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A Reproducing this study

Code availability

The implementation of PiCnIc shown in the Main Text was performed by using, as core, the r language, and
other external Java tools which we reference in this document. In r, much of the data processing and inference
is done by exploiting the current version of the open-source

TRanslational ONCOlogy (TRONCO, [1], version 2.3)

package which implements up-to-date statistical algorithms to estimate cancer progression models from a list of
genomic lesions (e.g., somatic mutations, copy number variations or persistent epigenetic states) in a population
of independent tumors, or in a single patient.

TRONCO’s official webpage is reachable from the Software section of our group’s webpage

http://bimib.disco.unimib.it/

By navigating to the Case Studies section of TRONCO’s official webpage one can find the source code to replicate
this study (i.e., the PiCnIc’s implementation) along with the documentation detailing all the implementation, as
well as the data that we used. This should allow easy implementation of similar studies in different contexts.

2

http://bimib.disco.unimib.it/


B Glossary
This glossary of terms shall be of help to readers not familiar with the concepts mentioned in the Main Text. For clarity,
terms are separate in two categories according to the fact that they are common to the statistics or the cancer biology
communities. Each term which is included in this glossary appears in color.

Terms common to the statistics community

Term Meaning

Boolean formula In CAPRI, a formula written with standard logical operators which capture a relation among a
group of alterations. In PiCnIc, these are used to detect alternative routes to selective advantage
from mutually exclusive alterations. See: Fitness equivalence.

Ensemble level
progression
inference

Detection of the relations of selective advantage across the permanent alterations in a cohort of
independent tumors (cross-sectional data). When aggregated in a graphical model, these shall
picture the most common evolutionary trajectories in the population/cancer under study. See
also: inter-tumor heterogeneity.

Graphical mod-
els

In this context, a direct acyclic graph with nodes (alterations) and edges (selective advantage
relations), as a shorthand to represent the joint probability of observing a set of alterations in a
sample (i.e., a cancer genotype). See also: Suppes-Bayes Causal Network, Model selection.

Individual level
progression
inference

Detection of clonal signatures and their prevalence in individual tumors by scanning multi-region
or single-cell sequencing data; clones are then displayed in a phylogenetic tree structure. See
also: intra-tumor heterogeneity.

Model selection The process of selecting a model which fits data, according to some criterion. In CAPRI, this is
done by balancing model likelihood (a measure of to which degree data can be explained by the
model) and model complexity (the size of the graphical model). See: regularization.

Phylogenetic
tree

In this context, rooted tree where each node is a clone, and edges represent ancestry relations
among clones.

Regularization Common approach to avoid overfitting (false-positives) during model selection – in CAPRI this is
achieved by using the standard AIC/BIC which penalize with different severity graphical models
which contain many selective advantage relations.

Simposon’s
paradox

A paradox in statistics, in which a trend appears in different groups of data but disappears or
reverses when these groups are combined. In this context, this shall refer to genuine selective
advantage relations which are not inferred unless data coming from different populations is
separated before doing inference. See: heterogeneity, subtypes, formulas .

Suppes-Bayes
Causal Networks

A specific type of graphical model returned by CAPRI algorithm, where each edge satisfies
Suppes’s conditions of probabilistic causation subsuming temporal ordering and positive statistical
dependence – the statistical approach to estimate selective advantage among the alterations.
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Terms common to the cancer biology community

Term Meaning

Alterations Somatic mutations: A change in the genome of a cell that is not inherited from a parent, but is acquired.
CNVs: Structural variation of large regions of DNA segments, including deletions, insertions, duplications
and complex multi-site variants.

Bulk sequenc-
ing

Genome sequencing from single tumor samples, each containing a large number of cells. The resulting
genomic profiles are derived from a mixture of cells with potentially distinct evolutionary histories.

Clones; Clonal
expansion

Clone: group of cells sharing an identical genome and that derive from a common ancestor. Clonal
expansion: the production of descendent cells all arising originally from a single cell. In the scenario of
cancer development, tumors develop through a series of clonal expansions, in which the most favorable
clonal population survives and proliferate.

Cross-sectional
data

Unique snapshots of data derived from samples that are collected at unknown time points. Usually
derived from bulk sequencing technologies.

Driver; Passen-
ger

Driver: (epi)genetic alteration that provides a selective advantage to a cancer clone. Passenger: alter-
ation of a cancer cell that does not increase its fitness.

Exclusivity of
alterations

Group of alterations which manifest few or no co-occurences in a cohort of different samples, and might
be fitness-equivalent for tumor progression. Hard exclusivity: when co-occurrences shall be considered
the result of random errors. Soft exclusivity: when few co-occurrences shall be possible. See: formulas.

Fitness A cell’s ability of surviving, proliferating and adapting to environmental changes, usually within an
environment with limited and depleting resources (e.g., oxygen or nutrients).

Fitness equiva-
lence

Groups of driver alterations, functional to the same pathway or equally dysruptive, that can independently
confer a selective advantage to a cancer cell. Multiple co-occurrence of such alterations to provide no
further advantage, hence leading to mutually exclusive alteration patterns across distinct samples.

Hallmark of
cancer

Common traits or phenotypic properties that are supposed to drive the transformation of normal cells to
cancer cells. Anti-hallmark: clonal profiles that are usually not observed, yet being theoretically possible.

Inter-tumor
heterogeneity

The phenomenon according to which different patients with the same cancer type usually display a few
common alterations. This is the major problem of inferring ensemble-level cancer progression models.

Intra-tumor
heterogeneity

Intra-tumor heterogeneity is related to possible coexistence of different cancer clones, with different
evolutionary histories and different mutational profiles, within the same tumor. This is the major problem
of inferring individual-level cancer progression models.

Multiregion se-
quencing

Collection of genomic data obtained by processing multiple spatially separated biopsy samples from the
same individual tumor.

Next Genera-
tion Sequenc-
ing (NGS)

New technologies for sequencing genomes at high speed and low cost, including, e.g., full-genome/exome
sequencing, genome resequencing, transcriptome profiling (RNA-Seq), DNA-protein interactions (ChIP-
Seq), and epigenome characterization.

Selective
advantage
relation

In successive waves of clonal expansions one or more cells of the same clone can (progressively) increase
their fitness through the acquisition of additional driver alterations, leading to the emergence and
development of a fitter clone. In this case a relation of selective avantage connects the earlier to the
succeeding alterations.

Single-cell se-
quencing

Recent technology based on the retrieval and analysis of genomic information from individual cells, rather
than from mixtures of cells.

Synthetic
lethality

The phenomenon according to which two otherwise non-lethal alterations lead the cell death when they
co-occur within the same cell. See: Anti-hallmark

C PiCnIc’s implementation for COADREAD samples
Here we detail all the steps implemented to use PiCnIc for CRC progression inference.
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C.1 TCGA COADREAD project data

COADREAD provides genome-scale analysis of samples with exome sequence, DNA copy number, promoter methylation,
messenger RNA and microRNA expression data, which we used to define the input dataset. In particular, only samples
with both mutations and CNAs profiles were used in the analysis. Supplementary Table S1 details the dataset.

Dataset used to infer models presented in the Main Text. Samples published in [2] were used as, to the best of
our knowledge, these represent the highest–quality data made available by COADREAD as of today; for these samples
TCGA provides somatic mutation profiles and high-resolution focal CNAs via GISTIC. These are obtained from TCGA
data freeze as of 2 February 2012, downloaded on 12 March 2015, from repository:

https://tcga-data.nci.nih.gov/docs/publications/coadread_2012/

The following files were processed to produce the data:

• TCGA_CRC_Suppl_Table2_Mutations_20120719.xlsx
Somatic mutations profiles obtained via whole-exome sequencing of 224 colorectal tumors by TCGA. Data avail-
able consists of 15995 mutations in 228 samples, provided in the Manual Annotation Format (MAF). Samples
were selected to univocally match the 224 patients as of the TCGA guidelines for aliquote disambiguation, see
https://wiki.nci.nih.gov/display/TCGA/TCGA+barcode. All the mutations annotated by TCGA – truncat-
ing (De_novo_Start_OutOfFrame, Frame_Shift_Del, Frame_Shift_In, Nonsense_Mutation, Splice_Site,
Frame_Shift_Ins, In_Frame_Del), silent (Silent) and missense (Missense_Mutation) – were considered for
analysis; notice that the majority of them are missense, see Figures S2 and S3.

• crc_gistic.txt.zip
Focal Copy Number Alterations (CNAs) for 564 patients derived from whole-genome sequencing using the Illumina
HiSeq platform. High-level gains and homozygous deletions were considered for analysis by selecting entries with
GISTIC scores ± 2;

• crc_clinical_sheet.txt
Clinical data summary with patient stage and Micro Satellite Stabe/Unstable (MSS/MSI) status being any of:
MSS, MSI-high and MSI-low.

The list of patients used was first reduced to those having both CNAs and somatic mutation data, and then was split
into two groups: MSI-HIGH and MSS. The training cohort has 152 MSS and 27 MSI-HIGH samples; samples flagged
as low MSI were excluded from the study as they have not been shown to differ in their clinicopathologic features or in
most molecular features from MSS tumors [3].

C.2 Driver events selection

In the TCGA COADREAD study [2] integrated analysis of mutations, copy number and mRNA expression changes in
195 tumours with complete data was performed. Part of the analysis was carried out by using the MutSig tool [4], as
well as manual curation. Samples were grouped by mutation status, and recurrent alterations in key CRC pathways were
identified in [2] (Fig. 4, Supplementary Fig. 6 and Supplementary Table 1) as a result, we can use the consortium’s
list of 33 driver genes annotated to 5 pathways and use these to extract our progression models. These are well-known
cancer genes, frequently reported as relevant to colorectal progression and to the major pathways involved in CRC. Driver
events are alterations in the following genes (acronym resolved at http://www.genecards.org/):

• wnt genes (14): Adenomatous Polyposis Coli (apc), Dickkopf WNT Signaling Pathway Inhibitor 4 (dkk-4),
Transcription Factor 7-Like 2 (tcf7l2), Catenin beta-1 (ctnnb1), Low Density Lipoprotein Receptor-Related
Protein 5 (lrp5), F-Box And WD Repeat Domain Containing 7 (fbxw7), Dickkopf WNT Signaling Pathway
Inhibitor 1(dkk-1), Frizzled Class Receptor 10 (fzd10), AT Rich Interactive Domain 1A (arid1a), Dickkopf
WNT Signaling Pathway Inhibitor 2 (dkk-2), APC Membrane Recruitment Protein 1 (fam123b, also known as
amer1), SRY (Sex Determining Region Y)-Box 9 (sox9), Dickkopf WNT Signaling Pathway Inhibitor 3 (dkk-3)
and axin-2 (axin2);

• rtk/ras genes (5): Erb-B2 Receptor Tyrosine Kinase 2 (erbb2), Erb-B2 Receptor Tyrosine Kinase 3 (erbb3),
Neuroblastoma RAS Viral (V-Ras) Oncogene Homolog (nras), Kirsten Rat Sarcoma Viral Oncogene Homolog
(kras) and B-Raf Proto-Oncogene, Serine/Threonine Kinase (braf);

5

https://tcga-data.nci.nih.gov/docs/publications/coadread_2012/
https://wiki.nci.nih.gov/display/TCGA/TCGA+barcode
http://www.genecards.org/


• tgf-β genes (5): Transforming Growth Factor, Beta Receptor 1 (tgfbr1), SMAD Family Member 3 (smad3),
Transforming Growth Factor, Beta Receptor 2 (tgfbr2), SMAD Family Member 4 (smad4), Activin A Receptor
Type IB (acvr1b), Activin A Receptor Type IIA (acvr2a) and SMAD Family Member 2 (smad2);

• igf2/pi3k genes (5): Insulin-Like Growth Factor 2 (igf2), Insulin Receptor Substrate 2 (irs2), Phosphatidylinositol-
4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha (pik3ca), Phosphoinositide-3-Kinase Regulatory Subunit 1
Alpha (pik3r1) and Phosphatase And Tensin Homolog (pten);

• p53 genes (2): Tumor Protein P53 (tp53) and ATM Serine/Threonine Kinase (atm).

In the Main Text, rtk/ras and igf2/pi3k pathways are shortly denoted as ras and pi3k.
The distinct types of mutations detected in these genes are shown in Figure S2, as well as the overall rate of

COADREAD mutations. The spatial distribution (per gene) of such mutations is shown in Figure S3.

C.3 Mutual exclusivity groups of alterations.

Groups of alterations showing a trend of mutual exclusivity were scanned with MUTEX and mutations and CNA hitting
any of the 33 selected genes as input. MUTEX was run independently on MSS and MSI-HIGH groups (Supplementary
Table S2, running times: approximately 6 and 3.5 hours, respectively, on a standard Desktop machine).

We selected only groups with score < 0.2, where the score is derived from p-values corrected for false discovery rate.
3 groups are found for MSI-HIGH tumors and 6 for MSS. For MSI-HIGH tumors, the three predicted groups consists of
genes acvr1b, acvr2a, tp53 and erbb2, of genes braf, nras and tgfbr2, and of genes kras and braf.

Further groups of exclusive alterations were considered consistent with results reported in [2]. These include groups
derived by consolidated knowledge of colorectal progression: the well-known wnt alterations in apc/ctnnb1 [5], as
well as ras alterations in kras, nras and braf genes [6]. Similarly, we used also a group collected by scanning
non-hypermutated tumors with the MEMO tool in [2] - this group includes pik3ca, pten, erbb2 and igf2 genes.
These groups were restricted to account only for genes actually altered in a certain subtype, e.g., MSI-HIGH tumors lack
ctnnb1 mutation, making the Wnt group irrelevant. Groups for MSS tumors are shown as Supplementary Figure S4,
groups for MSI-HIGH tumors are in the Main Text.

C.4 CAPRI’s execution

Background on the algorithm. CAPRI algorithm can be executed in two different modes, originally dubbed as “super-
vised” when formulas are given in input for testing, and “unsupervised” when this is not the case. This paper deals with
the former; see the Main Text for the interpretation of formulas in this context and [7] for a derivation of the algorithm.
CAPRI is a three-steps procedure, which we briefly recall here.

1. CAPRI starts by creating a “lifted” representation of the input data M which includes the input formulas; each
formula – which is written in propositional logic – is so evaluated to yield a new column in the dataset. This is the
input processed by the algorithm, which starts by selecting a set of candidate model edges, which are then used to
constrain a score-based Bayesian model-selection problem [7].

2. The initial set of selective advantage relations S, which determines the model edges x → y, is computed by
evaluating the following inequalities

(Temporal priority) p(x) > p(y)

(Probability raising) p(y | x) > p(y | ¬x) ,

where p(·) is a marginal probability, p(· | ·) is a conditional, ¬x is the negation of x and either x or y is not a
formula. It is interesting to observe that probability raising implies that x and y are positively statistically
dependent, thus imposing a minimum threshold on their association [8].

In each of CAPRI’s executions, the distribution of the observed marginals and conditionals are estimated by K
non-parametric bootstrap resamples; practically, this means that we create a bootstrapped approximation for each
of the four populations p̂(x), p̂(y), p̂(y | x) and p̂(y | ¬x). Then, we use a single-tail non-parametric Mann-
Withney U test of the difference in mean to test the hypothesis that one of the two populations is more probable
than the other, e.g., p̂(x) > p̂(y). With this test, we can compute two p-values, one for each condition. An
edge is included in S if at least the p-value for probability raising is below a significance threshold p∗ and
an edge is said not to be orientable if its p-value for temporal priority is above the same threshold. Cycles
x1 → x2 → . . . xk → x1 that might appear in S are broken by deleting the edge with minimum p-value; both K
and p∗ are custom parameters.
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3. Optimization of S, namely detection of the subset S∗ of S with the edges that we include in the final progression
model is done by optimizing, via hill climbing or tabu search, the score with regularization

S∗ , arg min
Ŝ⊂S

{
−2 log[L(Ŝ |M)] + θ|Ŝ|

}
, (1)

where L(·) is the model likelihood and M is the input data; the estimated optimal solution is S∗, which is displayed
as a Suppes-Bayes Causal Network. The different regularization strategies mentioned in the Main Text, BIC and
AIC, are obtained by the following parametrization:

(Bayesian Information Criterion) θ , log(n)

(Akaike Information Criterion) θ , 2.

Besides edges, a model has a set of parameters θ which define the conditional probability table of each edge and
should be fit from data; these are necessary if one wishes to use a model as a “generator” of further data. For
discrete-valued graphical models, for each parent set πx → y, parameter θ(y) = p(y | πx) can be taken either as
the maximum likelihood estimate from the lifted input, or by using a Bayesian interpretation [9].

Usage in this context. CAPRI was run, on each group of tumors, by selecting alterations from the pool of 33 pathway
genes; every alteration on a gene x is included if any of these apply:

• the alteration frequency of x - sum of mutation and CNA frequency - is greater than 5%;

• x it is part of an exclusivity group.

The set of selected events for MSI-HIGH training tumors is shown in the Main Text, the analogous set for MSS tumors
is shown as Supplementary Figure S5.

CAPRI was executed in its supervised mode by writing formula over groups and genes with multiple alterations
associated, as explained in the Main Text. For instance, for MSI-HIGH tumors with alterations in ras pathway we
grouped hard exclusivity of nras mutations and deletions, with soft exclusivity of kras and braf mutations. Our
aim was to account for a small subset of samples with concurrent kras and nras alterations (see Figure 2, Main
Text). The list of all Boolean formulas written over groups is in Table S3; this approach was adopted also when a gene
harbors multiple alterations in a subtype, e.g., erbb2 in MSS training samples which shows a trend of soft exclusivity
between mutations and amplifications. We used both AIC and BIC scores to regularize inference after 100 non-parametric
bootstrap iterations for estimation of the preliminary selective advantage relations – Mann-Whitney U test was performed
with a minimum threshold p∗ = 0.05. In most cases p-values are orders of magnitude below p∗ - exact values reported
as Dataset File S1. CAPRI’s models with such p-values and non-parametric bootstrap confidence are shown in Figures
S6 and S7, statistical validation of the models is discussed in the next section.

D Statistical validation of the models
P-values from hypothesis testing, as well as scores from k-fold cross-validation and various bootstrapping techniques can
be used to measure the statistical consistency of models and data, each one capturing different potential errors in the
inference process. Approaches such as cross-validation and bootstrap are sometimes also used in the (ex novo) generation
and inference of models from data (see, e.g., bootstrap consensus models [10]), but we only use them here for the a
posteriori evaluation of a model’s confidence, and we interpret them as a quantitative measure for the relative assessment
of each model’s relation.

All the p-values and the scores that we present here are computed within TRONCO.

D.1 Edge p-values

As explained in §C.4, for each model edge x → y we get two p-values by assessing temporal priority and probability
raising via Mann-Whitney U testing.

For each edge, a p-value for the hypergeometric test of overlap between alteration profiles x and y can be computed.
More precisely, we test if there is a difference between the number of samples containing both x and y versus the total
population of samples with x, y, or both. We would like the overlap to be significant as those samples – that determine
the joint probability of x and y – are those supporting the presence of a selection trend among x and y.

An edge is fully supported if all three p-values are below a custom significance threshold, e.g., 0.05 or even better
0.01. Some edges might have the p-value for temporal priority above the threshold. If so, the selection trend might be
still significant, but the temporal order of x and y – i.e., the direction of selection – is not supported by the data.
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D.2 Bootstrap

We used non-parametric and statistical bootstrap techniques to measure the goodness-of-fit, as originally proposed in [11].
In this case, we distinguish two type of errors that one could make in the inference process, estimating the presence or
absence of edges in the model:

• Type I errors: incorrect rejection of a true H0 (null-hypthesis), i.e., a “false positive” edge that we wrongly include.

• Type II errors: incorrect acceptance (failure to reject) of a false H0, i.e., a “false negative” edge that we miss.

Non-parametric bootstrap [12] computes scores to be interpreted here as follows. If a model contains an edge x→ y
that is a true positive, we expect its score to be high. In other words, when we sample with repetition subsets of the
original data and re-run the inference process we expect to often find models which contain the edge x→ y. Conversely,
for a node y without incoming edges, or equivalently for any edge x → y which is correctly excluded from a model – a
true negative – we would expect its bootstrap score to be low. However, this reasoning can be also generalized to whole
models, where we count how many times we re-infer exactly the same model. Clearly, such scores will depend also on
the empirical probabilities of the nodes in our data, and their deviation from the true probabilities of the phenomenon.
So, one might expect rare events to be less frequently bootstrapped, which results in a lower estimate; however, such
counts can be anyway interpreted as measures of repeatability of our findings1.

The above bootstrap approach depends on two random number generators: one to shuffle data (the a posteriori
bootstrap), and one to evaluate CAPRI’s inequalities via hypothesis testing (the internal CAPRI’s bootstrap, see C.4).
Thus, to ensure that no bias is introduced by the random number generators, we performed a statistical bootstrap by
holding data fixed, and re-estimating CAPRI’s inequalities with generators initialized with different seeds. We evaluated
the robustness of our scores for all edges imputed to be genuine and hence, high-scoring.

Notice that, in principle, even parametric bootstrap scores could be computed if we used the model to generate
bootstrapped data [12]. However, as the support of the distribution subsumed by a model with n nodes consists of 2n

possible outcomes, sampling uniformly from large models might be computationally hard. For this reason, and because
such scores are overestimates of the non-parametric ones, we did not include them in our computation.

The MSS and MSI progression models are annotated with the non-parametric bootstrap scores in Figures S6 and S7.
Non-parametric and statistical bootstrap scores for a set of selected edges are shown and commented in Figure S8. For the
same set of edges, we also report the p-values for CAPRI’s inequalities assessed in the MSS and MSI progression models
(temporal priority and probability raising, as a measure of the selectivity among the alterations, and hypergeometric, as
a measure of the randomness in the overlap of two alteration profiles). Additional comments are in the caption.

D.3 Cross-validation

Next we study the sufficiency of the data sizes for model inference and its ability to characterize the underlying progression
(goodness-of-data). Thus, we focus on the Type III errors, which occur when the sample size is inadequate or the sample
is a poor descriptor for the reference phenomenon2, and thus failing to represent the progression. For this purpose,
we used cross-validation with the data used for the models built (see the Main Text), and followed the best practices
developed by the Bayesian Networks community [9].

TRONCO exploits the cross-validation routines implemented in the bnlearn package [16]. The approach that we adopt
is a k-fold non-exhaustive cross-validation, which we repeat 10 times to average its results. Exhaustive strategies might
be used for datasets of small sample size. Each run of cross-validation consists in computing a loss function for a model;
its steps are the followings:

• split randomly the data in k = 10 groups, and then repeat the following two steps, for each group in turn:

1. set one of the groups to be the “training” Mtr;

2. merge the others k − 1 to be the “test” Mte;

3. by holding fixed the model structure (i.e., the edges in S∗), fit the model parameters θ over the training data
via maximum likelihood estimates, compute a score over the test Mte (see below) and the corresponding loss;

1Bootstrapping techniques have been widely used to gauge uncertainty in estimates, but also subjects of philosophical debate about their
precise interpretation, especially when coupled with various significance thresholds – unlike the situation with a p-value for a null hypothesis.
An exhaustive review on the topic is provided by Soltis in [13]. We follow the ideas originally developed in the area of phylogenetic analysis [14],
suggesting that the scores can be alternatively interpreted as a measure of accuracy of the method or of the robustness of the data [15].

2Consider the case where the samples are from two different unknown and heterogeneous groups, with random chance making low values
to be sampled from a group that actually has a majority of high values, and vice versa. In this case, the samples will not be the best descriptor
of the two groups.
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• combine the k loss estimates to give an overall loss for data.

Let θtr be the parameters fit from the training set Mtr, and S∗ the edges in the model, three scores are computed
with cross-validation:

1. the negative entropy of a model – i.e., the negated expected log-likelihood of the test set for the Bayesian network
fitted from the training set, that is

eloss(S∗,θtr) = −E[L(S∗,θtr |Mte)] .

2. the prediction error for a single node x and its parents set X, i.e., we measure how precisely we can predict the
values of x by using only the information present in its local distribution θtr(x). This parameter corresponds to
computing the misclassification rates from pte(x), the empirical marginal probability of x estimated from the test.

3. the posterior classification error for a single node x and one of its parent node y ∈ X – i.e., the values of x are
predicted using only the information present in y by likelihood weighting and Bayesian posterior estimates.

See [17] for a discussion on these loss functions. The first statistics measures the log-likelihood loss when we “forget”
some of the samples used to infer a model (indeed, the test samples); see Figure S9. Roughly, we are measuring how the
model’s predictive power changes as we look at the data from different viewpoints. This is a score for a whole model, it
has no scale – so cannot be used to say how good the models/data are, in any absolute sense. Nonetheless, it can be
used to evaluate how “stable” a model is, for a certain dataset.

The second and third statistics measure the accuracy of the parent-set, X, for a child x; the second statistics dealing
with the whole parent set as predictor, and the third, the individual contribution of each of the parents. For these two
statistics, we desire the prediction error to be low, as a measure of goodness. These are shown in Figure S8 (selected
edges), S10 and S11 (all edges, prediction error).

E Supplementary Tables and Figures

Datasets (CNAs and mutations provided by TCGA)

statistics alteration type

cancer† n m |G| mutations amplifications deletions

MSI-HIGH 27 16100 13798 11556 2888 1656

MSS 152 21317 16371 12417 6925 1975
† Samples were classified as MSI-HIGH/LOW and MSS by TCGA; see flag
MSI_status in clinical data available for the COADREAD project.

Table S1: COADREAD Data. Data used in this study, derived from the TCGA COADREAD project [2].
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MUTEX parameters

Parameter Value Description

signalling-network - MUTEX network†

max-group-size 5 maximum size of a result group

first-level-random-iteration 10000 number of randomisation to estimate null distribution
of member p-values in groups

second-level-random-iteration 100 number of runs to estimate the null distribution of final
scores

fdr-cutoff - false-discovery-rate cutoff maximising the expected
value of true positives - false positives is estimated from
data

search-on-signaling-network TRUE reduce the search space using the signalling network
† Manually curated from Pathway Commons, SPIKE and SignaLink databases. Provided with the tool; available for
download at https://code.google.com/p/mutex/.

MUTEX groups with score < .2

MSI-HIGH Groups score q-value

1 kras, braf, 0.095 0.48

2 nras, braf, tgfbr1 0.1677 0.45

3 erbb2, tp53, acvr1b, acvr2a 0.1703 0.355

MSS Groups score q-value

1 tp53, atm, 0.051 0.34

2 arid1a, tp53 0.075 0.193

3 kras, nras, braf, 0.0864 0.1975

4 ctnnb1, apc, dkk2, 0.098 0.144

5 dkk1, tp53, atm, dkk2 0.1387 0.176

6 pik3ca, tp53, atm 0.164 0.207

Table S2: MUTEX: parameters and results. Top: Parameters used to run MUTEX on the original TCGA MSS/MSI-
HIGH datasets with input CNA and somatic mutations in the pathway genes described in text. Bottom: MUTEX identified
3 and 6 groups of alterations showing a trend of mutual exclusivity in these groups with score below the suggested cutoff
of 0.2.
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Formulas input for testing to CAPRI†

MSI-HIGH tumors description

1 (nras:m ⊕ nras:d) ∨ kras:m ∨ braf:m raf exclusivity

2 pik3ca:m ∨ erbb2:m ∨ pten:m ∨ igf2:d MEMO group

3 (acvr1b:m ⊕ acvr1b:d) ∨ acvr2a:m ∨ tp53:m ∨ erbb2:m MUTEX group

4 (nras:m ⊕ nras:d) ∨ tgfbr1:m ∨ braf:m MUTEX group

5 kras:m ∨ braf:m MUTEX group

6 acvr1b:m ⊕ acvr1b:a multiple alterations

7 nras:m ⊕ nras:a multiple alterations

8 fbxw7:m ∨ fbxw7:a multiple alterations ‡

MSS tumors description

1 (apc:m ⊕ apc:d) ∨ ctnnb1:m wnt exclusivity

2 (kras:m ∨ kras:a) ∨ (nras:m ⊕ nras:a) ∨ (braf:m ⊕ braf:a) raf exclusivity and MEMO group

3 pik3ca:m ∨ (erbb2:m ∨ erbb2:a) ∨ (pten:m ⊕ pten:d) ∨ igf2:a MEMO group

4 (tp53:m ⊕ tp53:d) ∨ (atm:m ⊕ atm:d) MUTEX group

5 (tp53:m ⊕ tp53:d) ∨ arid1a:m MUTEX group

6 (tp53:m ⊕ tp53:d) ∨ arid1a:m MUTEX group

7 (apc:m ⊕ apc:d) ∨ ctnnb1:m ∨ dkk2:m MUTEX group

8 (tp53:m ⊕ tp53:d) ∨ (atm:m ⊕ atm:d) ∨ dkk2:m ∨ dkk1:m MUTEX group

9 (tp53:m ⊕ tp53:d) ∨ (atm:m ⊕ atm:d) ∨ pik3ca:m MUTEX group

10 (apc:m ⊕ apc:d) multiple alterations

11 (tp53:m ⊕ tp53:d) multiple alterations

12 (smad4:m ⊕ smad4:d) multiple alterations

13 (tcf7l2:m ⊕ tcf7l2:d) multiple alterations

14 (atm:m ⊕ atm:d) multiple alterations

15 (nras:m ⊕ nras:d) multiple alterations

16 (erbb2:m ∨ erbb2:a) multiple alterations

17 (pten:m ⊕ pten:d) multiple alterations

18 (smad2:m ⊕ smad2:a) multiple alterations

19 (dkk4:m ⊕ dkk4:a) multiple alterations

20 (sox9:m ⊕ sox9:d) multiple alterations

21 (braf:m ⊕ braf:a) multiple alterations
† Events type: mutation (m), deletion (d), amplification (a). Hard (⊕) and soft (∨) exclusivity.

‡ Formula not included as it creates a duplicated signature in the dataset.

Table S3: CAPRI formulas from exclusivity groups. Formulas created for the groups, and input to CAPRI for testing.
These are either derived from exclusivity groups or from genes involved in different types of alterations.
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Figure S1: PiCnIc pipeline processing MSI-HIGH/MSS tumors. We process with PiCnIc Microsatellite Stable and
highly unstable tumors collected from the The Cancer Genome Atlas project “Human Colon and Rectal Cancer” (subtypes
annotations provided as clinical data). We implement a study on selected somatic mutations and focal CNAs in 33 driver
genes manually annotated with 5 pathways in the COADREAD project. We scan groups of exclusive alterations with
computational tools run by us and by TCGA, and we exploit previous knowledge on CRC; we select which alterations we
input to CAPRI. Next, inference is performed with various settings of regularization and confidence. Statistical confidence
of the models is assessed with standard techniques from the literature (p-values from statistical testing, bootstrap scores
and cross-validation statistics).
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Figure S2: Mutations annotated by TCGA for the driver genes. Top: the majority of the mutations annotated by
TCGA for the driver genes that we consider are missense – this in almost all genes and in all the cohort. Bottom: overall
summation of the frequencies determine the mutations across all driver genes.
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Figure S3: Lolliplot diagrams of TCGA mutations. Diagrams generated from the cBio portal for the COADREAD
project (see http://www.cbioportal.org/). These display the physical distribution of the annotated mutations for
each gene. Here we shown only genes with a total mutation count greater than 15; fam123b is called with its synonym
amer1, as in the portal.
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Exclusivity groups for MSS tumors
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Figure S4: Groups of exclusive alterations for MSS tumors. Knowledge-based groups of exclusive alterations consist
of: kras, nras and braf genes (raf pathway) and apc and ctnnb1 genes (wnt pathway). The MEMO [18] group
identified in [2] in this cohort consists of genes pik3ca, erbb2, igf2 and pten. Finally, 6 groups are predicted by
MUTEX [19] with score below .2, one of these is equivalent to the known exclusive alterations in raf pathway.
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Figure S5: Selected data for MSS tumors. Colorectal tumors with Microsatellite Stable clinical status in the TCGA
COADREAD project, restricted to 152 samples with both somatic mutations and CNA data available. 33 driver genes
annotated with 5 pathways are selected from the list published in [2] to automatically detect groups of mutually exclusive
alterations. Events selected for reconstruction are those involving genes altered in at least 5% of the cases, or part
of group of alterations showing an exclusivity trend (see Figure S4). This dataset is used to infer the set of selective
advantage relations which constitute the MSS progression model presented in the Main Text.
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Figure S6: Non-parametric bootstrap scores for MSS progression. Progression model for MSS tumors with con-
fidence shown as edge labels. The first label represents the relation confidence estimated with 100 non-parametric
bootstrap iterations, the second and third are p-values for temporal priority and probability raising. Red p-values are
above the minimum significane threshold of .05. See Figure 4 in the Main Text for an interpretation of this model.
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Figure S7: Non-parametric bootstrap scores for MSI-HIGH progression. Progression model for MSI-HIGH tumors
with confidence shown as edge labels. The first label represents the relation confidence estimated with 100 non-parametric
bootstrap iterations, the second and third are p-values for temporal priority and probability raising. Red p-values are
above the minimum significane threshold of .05. See Figure 5 in the Main Text for an interpretation of this model.

18



Data

selects # selected # Non-
parametric

Statistical Temporal	
Priority

Probability	
Raising

Hypergeom
etric

μ σ μ σ

1 KRAS 71 PIK3CA 23 82% 100% 6,20E-92 7,63E-92 2,77E-05 1,51E-01 0,00E+00 1,51E-01 0,00E+00
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Figure S8: COADREAD statistics for models confidence. For BIC models we show statistics for edges with non-
parametric bootstrap score approximately greater than 30%, for AIC models those greater than 50%s. i) p-values
(100 repetition of non-parametric bootstrap, prior to Wilcoxon testing) for each edge statistics of selective advantage
(direction and statistical dependence, and hypergeometric). In general, the edges that we selected show very strong
support (p � 10−10), but for those edges connecting events with the same marginal frequencies, where we can not
be confident in the edge direction (p > 0.05) but still we find strong statistical dependence. (ii) A posteriori model
confidence against Type I and II errors estimated with non-parametric and statistical bootstraps (100 repetitions) – edges
annotated in Figures S6 and S7. (iii) Values of posterior classification and prediction errors are estimated from 10
repetitions of 10-fold cross-validation. The former reports how much error is due to predicting, for each set of edges
X = {x1, . . . , xn} → y, the value of y according to the value of each xi ∈ X. The latter reports the same statistics
when we predict y from the whole set of parents X.
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Figure S9: Entropy loss for MSI-HIGH/MSS models. Violin plot computed from 10 runs of k-fold cross-validation
with k = 10, where we compute the “loss of log-likelihood” at each fold. In the plot and in the table we report also the
overall log-likelihood, as well as the BIC and AIC scores for the models. We present the ratio of log-likelihood loss as a
measure of stability of these models for these two datasets – we can observe that the MSS models lose < 1% of their
likelihood, while the MSI lose slightly more (still, < 4%), possibly because of the smaller sample size. From a statistical
point of view, the greater (despite small) loss of likelihood by the models regularized via BIC confirms its tendency to
underestimate the true model (i.e., the model should have false negatives, which could be AIC’s edges).
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Figure S10: Prediction error for each parent set of BIC and AIC models of MSS tumors.21
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Figure S11: Prediction error for each parent set of BIC and AIC models of MSI-HIGH tumors.
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Figure S12: Models and the phenotype that they might explain. (biomarker) Independent evolutionary trajectories
depicted by a model might share common routes through a certain alteration Y; that could point to a new biomarker
harbored by most of the tumors under study. (drug resistance)When a progression model branches in many independent
sub-progressions, each one identified by alterations X, Y and Z, if a certain drug is known to target only a certain type
of such clones (e.g., those where biomarker X is present), we might get insights on which are the biomarkers which make
the drug ineffective for certain patients (e.g., those were cancer evolves through Y and Z). (metastatic) When a model
is extracted from data representative of various tumor stages, we might discover which “late events” are those conferring
a metastatic phenotype to a tumor – X in the figures. (anti-hallmarks) Relation between anti-hallmarks and formulas.
Exclusivity formulas allow to capture fitness-equivalent events (Y and Z in the figure), and the presence of alternative
routes – here those identified by the genotypes X/Y or X/Z. These could point us to genotype/phenotype that we do no
observe in our cohort – here the X/Y/Z – which could be exploited for targeted therapy if a synthetic lethality is screened
among Y and Z, the anti-hallmark.
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