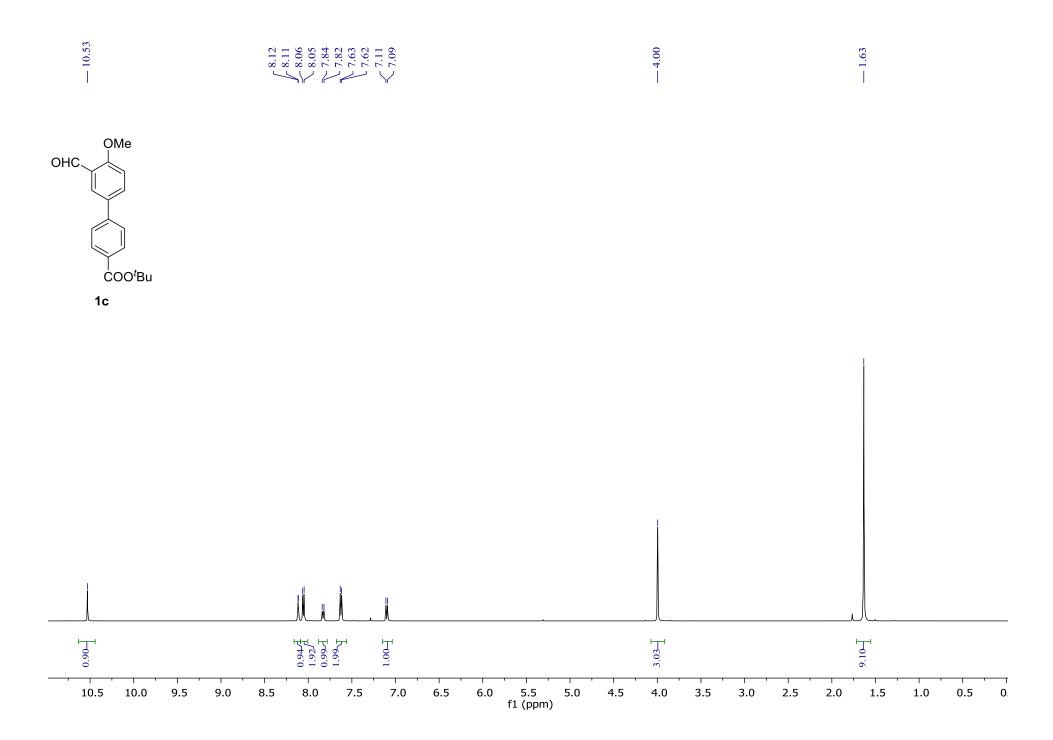

⁸ Pankey GA and Sabath LD. (2004) Clinical Relevance of Bacteriostatic versus Bactericidal Mechanisms of Action its Treatment of Gram-Positive Bacterial Infections. *Clinical Infectious Diseases*, 38:864-70.

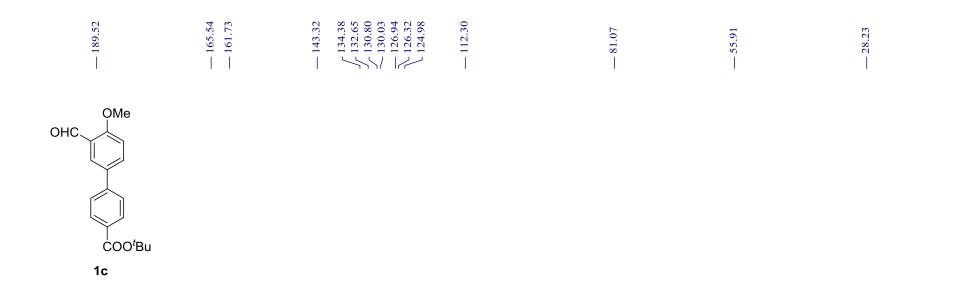

Human cell toxicity assays

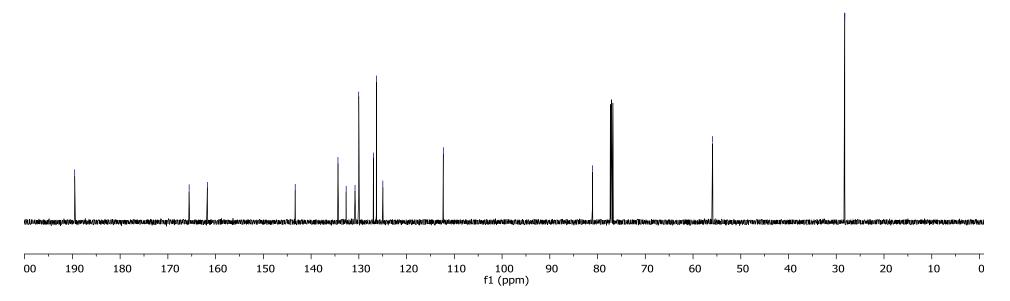

Adherent cell lines were maintained in Eagle's Minimal Essential Media with 2 mM glutamine and Earle's Balanced Salt Solution adjusted to contain 1.5 g/L sodium bicarbonate, 0.1 mM non-essential amino acids, 1 mM sodium pyruvate and 10 % fetal calf serum. Fetal calf serum used in these assays was lot matched throughout. All cultures were maintained under a humidified 5 % CO₂ atmosphere at 37 °C, had media refreshed twice weekly and were subcultured by trypsinization and resuspension at a ratio of 1:5 each week. Toxicity assays were conducted between passages 10 - 20. Target compound toxicity was measured by incubating the test compound with the cells for four hours, washing the cells and finally treating the cells with Alamar Blue. After 12 - 24 hours the fluorescence of the reduced dye was measured. Fluorescence intensity as a function of test compound concentration was fit to the Fermi equation to estimate IC₅₀ values.

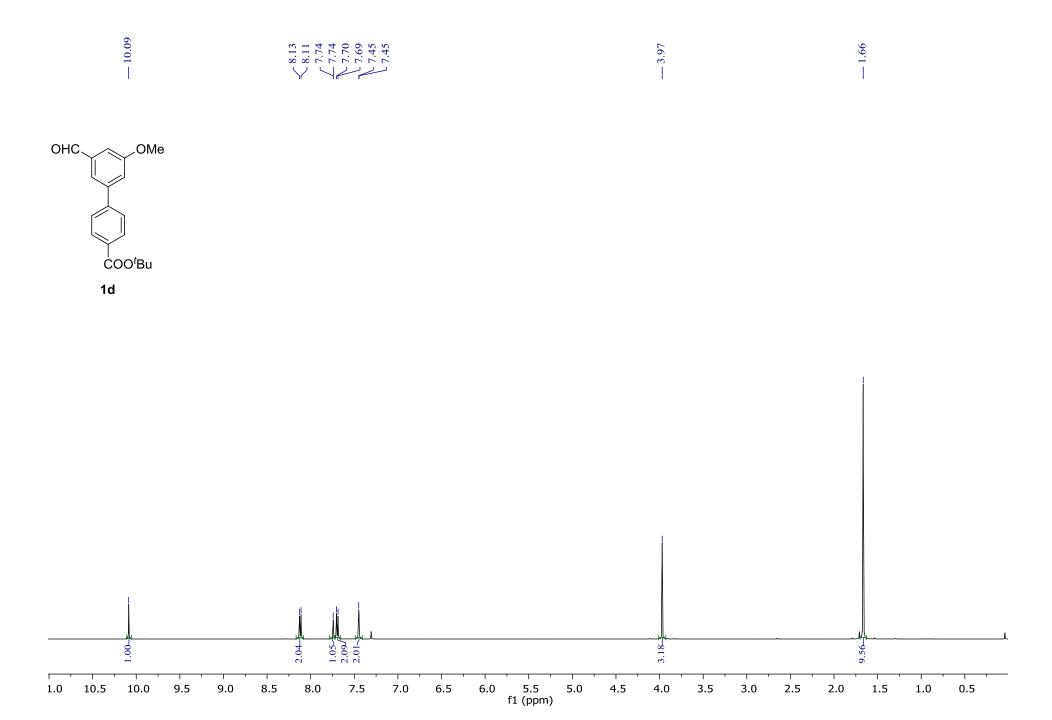


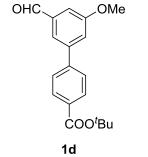


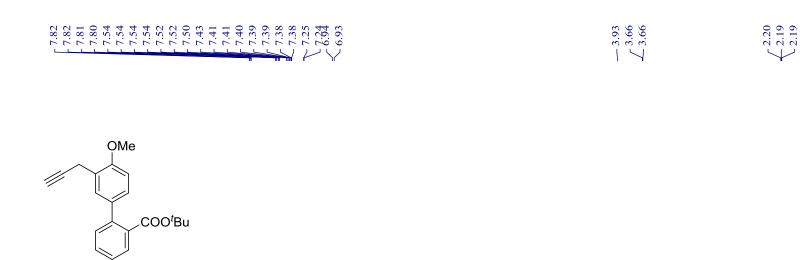



189.67	165.67	139.67 134.40 133.03 132.72 130.67 128.82 128.82 128.27 128.27 125.02 125.02	112.30 112.28	81.32	55.92	28.24 28.19
			$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$			\vee

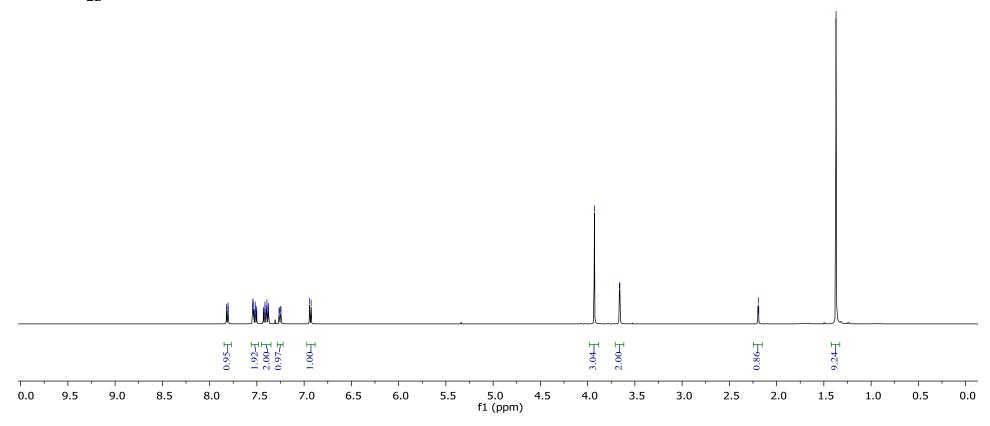


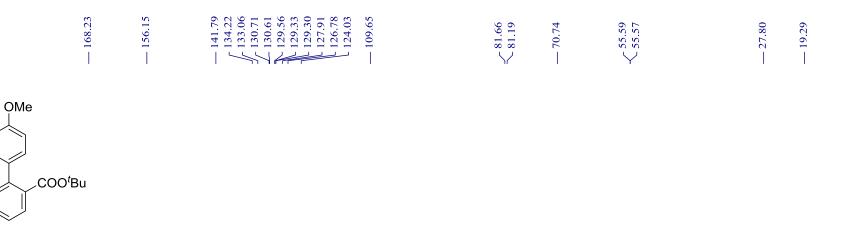

1b





S44


— 191.86	— 165.41 — 160.66		— 81.26	< 55.77 55.74	

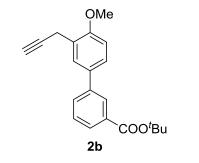


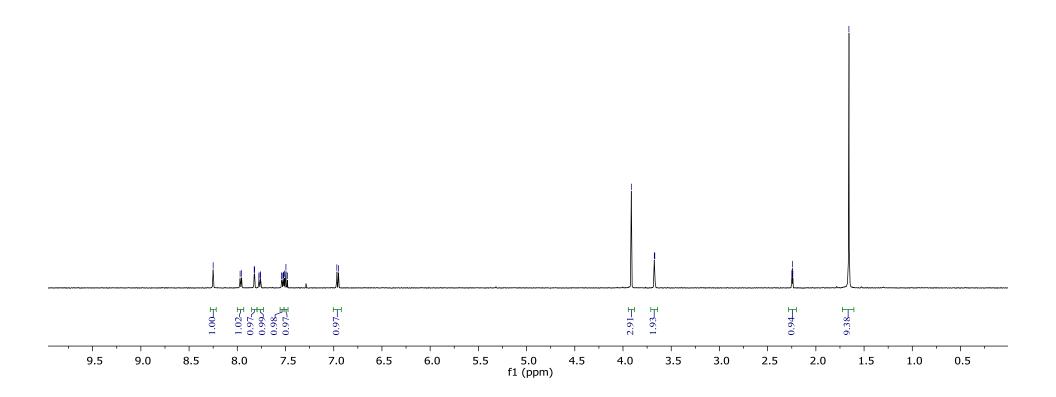
2a

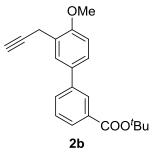


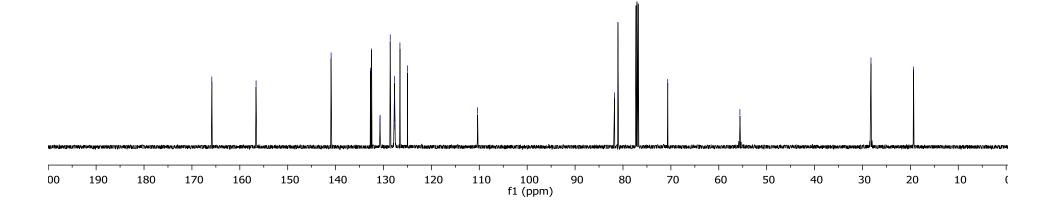
— 1.37

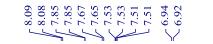
2a

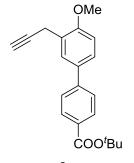

//

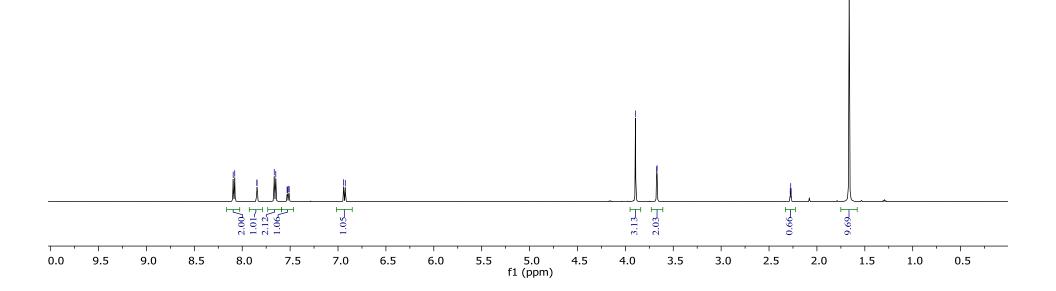


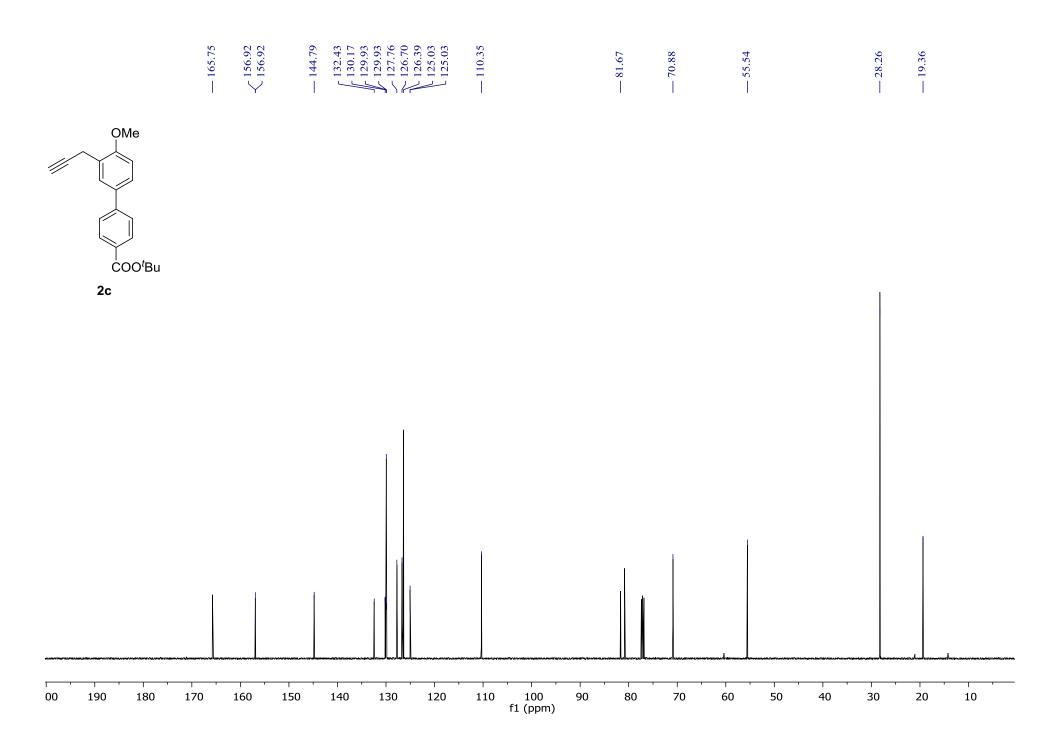






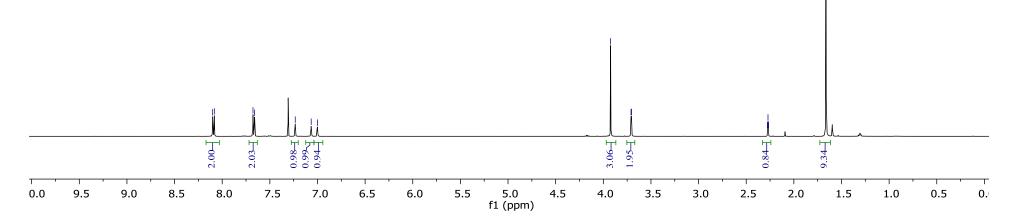


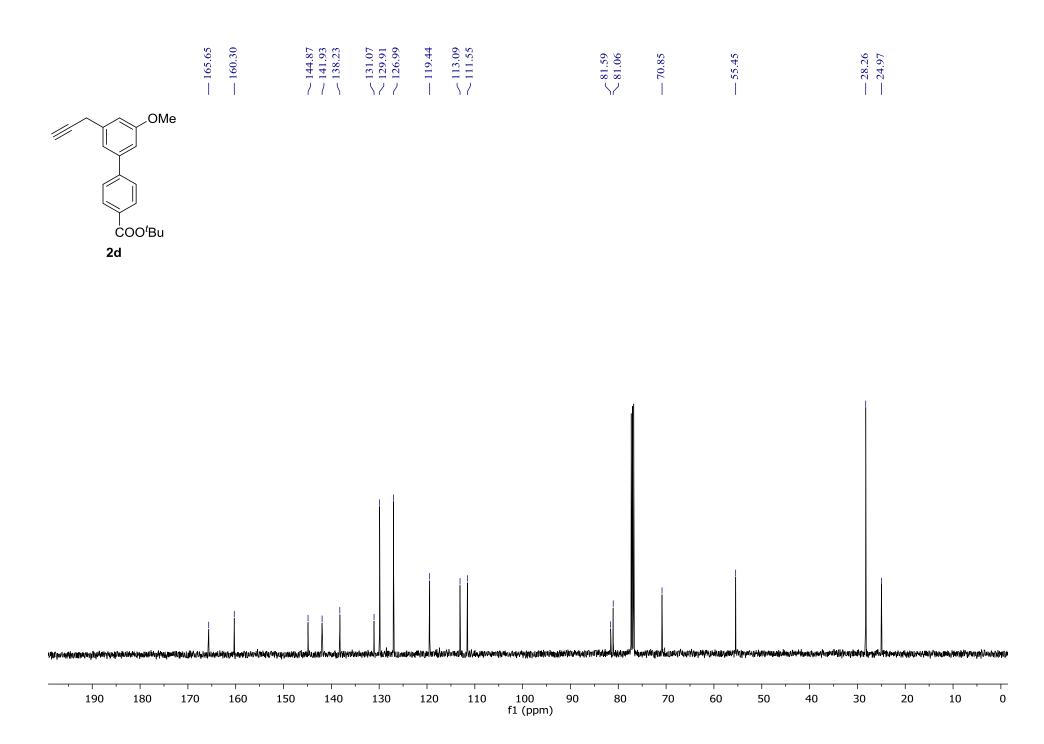


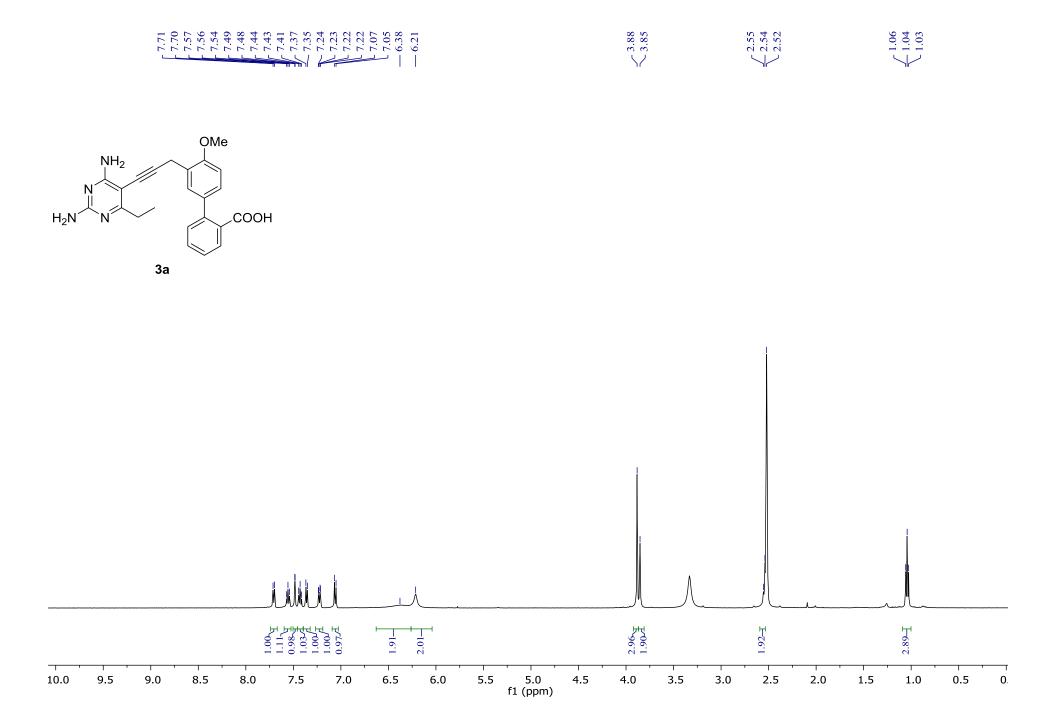

 \sim 3.89 \swarrow 3.67 \swarrow 3.67

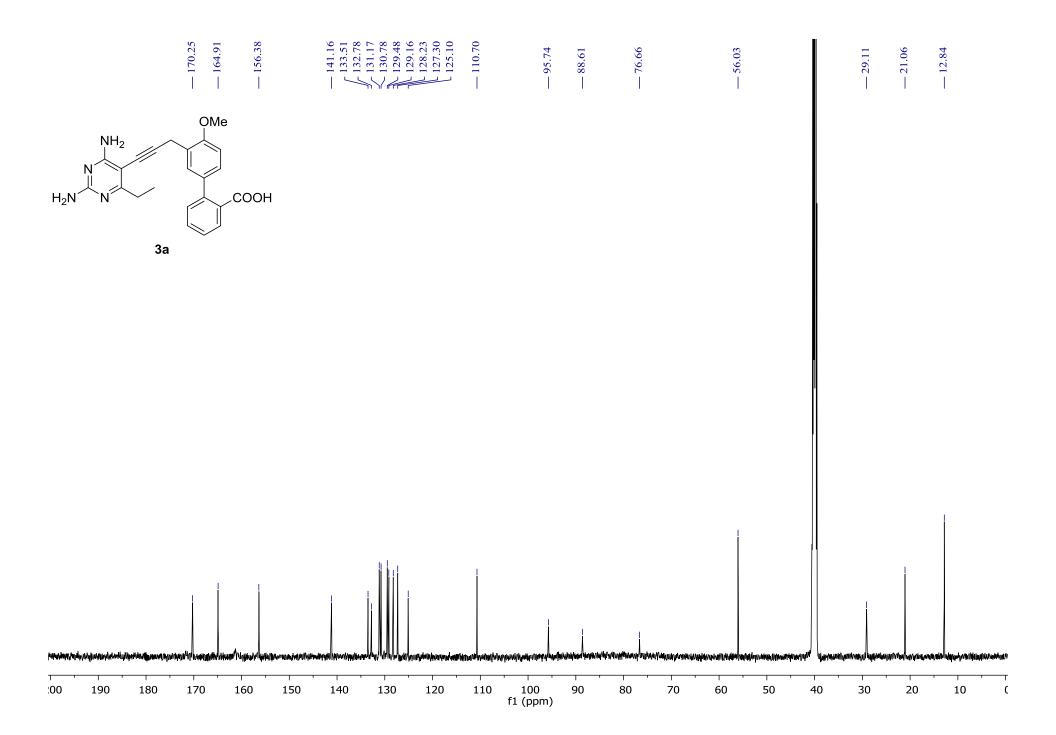
$$\underbrace{\left\{\begin{array}{c}
2.28 \\
2.27 \\
2.27 \\
-1.66
\end{array}\right.$$

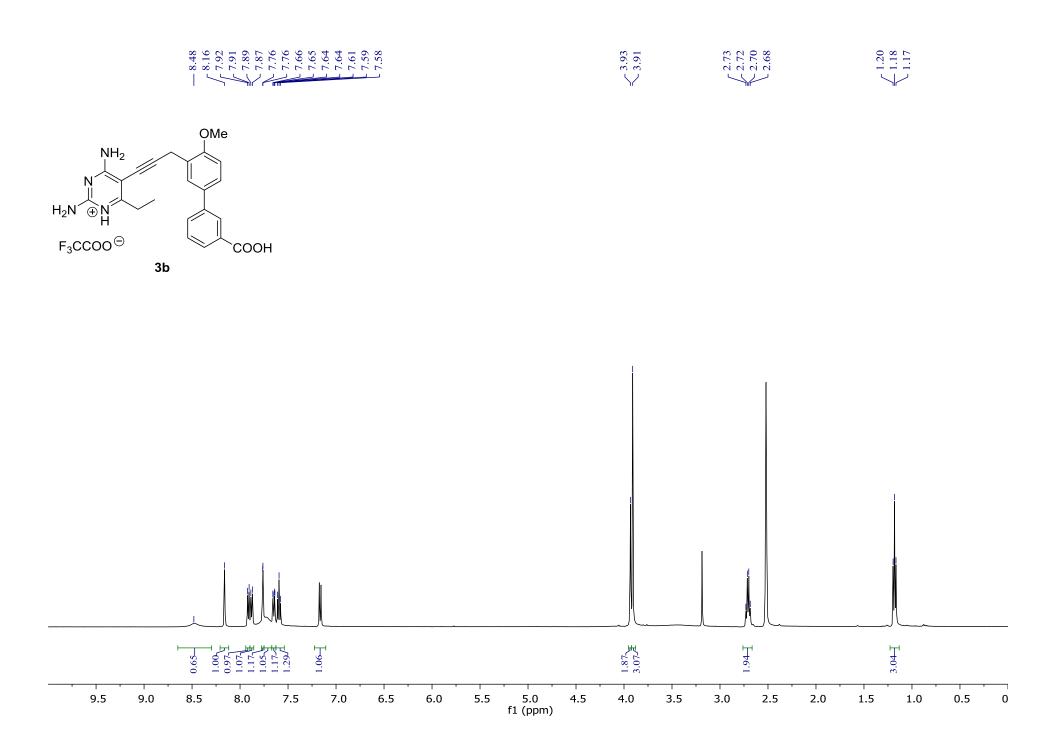


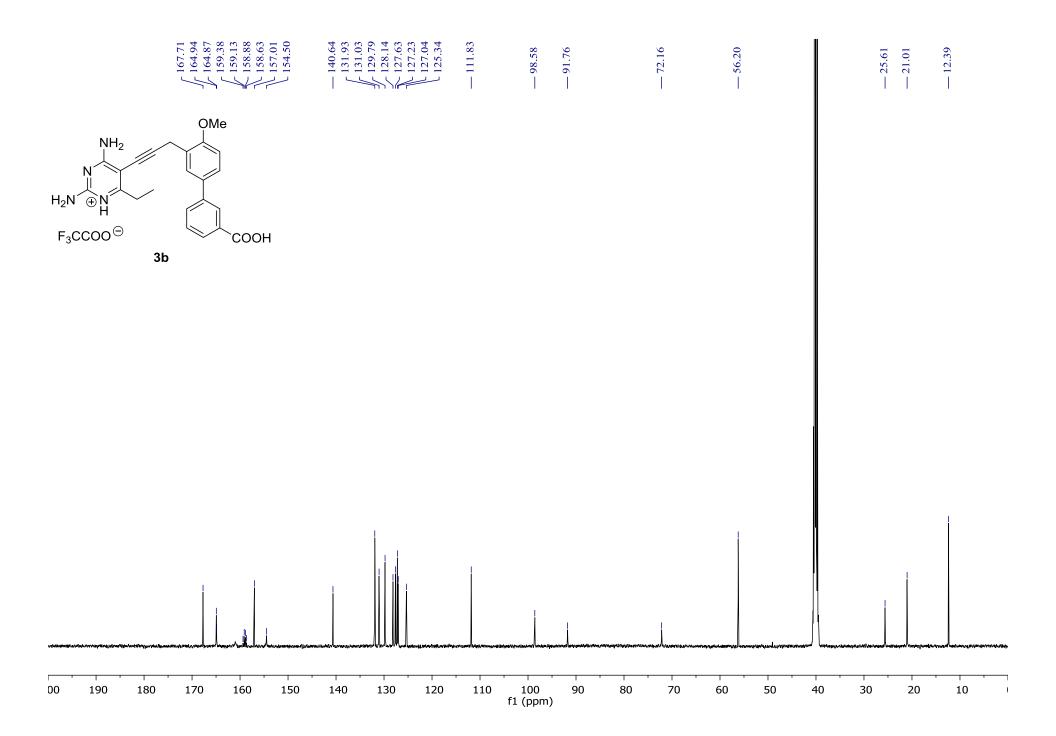


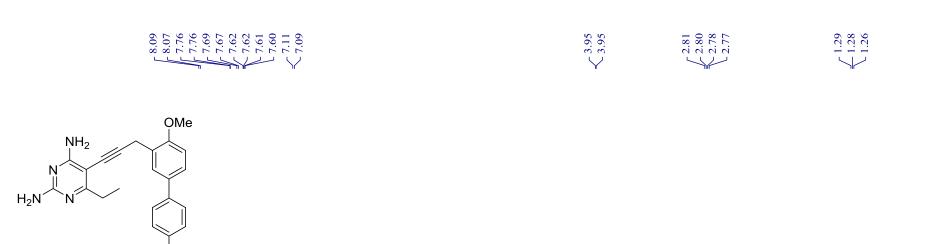


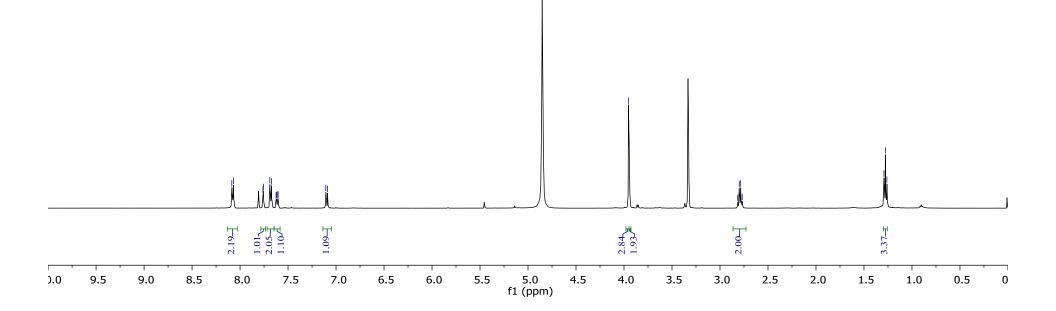


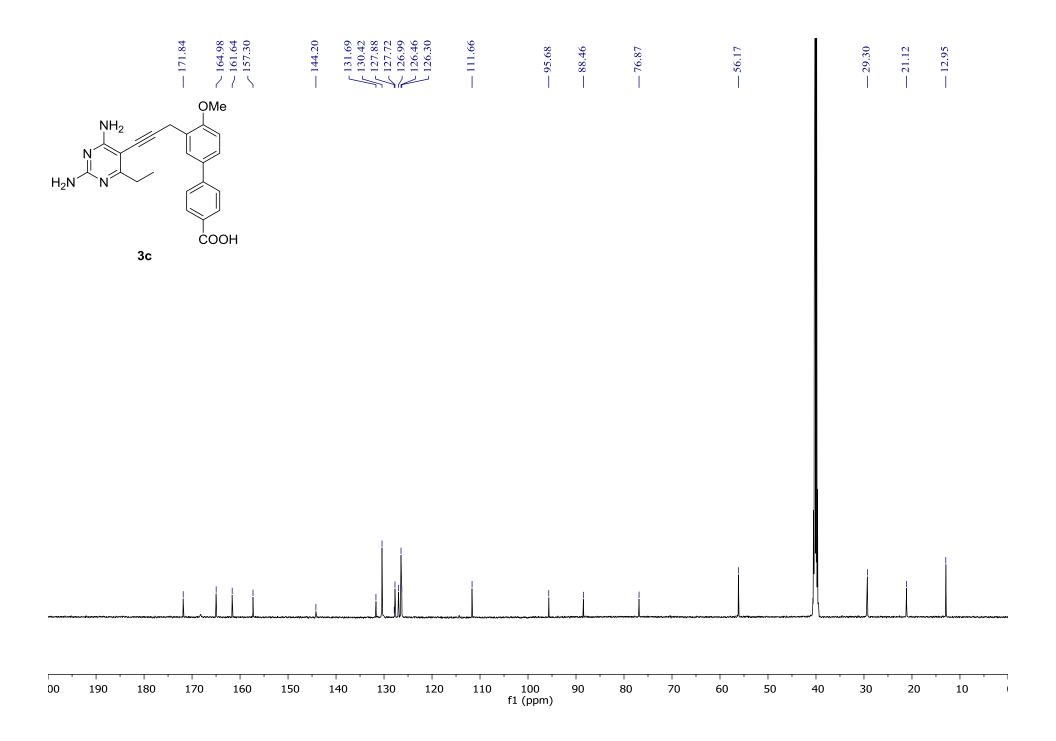

S51

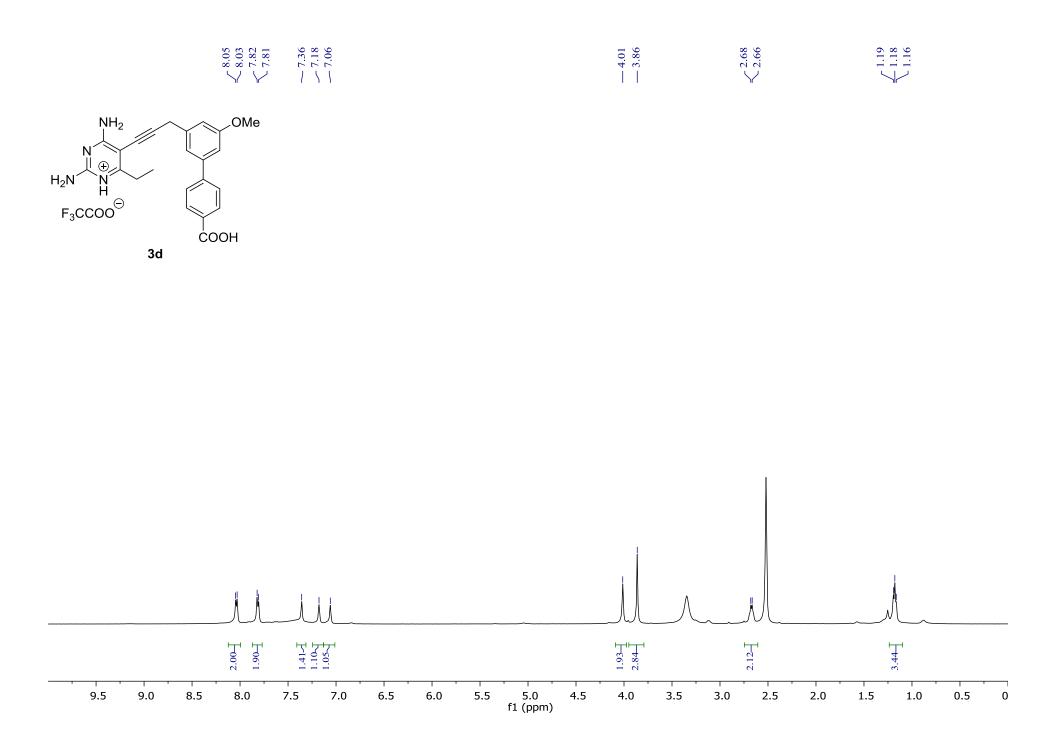


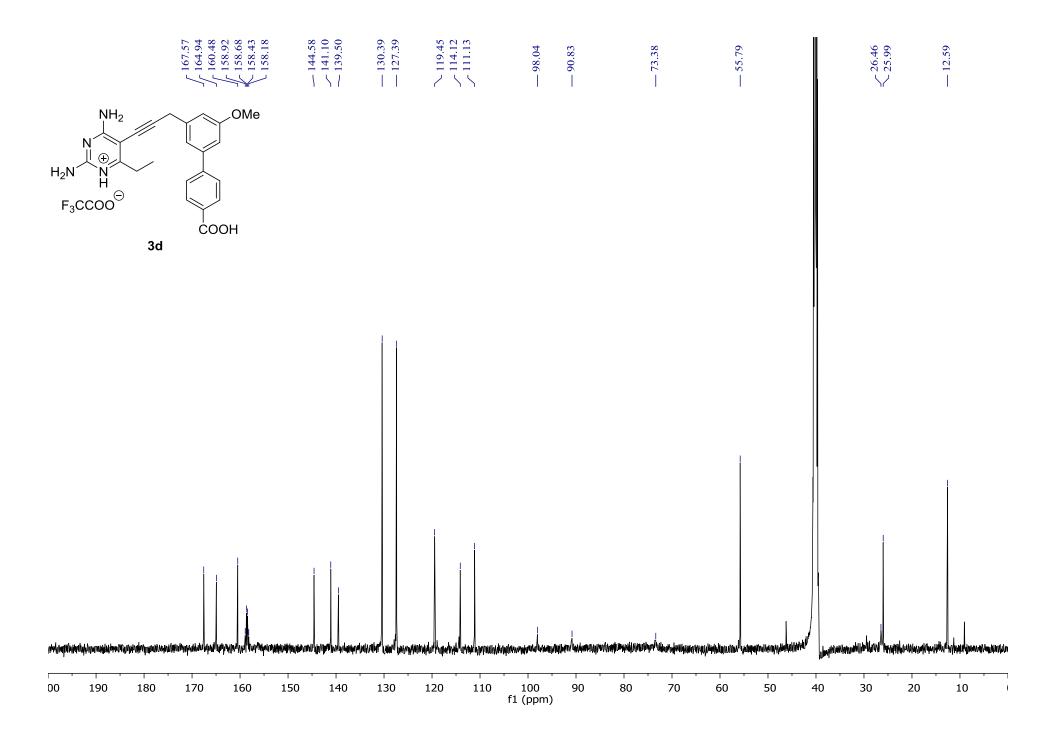




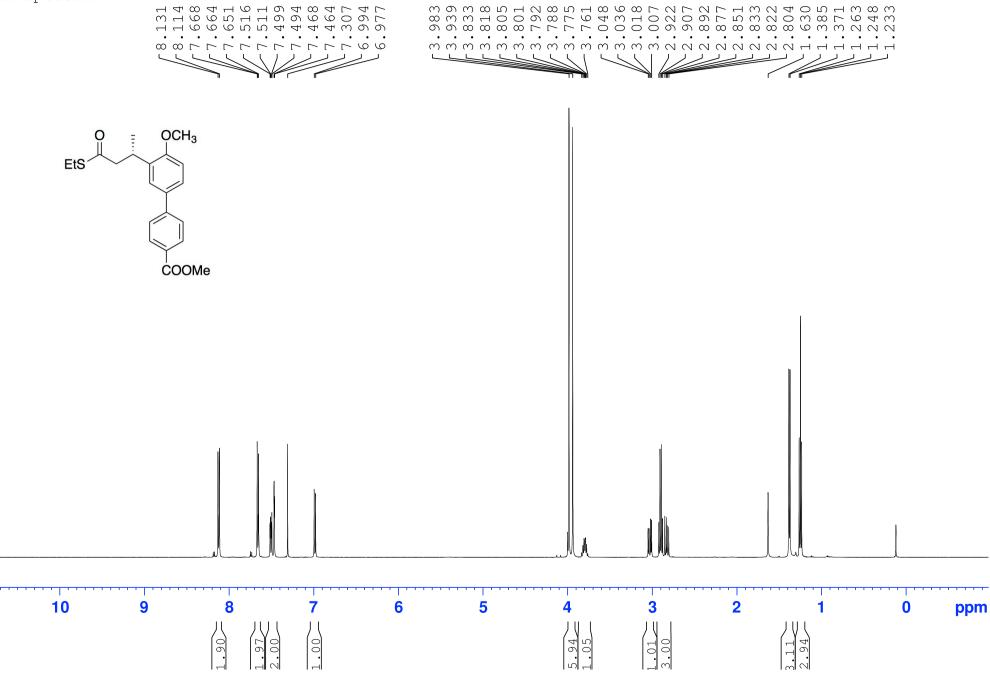


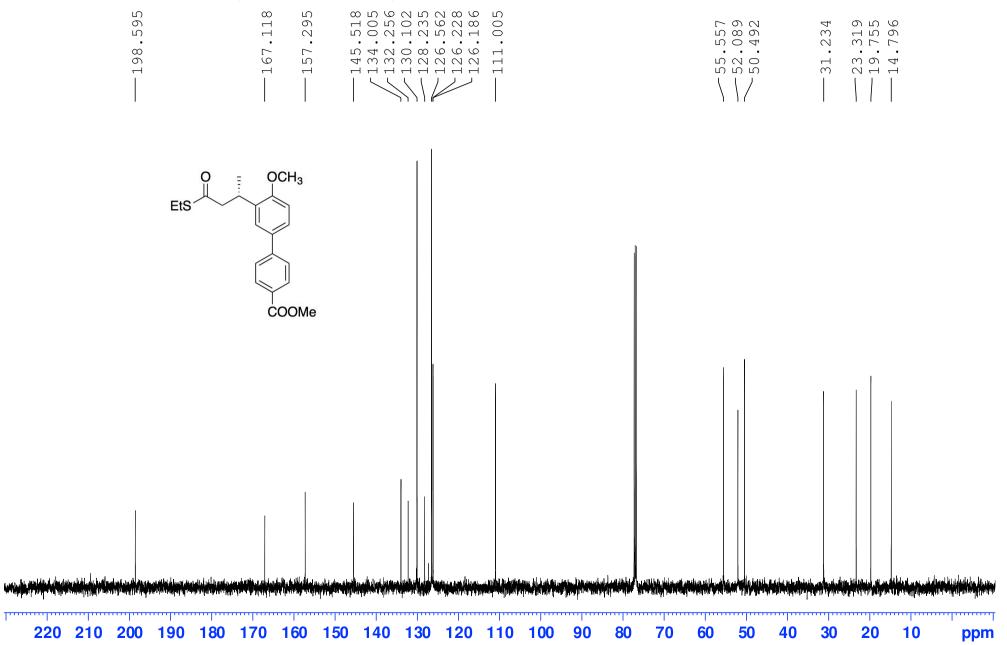


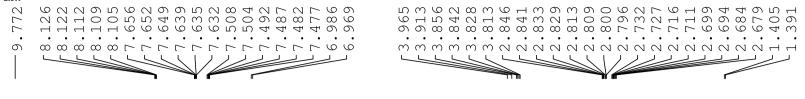


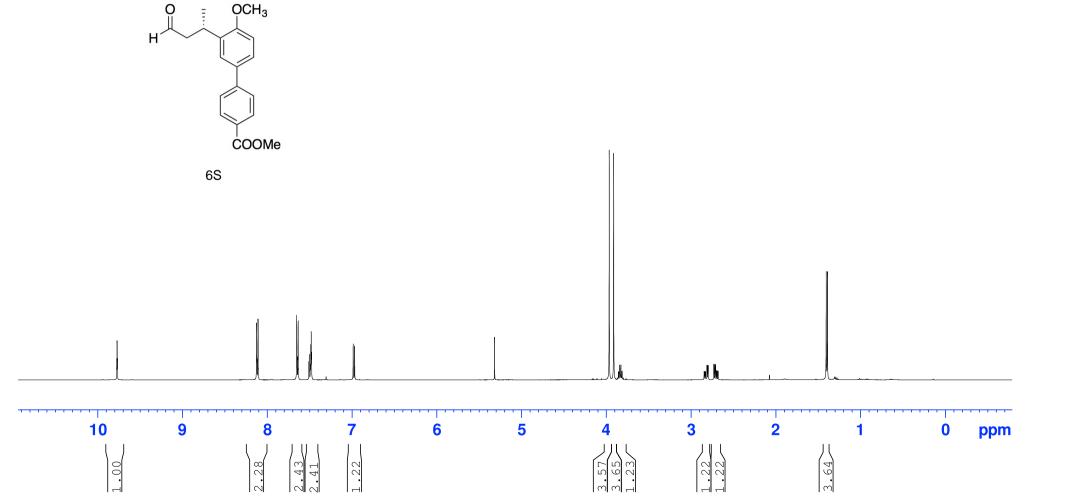


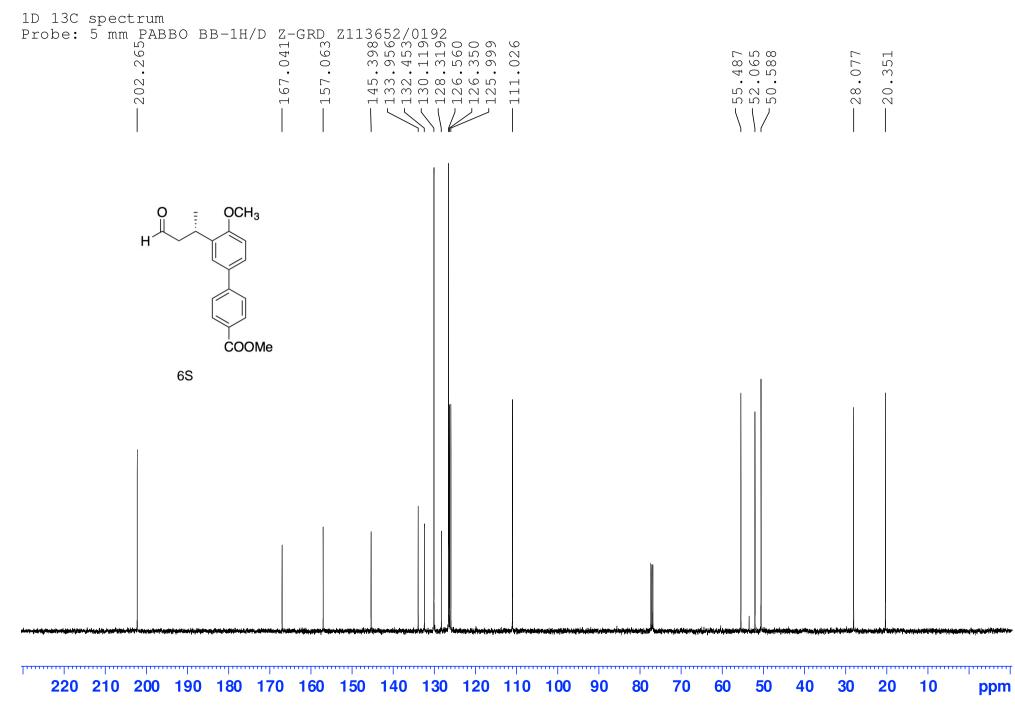
соон

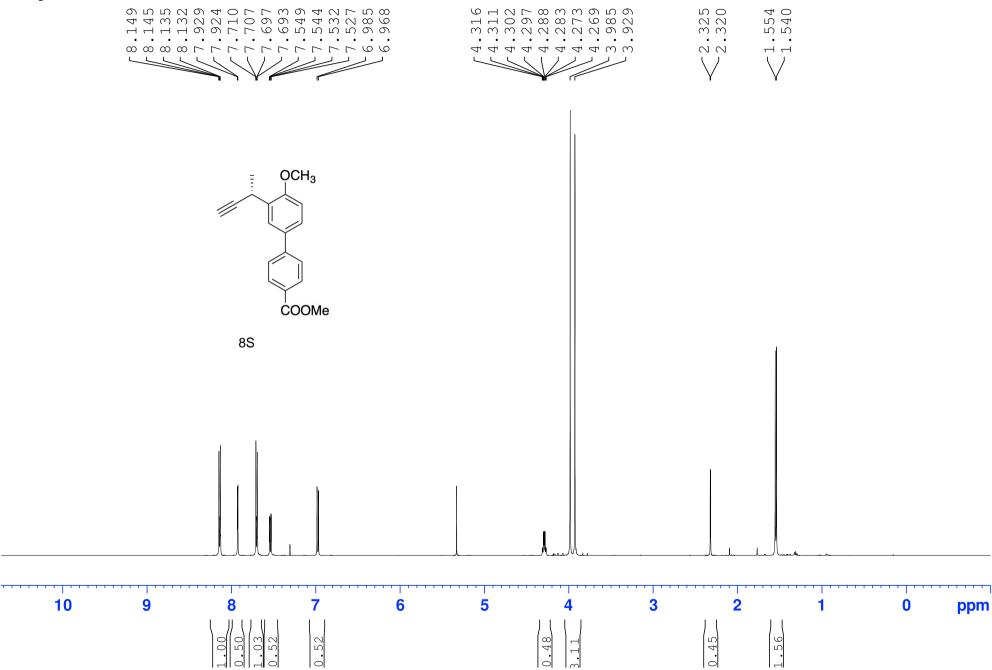


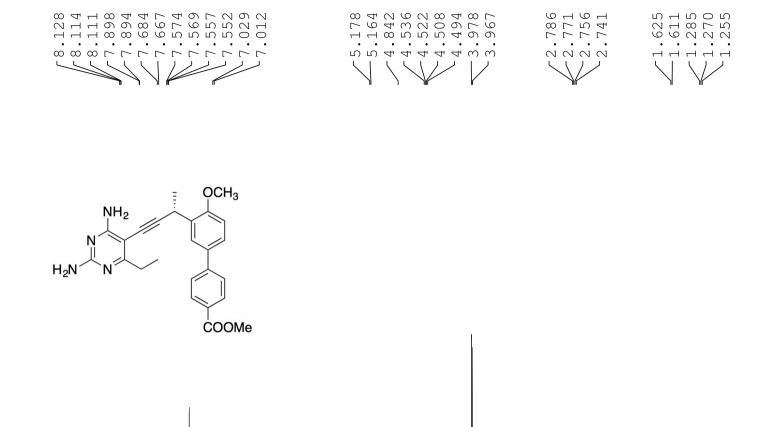


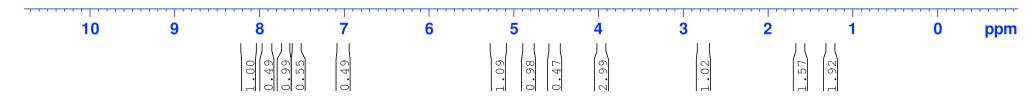


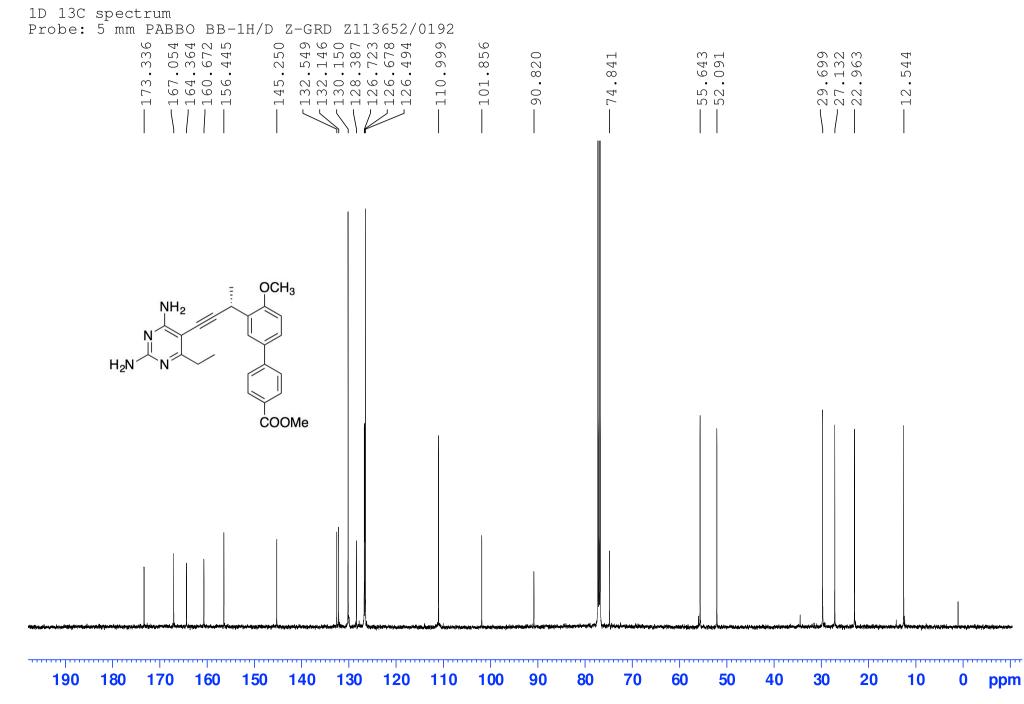

1D 13C spectrum

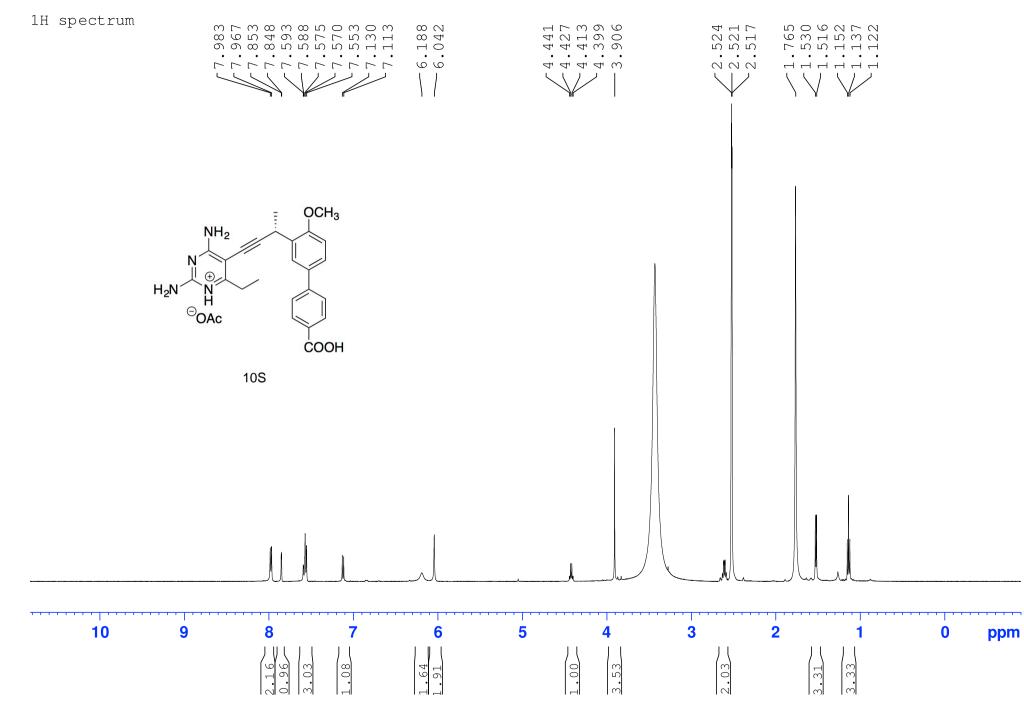

Probe: 5 mm PABBO BB-1H/D Z-GRD Z113652/0192



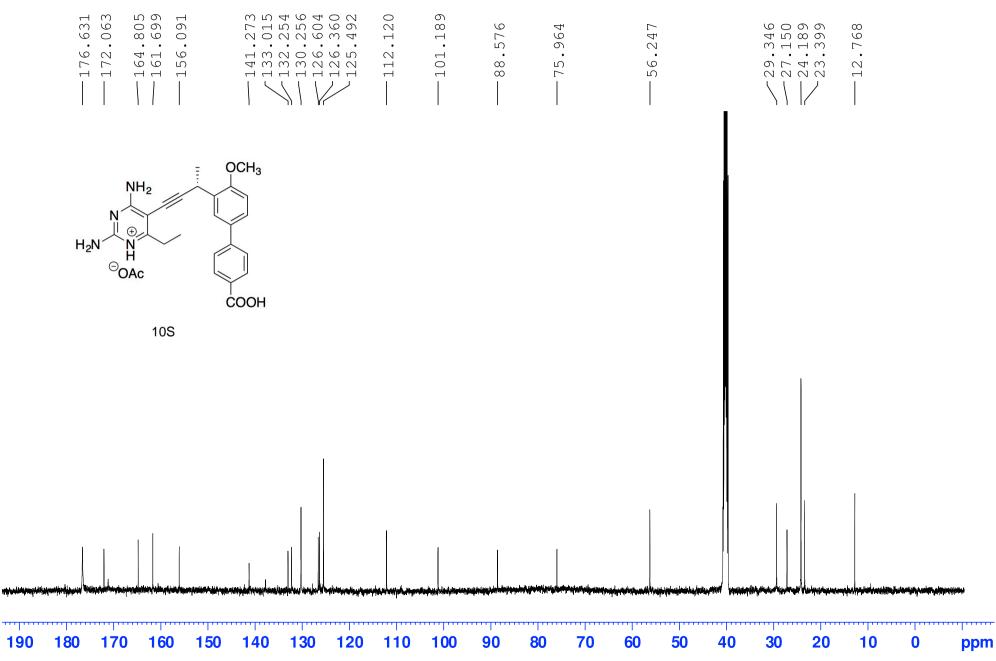


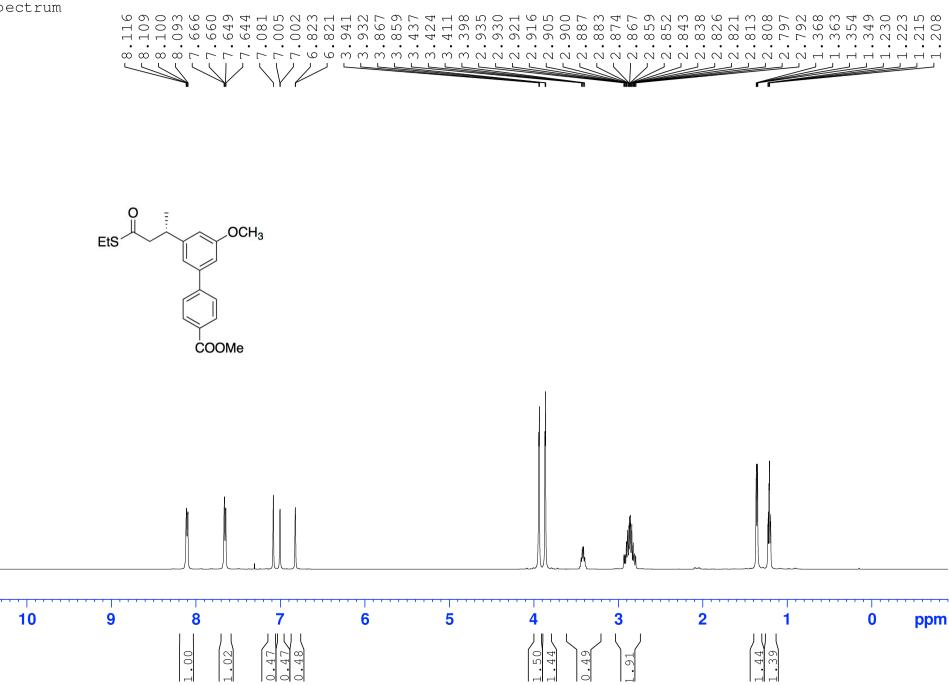

1H spectrum

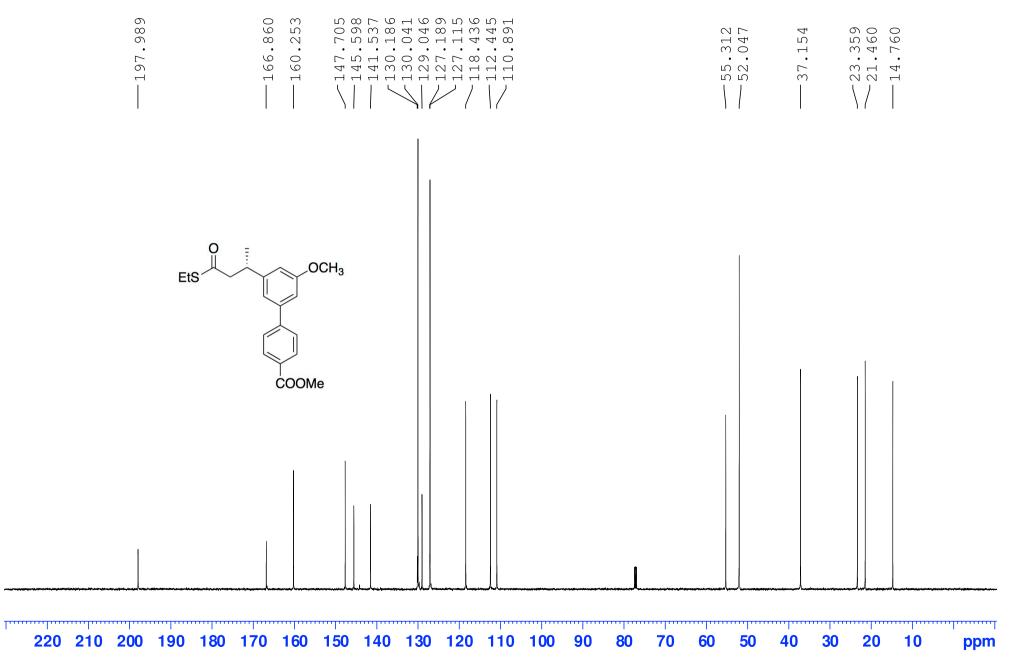


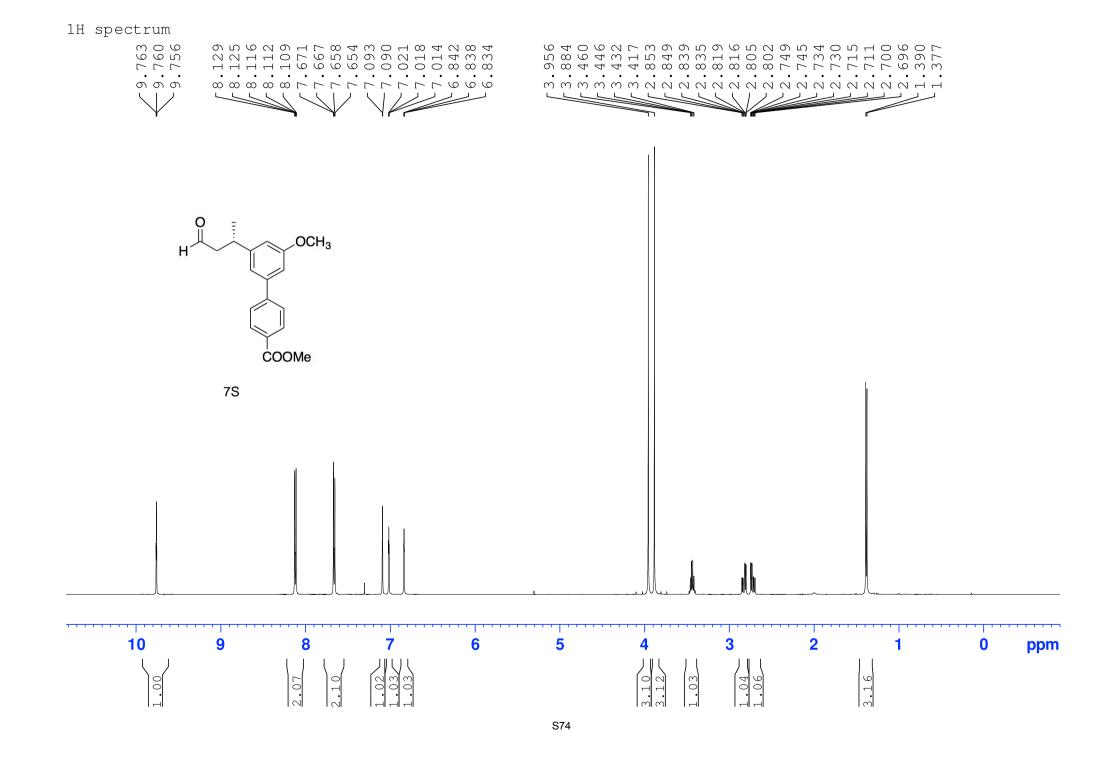

1D 13C spectrum Probe: 5 mm PABBO BB-1H 560	H/D Z-GRD Z113652/01 145.391 130.120 128.291 128.291 126.587 126.577 126.587		$\infty \leftrightarrow \infty$		
	H ₃				
8S					
		anyon White and a constant and a constant of the second state of t	de in de un de la fait de la de l		fraktered utered at the state and fill and the state of the state of the state of the fill of the fill and part in
190 180 170 160		110 100 90	80 70 60) 50 40 3	0 20 10 0 ppm

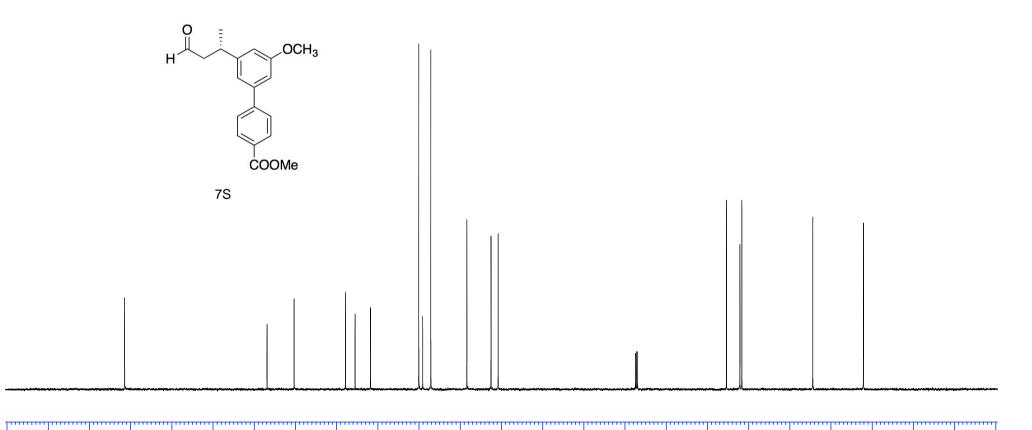
1H spectrum

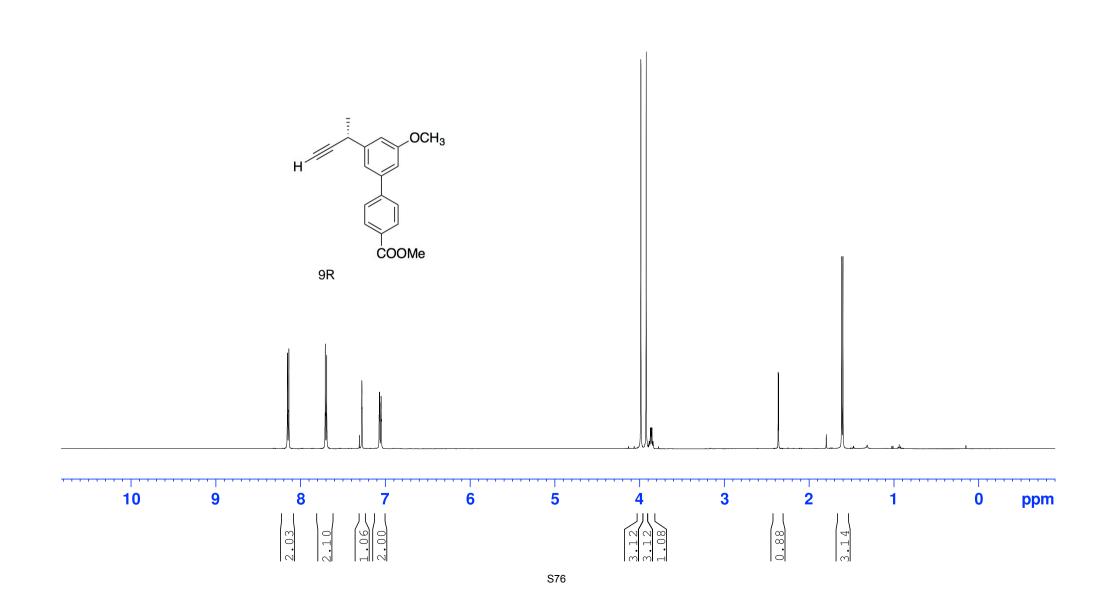


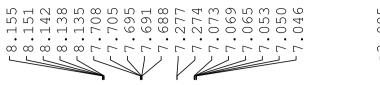


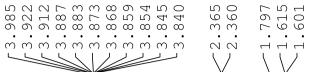



1D 13C spectrum Probe: 5 mm PABBO BB-1H/D Z-GRD Z113652/0192


1D 13C spectrum Probe: 5 mm PABBO BB-1H/D Z-GRD Z113652/0192

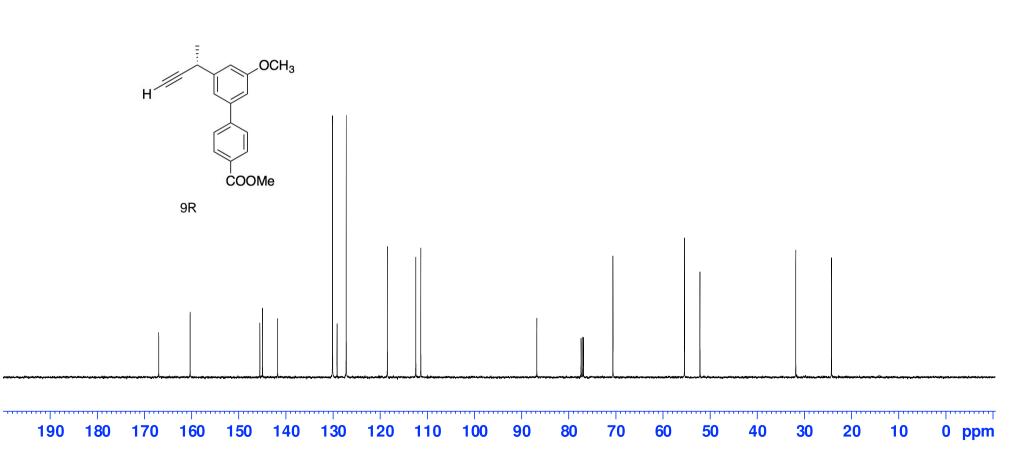



1D 13C spectrum Probe: 5 mm PABBO BB-1H/D Z-GRD Z113652/0192

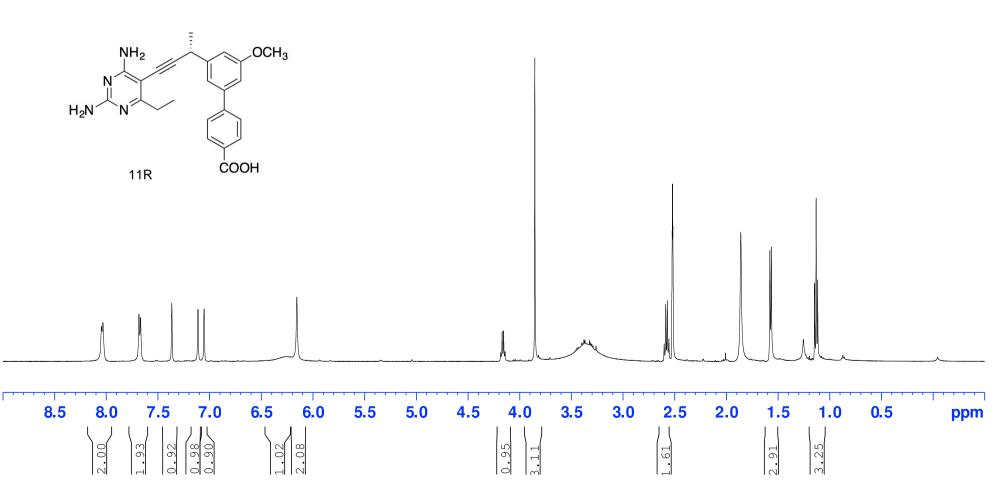

\leftarrow	0 10 0 000 0 00 10 10			
∞	140 047 078 U H	0.4.0	\leftarrow	0
4	8 U 7 L 1 O 7 U 8 0 0	4 10 0	\sim	\sim
•		СЧЭ	4	\leftarrow
\leftarrow	0 7 8 7 7 0 9	• • •	•	•
0	ЬГГ 200 444 00	Ч С Л	4	\sim
\sim	$\neg \neg $	വവ	\sim	\sim
		\setminus		

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 ppm

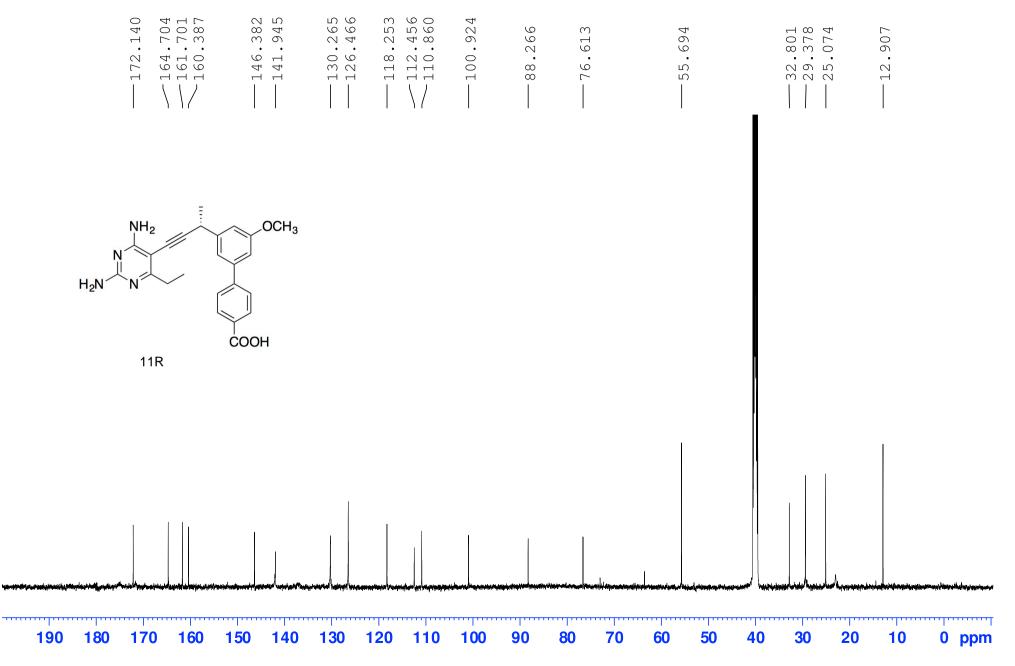
1H spectrum


1D 13C spectrum Probe: 5 mm PABBO BB-1H/D Z-GRD Z113652/0192

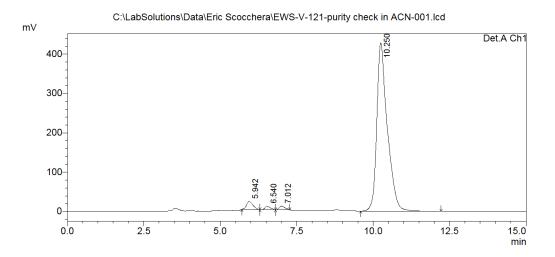
. ~


L)	1								
9	0	м м н	$\infty \lor \omega$	e m e	∞	ப	0 0	\sim	\sim
0	\sim	10 C	110	344	С	\leftarrow	4 3	\sim	4
•	•	• • •	• • •	• • •		9	77	00	\sim
9	0	1 7 U	002	$1 \sim \infty$	•	•	• •	•	•
9	9	セセセ	$\square \square \square$	\neg \neg \neg	9	0	502		4
\leftarrow	-	\leftarrow	\dashv \dashv \dashv	$-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!$	∞	\sim	വവ	\sim	\sim
		$\langle / /$	$\langle \rangle$	$ \rangle /$					

~ ~


10.0

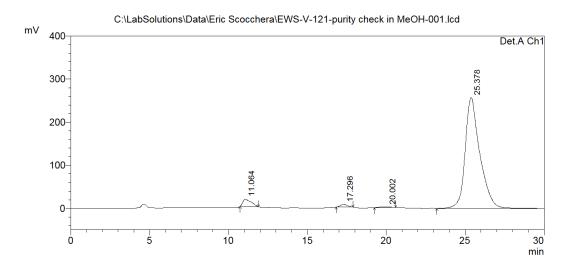
1H spectrum				
TH SPECCELANN C 4 C C C C	0 13	с с с с с с с с с с с с с с с с с с с	0 1 0 1	01048
4 7 8 9 7 1 9	D 4	00040	2 1 8 0	L 0 4 0 L
0H M 0000	\neg \neg	$\neg \neg \neg \neg \neg \neg$	0000	ы 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	• •		• • • •	• • • • •
8877777	00	ち み み み ろ	$\square \square \square \square$	$\neg \neg $
\lor \lor \mid \lor	\backslash			\bigvee \bigvee


1D 13C spectrum Probe: 5 mm PABBO BB-1H/D Z-GRD Z113652/0192

C:\LabSolutions\Data\Eric Scocchera\EWS-V-121-purity check in ACN-001.lcd

Acquired by Sample Name Sample ID Tray# Vail # Injection Volume Data File Name Batch File Name Report File Name Data Acquired Data Processed	: Admin : EWS-V-121 purity : EWS-V-121 purity : 1 : 10 : 10 uL : EWS-V-121-purity check in ACN-001.lcd : 1106_DTZ.lcm : : : Default.lcr : 2/21/2016 8:07:07 AM : 2/26/2016 1:40:22 PM	H_2N
Data Processed	: 2/26/2016 1:40:33 PM	3a

<Chromatogram>


Detector A Ch1 254nm

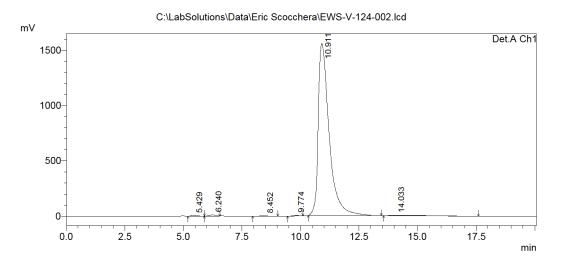
PeakTable

Peak#	Ret. Time	Area	Height	Area %	Height %
1	5.942	304835	20664	2.827	4.442
2	6.540	109298	8562	1.014	1.841
3	7.012	114365	8850	1.061	1.903
4	10.250	10252632	427101	95.098	91.815
Total		10781130	465177	100.000	100.000

	C:\LabSolutions\Data\Eric Scocchera\EWS-V-121-puri	ty check in MeOH-001.lcd
Acquired by	: Admin	
Sample Name	: EWS-V-121 purity in MeOH	
Sample ID	: EWS-V-121 purity in MeOH	QMe
Tray#	:1	NH ₂
Vail #	: 10	
Injection Volume	: 10 uL	N
Data File Name	: EWS-V-121-purity check in MeOH-001.lcd	i v o
Method File Name	: 1106 DTZ.lcm	H ₂ N N
Batch File Name	: -	OH
Report File Name	: Default.lcr	
Data Acquired	: 2/21/2016 3:12:53 PM	
Data Processed	: 2/21/2016 4:14:43 PM	3a

<Chromatogram>

Detector A Ch1 254nm

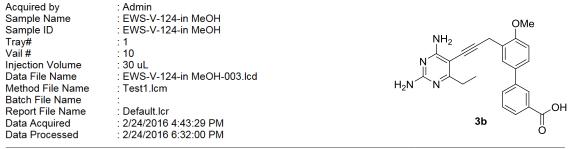

PeakTable

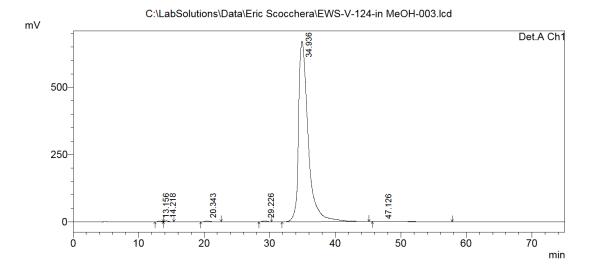
Peak#	Ret. Time	Area	Height	Area %	Height %
1	11.064	622304	17018	3.559	6.044
2	17.296	203796	6203	1.166	2.203
3	20.002	64018	1317	0.366	0.468
4	25.378	16593874	257055	94.909	91.286
Total		17483992	281594	100.000	100.000

C:\LabSolutions\Data\Eric Scocchera\EWS-V-124	1-002.lcd
---	-----------

Acquired by Sample Name	: Admin : EWS-V-124	OMe
Sample ID	: EWS-V-124	NH ₂
Tray#	:1	
Vail #	: 10	N
Injection Volume	: 30 uL	
Data File Name	: EWS-V-124-002.lcd	H ₂ N ^N N
Method File Name	: Test1.lcm	
Batch File Name	:	HO, L
Report File Name	: Default.lcr	\vee \vee
Data Acquired	: 2/24/2016 2:36:36 PM	3b
Data Processed	: 2/24/2016 3:03:36 PM	0

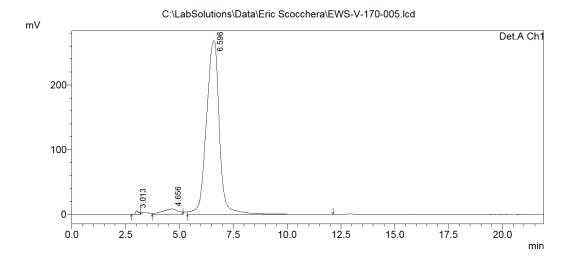
<Chromatogram>




PeakTable

		1.00			
Detector A C	Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	5.429	117820	6384	0.230	0.403
2	6.240	205350	11598	0.402	0.732
3	8.452	70045	2878	0.137	0.181
4	9.774	93959	6185	0.184	0.390
5	10.911	50465823	1555769	98.705	98.128
6	14.033	175142	2640	0.343	0.166
Total		51128139	1585454	100.000	100.000

S82

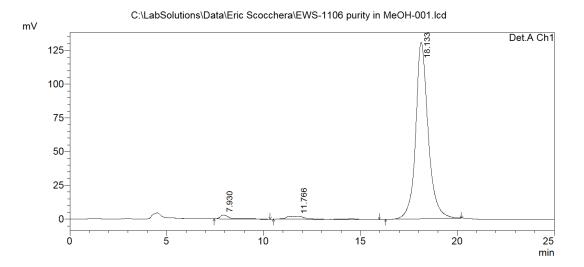


PeakTable

Detector A	Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	13.156	104356	3261	0.150	0.476
2	14.218	138297	4215	0.199	0.615
3	20.343	180182	3021	0.259	0.441
4	29.226	166584	3216	0.240	0.469
5	34.936	68733445	671150	98.958	97.930
6	47.126	134293	472	0.193	0.069
Total		69457157	685336	100.000	100.000

	C:\LabSolutions\Data\Eric Scocchera\EWS-V-170-005.lc	d
Acquired by	: Admin	014
Sample Name	: EWS-V-170-good	OMe
Sample ID	: EWS-V-170	NH ₂
Tray#	:1	
Vail #	: 69	N
Injection Volume	: 40 uL	
Data File Name	: EWS-V-170-005.lcd	H ₂ N N
Method File Name	: Test.lcm	
Batch File Name		
Report File Name	: Default.lcr	3c
Data Acquired	: 12/11/2015 12:46:34 PM	30
Data Processed	: 12/11/2015 1:08:30 PM	0 ^{~~} OH

C:\LabSolutions\Data\Eric Scocchera\EWS-V-170-005.lcd

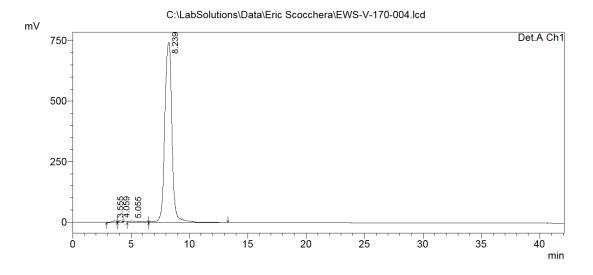


Detector A Ch1 254nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	3.013	57844	5655	0.493	2.001			
2	4.656	438677	8450	3.739	2.990			
3	6.596	11236471	268471	95.768	95.008			
Total		11732992	282577	100.000	100.000			

-				
Pea	Ζ	a	hl	e
1 Cu				

C:\LabSolutions\Data\Eric Scocchera\EWS-1106 purity in MeOH-001.lcd

Acquired by Sample Name Sample ID Tray# Vail # Injection Volume Data File Name Batch File Name Report File Name Data Acquired Data Processed	: Admin : EWS-1106 purity check methanol : ucp-1106 Methanol : 1 : 69 : 25 uL : EWS-1106 purity in MeOH-001.lcd : Test.lcm : Default.lcr : 12/18/2015 5:38:44 PM : 12/18/2015 5:38:50 PM	$ \begin{array}{c} $
Data Processed	: 12/18/2015 6:13:50 PM	0~ _OH

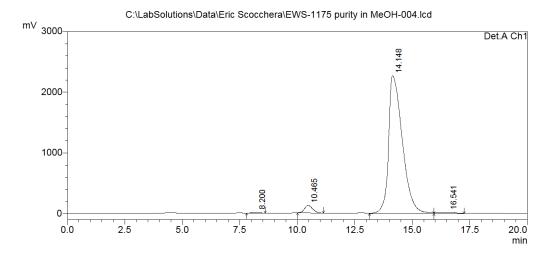


Peal		

Detector A Ch1 254nm								
	Peak#	Ret. Time	Area	Height	Area %	Height %		
	1	7.930	86543	2909	1.413	2.139		
	2	11.766	169834	2270	2.773	1.670		
	3	18.133	5867404	130799	95.813	96.191		
	Total		6123782	135979	100.000	100.000		

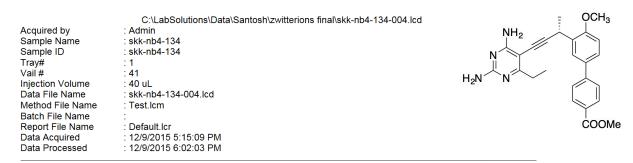
C:\LabSolutions\Data\Eric Scocchera\EWS-V-170-004.lcd

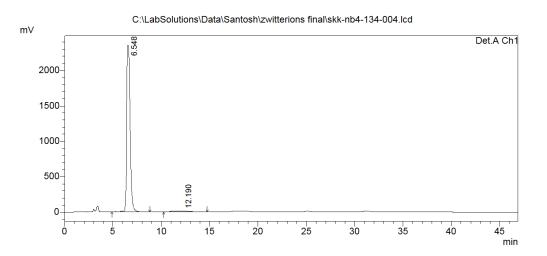
Acquired by	: Admin	
Sample Name	: EWS-V-170	NH ₂
Sample ID	: EWS-V-170	
Tray#	: 1	
Vail #	: 57	
Injection Volume	: 30 uL	H ₂ N ^N N
Data File Name	: EWS-V-170-004.lcd	
Method File Name	: Test.lcm	
Batch File Name	:	
Report File Name	: Default.lcr	3d
Data Acquired	: 12/9/2015 2:19:34 PM	О́ОН
Data Processed	: 12/9/2015 3:01:40 PM	



		i cui i uole				
Detector A	Ch1 254nm					
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	3.555	170534	6981	0.525	0.911	
2	4.059	123746	7893	0.381	1.030	
3	5.055	469975	6027	1.448	0.786	
4	8.239	31702936	745370	97.646	97.272	
Total		32467191	766270	100.000	100.000	

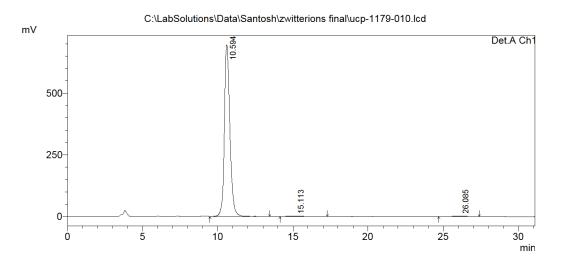
PeakTable


C:\LabSolutions\Data\Eric Scocchera\EWS-1175 purity in MeOH-004.lcd


Tray# : 1 Vail # : 70 Injection Volume : 25 uL Data File Name : EWS-1175 purity in MeOH-004.lcd H ₂ I Method File Name : Test.lcm Batch File Name : Default.lcr Data Processed : 2/26/2016 2:08:58 PM	3d O OH
--	---------

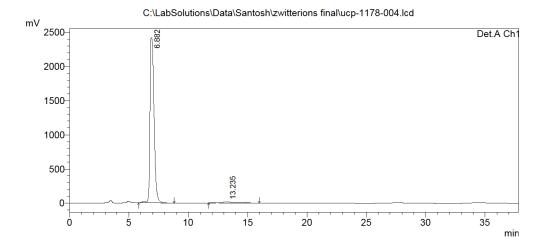
Detector A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	8.200	385597	16155	0.388	0.664		
2	10.465	3089120	124922	3.107	5.136		
3	14.148	94823379	2270390	95.371	93.344		
4	16.541	1128084	20804	1.135	0.855		
Total		99426180	2432271	100.000	100.000		

PeakTable



Peal	<i>C</i>	2	h	e

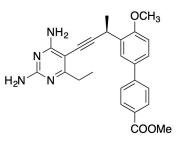
	1 cak i able					
Detector A Ch1 254nm						
	Peak#	Ret. Time	Area	Height	Area %	Height %
	1	6.548	59135238	2352052	97.269	99.349
	2	12.190	1660436	15401	2.731	0.651
	Total		60795674	2367453	100.000	100.000

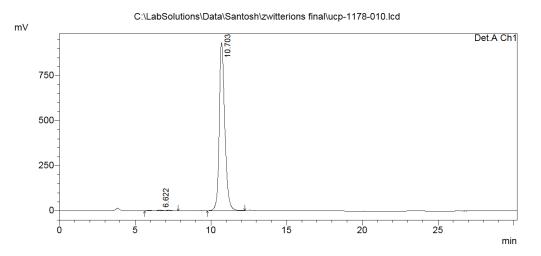

<Chromatogram>

Detector A Ch1 254nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	10.594	17490881	695753	98.569	99.598
2	15.113	109883	1253	0.619	0.179
3	26.085	144129	1553	0.812	0.222
Total		17744893	698559	100.000	100.000

C:\LabSolutions\Data\Santosh\zwitterions final\ucp-1178-004.lcd Acquired by : Admin Sample Name : ucp-1178 Sample ID : ucp-1178 Tray# : 1 Vail # : 43 Injection Volume : 30 uL Data File Name : ucp-1178-004.lcd Method File Name : Test.lcm Batch File Name : Default.lcr Data Acquired : 12/15/2015 7:35:51 PM Data Processed : 12/15/2015 8:13:43 PM	H ₂ N NH ₂ H ₂ N N COOMe
--	---

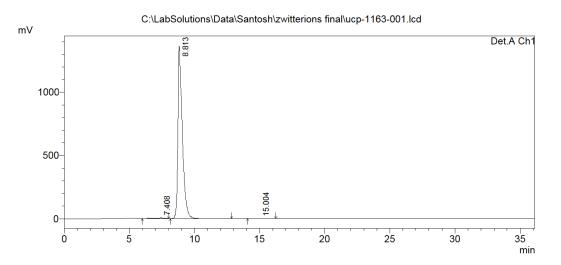



DIII	٨	C1 1	054
Detector	A	Chi	204nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	6.882	57240718	2414401	98.065	99.312
2	13.235	1129429	16728	1.935	0.688
Total		58370147	2431129	100.000	100.000

C:\LabSolutions\Data\Santosh\zwitterions final\ucp-1178-010.lcd

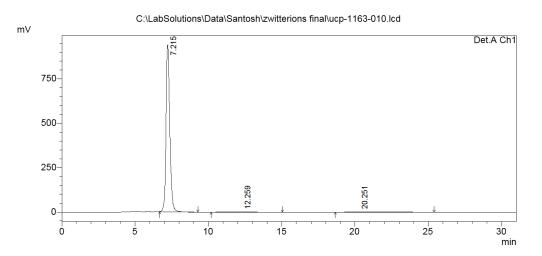
Acquired by	: Admin
Sample Name	: ucp-1178
Sample ID	: ucp-1178
Tray#	:1
Vail #	: 43
Injection Volume	: 10 uL
Data File Name	: ucp-1178-010.lcd
Method File Name	: Test.lcm
Batch File Name	:
Report File Name	: Default.lcr
Data Acquired	: 12/16/2015 3:27:44 PM
Data Processed	: 12/16/2015 3:57:58 PM



Detector A	Ch1	254nm
------------	-----	-------

Peak#	Ret. Time	Area	Height	Area %	Height %
1	6.622	166295	4605	0.689	0.492
2	10.703	23980730	931521	99.311	99.508
Total		24147026	936126	100.000	100.000

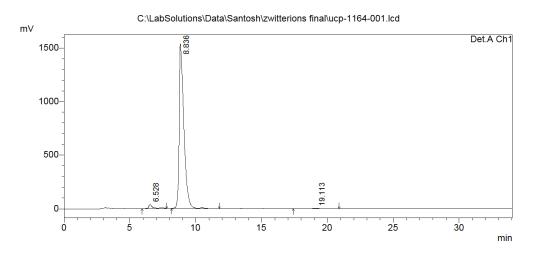
C:\LabSolutions\Data\Santosh\zwitterions final\ucp-1163-001.lcd : Admin



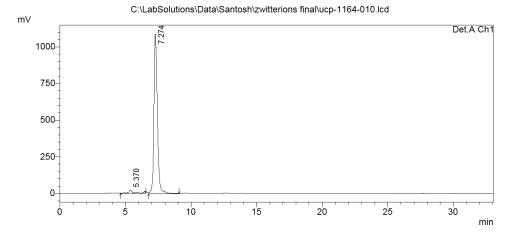
Detector	A	Ch1	254nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	7.408	335859	6538	1.019	0.474
2	8.813	32587903	1370135	98.856	99.417
3	15.004	41273	1491	0.125	0.108
Total		32965034	1378163	100.000	100.000

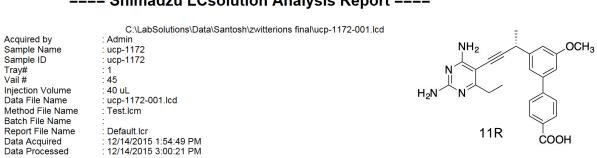
C:\LabSolutions\Data\Santosh\zwitterions final\ucp-1163-010.lcd



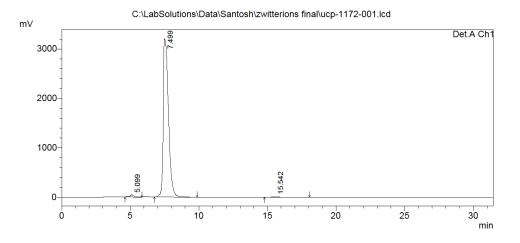
Detector A Ch1 254nm					
Peak#	Ret. Time	Area	Height	Area %	Height %
1	7.215	16832483	939672	97.558	99.738
2	12.259	180747	1190	1.048	0.126
3	20.251	240628	1280	1.395	0.136
Total		17253858	942142	100.000	100.000



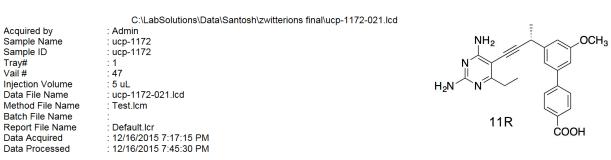
OCH₃

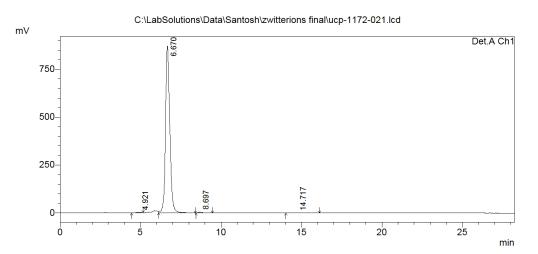


	PeakTable				
Detector A Ch1 254nm					
Peak#	Ret. Time	Area	Height	Area %	Height %
1	6.528	1002068	38826	2.535	2.458
2	8.836	38315402	1537068	96.912	97.294
3	19.113	218907	3918	0.554	0.248
Total		39536376	1579812	100.000	100 000



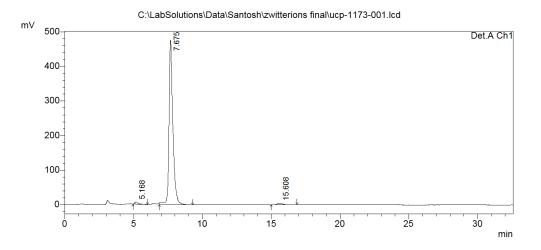
Detector A Ch1 254nm					
Peak#	Ret. Time	Area	Height	Area %	Height %
1	5.370	762844	22995	3.685	2.070
2	7.274	19941162	1088070	96.315	97.930
Total		20704006	1111065	100.000	100.000




<Chromatogram>

1	Detector A Ch1 254nm					
ſ	Peak#	Ret. Time	Area	Height	Area %	Height %
	1	5.099	1107205	46099	1.280	1.412
	2	7.499	84943012	3203897	98.217	98.143
	3	15.542	434618	14522	0.503	0.445
	Total		86484834	3264518	100.000	100.000

Detector A Ch1 254

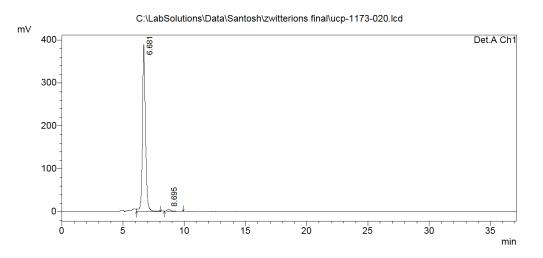


Detector A	Ch1	254nm
------------	-----	-------

Peak#	Ret. Time	Area	Height	Area %	Height %
1	4.921	68872	2737	0.422	0.312
2	6.670	16167208	870906	98.969	99.200
3	8.697	82997	3588	0.508	0.409
4	14.717	16550	697	0.101	0.079
Total		16335627	877928	100.000	100.000

C:\LabSolutions\Data\Santosh\zwitterions final\ucp-1173-001.lcd

	C. Laboolutions Data Gamosniz wittenons manucp-1175-001.cu	
Acquired by	: Admin	
Sample Name	: ucp-1173	NH ₂ OCH ₃
Sample ID	: ucp-1173	
Tray#	:1	N Y
Vail #	: 46	
Injection Volume	: 40 uL	H ₂ N´`N´ ✓
Data File Name	: ucp-1173-001.lcd	
Method File Name	: Test.lcm	
Batch File Name		11S
Report File Name	: Default.lcr	LIS COOH
Data Acquired	: 12/14/2015 2:27:10 PM	
Data Processed	: 12/14/2015 3:31:42 PM	



D I		n 1		
Pea	C I	a	h	e

Detector A	Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	5.168	101096	5913	1.082	1.223
2	7.675	9160298	473314	98.040	97.867
3	15.608	81995	4403	0.878	0.910
Total		9343388	483629	100.000	100.000

C:\LabSolutions\Data\Santosh\zwitterions final\ucp-1173-020.lcd

Acquired by	: Admin	
Sample Name	: ucp-1173	NH ₂ OCH ₃
Sample ID	: ucp-1173	
Tray#	: 1	N
Vail #	: 48	
Injection Volume	: 20 uL	H ₂ N N
Data File Name	: ucp-1173-020.lcd	11214
Method File Name	: Test.lcm	
Batch File Name	:	11S
Report File Name	: Default.lcr	СООН
Data Acquired	: 12/16/2015 7:46:24 PM	COOH
Data Processed	: 12/16/2015 8:23:32 PM	

Peak#	Ret. Time	Area	Height	Area %	Height %
1	6.681	6693252	388581	98.608	98.773
2	8.695	94473	4829	1.392	1.227
Total		6787724	393410	100.000	100.000