# **Supplemental data**

# Impairment of leukemia initiating self-renewal by a novel selective small molecule CBP/p300 bromodomain inhibitor

Sarah Picaud, Oleg Fedorov, Angeliki Thanasopoulou, Katharina Leonards, Katherine Jones, Julia Meier, Heidi Olzscha, Octovia Monteiro, Sarah Martin, Martin Philpott, Anthony Tumber, Panagis Filippakopoulos, Clarence Yapp, Christopher Wells, Ka Hing Che, Andrew Bannister, Samuel Robson, Umesh Kumar, Nigel Parr, Kevin Lee, Dave Lugo, Philip Jeffrey, Simon Taylor, Chas Bountra, Paul Brennan, Duncan Hay, Danette L. Daniels, Marjeta Urh, Alison O'Mahony, Sharlene Velichko, Susanne Müller, Nicholas B. La Thangue, Tony Kouzarides, Rab Prinjha, Jürg Schwaller, Stefan Knapp.

| Supplemental Table 1: I-CBP112  []Tm data for bromodomains            | page: 2  |
|-----------------------------------------------------------------------|----------|
| Supplemental Table 2: I-CBP112 ITC data                               | page: 3  |
| Supplemental Table 3: Selectivity screening data (outside BRD family) | page: 4  |
| Supplemental Table 4: ITC data (peptides)                             | page: 8  |
| Supplemental Table 5: Data collection and refinement statistics       | page: 10 |
| Supplemental Table 6: CBP and EP300 mutations in cell lines           | page: 17 |
| Supplemental Table 7: I-CBP112 deregulated genes (3d KASUMI-1)        | page: 27 |
| Supplemental Table 8: I-CBP112 deregulated genes (3d MOLM13)          | page: 36 |
| Supplemental Table 9: I-CBP112 deregulated genes (3d SEM)             | page: 39 |
| Supplemental Figure 1: BLI evaluation of I-CBP112 selectivity         | page: 2  |
| Supplemental Figure 2: FRAP data                                      | page: 9  |
| Supplemental Figure 3: BioMAP data for I-CBP112                       | page: 11 |
| Supplemental Figure 4: Effects on MLL-AF9 and NUP98-HOXA9             | page: 14 |
| Supplemental Figure 5: Immunophenotype of injected MLL-AF9 cells      | page: 15 |
| Supplemental Figure 6: Limiting dilution transplantation              | page: 16 |
| Supplemental Figure 7: Cell survival data                             | page: 17 |
| Supplemental Figure 8: Colony formation in human leukemic cell lines  | page: 18 |
| Supplemental Figure 9: Prolonged exposure of KASUMI-1 to I-CBP112     | page: 19 |
| Supplemental Figure 10: Prolonged exposure of MOLM13 to I-CBP112      | page: 20 |
| Supplemental Figure 11: Prolonged exposure of SEM to I-CBP112         | page: 21 |
| Supplemental Figure 12: Differentiation of CD34 <sup>+</sup> cells    | page: 21 |
| Supplemental Figure 13: Validation of the synergistic effect          | page: 23 |
| Supplemental Figure 14: γ-H2Ax immunohistochemistry                   | page: 26 |
| Supplemental Figure 15: Expression changes in KASUMI-1                | page: 49 |
| Supplemental Figure 16: ChIP qPCR data                                | page: 50 |

**Supplemental Table 1**: Temperature shift data of I-CBP112 against a panel of human bromodomains. The values represent the average of three independent measurements.

|    | Protein                         | ΔT <sub>m</sub> [⁰C] |  |  |  |  |  |
|----|---------------------------------|----------------------|--|--|--|--|--|
| 1  | ASH1L                           | 0.24 ± 0.26          |  |  |  |  |  |
| 2  | ATAD2                           | 0.14 ± 0.56          |  |  |  |  |  |
| 3  | BAZ1A                           | 0.16 ± 1.20          |  |  |  |  |  |
| 4  | BAZ2A                           | 0.17 ± 0.41          |  |  |  |  |  |
| 5  | BAZ2B                           | 0.12 ± 0.16          |  |  |  |  |  |
| 6  | BRD1                            | $0.43 \pm 0.35$      |  |  |  |  |  |
| 7  | BRD2(1)                         | 1.35 ± 0.48          |  |  |  |  |  |
| 8  | BRD2(2)                         | 0.87 ± 0.28          |  |  |  |  |  |
| 9  | BRD3(1)                         | 1.55 ± 0.44          |  |  |  |  |  |
| 10 | BRD3(2)                         | 0.94 ± 0.25          |  |  |  |  |  |
| 11 | BRD4(1)                         | 2.09 ± 0.41          |  |  |  |  |  |
| 12 | BRD4(2)                         | 0.58 ± 0.20          |  |  |  |  |  |
| 13 | BRDT(1)                         | $0.68 \pm 0.43$      |  |  |  |  |  |
| 14 | BRD9                            | 0.20 ± 0.17          |  |  |  |  |  |
| 15 | BRPF1                           | 0.19 ± 0.60          |  |  |  |  |  |
| 16 | BRPF3                           | 0.07 ± 0.63          |  |  |  |  |  |
| 17 | BRWD3(2)                        | 0.64 ± 1.16          |  |  |  |  |  |
| 18 | CECR2                           | 0.43 ± 0.19          |  |  |  |  |  |
| 19 | CREBBP                          | 7.77 ± 0.53          |  |  |  |  |  |
| 20 | EP300                           | 8.69 ± 0.28          |  |  |  |  |  |
| 21 | FALZ                            | $0.63 \pm 0.14$      |  |  |  |  |  |
| 22 | GCN5L2                          | 0.54 ± 0.27          |  |  |  |  |  |
|    | #DDU/DDD dual damain assestment |                      |  |  |  |  |  |

|    | Protein    | ΔT <sub>m</sub> [ºC] |
|----|------------|----------------------|
| 23 | KIAA1240   | $0.05 \pm 0.14$      |
| 24 | LOC93349#  | 0.65 ± 0.61          |
| 25 | PB1(1)     | $0.77 \pm 0.80$      |
| 26 | PB1(2)     | 0.13 ± 0.28          |
| 27 | PB1(3)     | $-0.24 \pm 0.23$     |
| 28 | PB1(4)     | $0.28 \pm 0.62$      |
| 29 | PB1(5)     | 0.11 ± 0.20          |
| 30 | PB1(6)     | $-0.04 \pm 0.28$     |
| 31 | PCAF       | -0.01 ± 0.29         |
| 32 | PHIP(2)    | $0.62 \pm 0.49$      |
| 33 | SMARCA2    | -0.02 ± 0.15         |
| 34 | SMARCA4    | $0.36 \pm 0.16$      |
| 35 | SP140      | $-0.64 \pm 0.86$     |
| 36 | TAF1(1)    | 0.16 ± 0.17          |
| 37 | TAF1(2)    | -0.13 ± 0.30         |
| 38 | TAF1L(1)   | $0.12 \pm 0.40$      |
| 39 | TAF1L(2)   | $-0.04 \pm 0.45$     |
| 40 | TIF1A#     | 0.32 ± 0.31          |
| 41 | TIF1A(PHD) | $0.26 \pm 0.68$      |
| 42 | TRIM28#    | -0.42 ± 0.51         |
| 43 | TRIM66     | $0.15 \pm 0.41$      |
| 44 | WDR9(2)    | -0.33 ± 0.56         |

PDH/BRD dual domain construct



#### Supplemental Figure 1

**Supplemental Figure 1:** BLI evaluation of i-CBP112 selectivity using BLI. 42 human bromodomains were biotinylated *in vivo* by fusion with the biotinylation sequence (SSKGGYGLNDIFEAQKIEWHE) inserted at the C-terminus and co-expression of BirA using a pACYC co-expression vector. Bromodomains immobilized on streptavidine tips were screened at two concentrations (0.2 and 2.0  $\mu$ M). The maximum response reached at this concentration is shown. Strong binding was only observed for CBP/p300. Weaker interactions are also evident for BET bromodomains.

# Supplemental Table 2:

| Protein | [P]<br>(µM) | [L]<br>(µM) | N    | K <sub>d</sub><br>(nM) | ΔH <sup>obs</sup> (cal/mol) | T∆S (kcal/mol) | ΔG (kcal/mol) |
|---------|-------------|-------------|------|------------------------|-----------------------------|----------------|---------------|
| CBP     | 195         | 20          | 0.98 | 151                    | -9031 ± 25.8                | -0.0380        | -8.99         |
| EP300   | 248         | 20          | 0.97 | 167                    | -9291 ± 34.5                | -0.3456        | -8.94         |
| BRD4(1) | 450         | 17          | 1.01 | 5587                   | -5363 ± 129.0               | 1.5638         | -6.92         |
| BRD4(2) | 440         | 17          | 0.96 | 20000                  | -3704 ± 330.4               | 2.4912         | -6.19         |

Errors shown are errors of the non-linear least square fits. Measurements have been carried out at 15 °C. [P] and [L] show the protein and ligand concentration used in the different experiments.

**Supplemental Table 2:** Isothermal Titration Calorimetry measurements of the interaction of I-CBP112 with bromodomains.

# Supplemental Table 3A (CEREP selectivity data (enzymes))

| Enzyme assay                                   | %[Inhibition]<br>at 10 μM<br>(I-CBP112) (S) | %[ Inhibition]<br>at 10 μM<br>(I-CBP112) (R) |
|------------------------------------------------|---------------------------------------------|----------------------------------------------|
| COX1                                           | -33                                         | -4                                           |
| COX2                                           | 2                                           | 14                                           |
| inducible NOS                                  | -35                                         | -37                                          |
| PDE2A1                                         | 4                                           | 2                                            |
| PDE3B                                          | 0                                           | 0                                            |
| PDE4D2                                         | 14                                          | 15                                           |
| PDE5 (non-selective)                           | -2                                          | -1                                           |
| PDE6 (non-selective)                           | 8                                           | 6                                            |
| ACE                                            | -7                                          | -21                                          |
| ACE-2                                          | 7                                           | 6                                            |
| BACE-1 (beta -secretase)                       | 4                                           | -1                                           |
| caspase-3                                      | -7                                          | -6                                           |
| HIV-1 protease                                 | -3                                          | -1                                           |
| neutral endopeptidase (h)                      | 2                                           | 6                                            |
| MMP-1                                          | -11                                         | -17                                          |
| MMP-2                                          | 16                                          | 12                                           |
| MMP-9                                          | -15                                         | -2                                           |
| Abl kinase                                     | 3                                           | 0                                            |
| CaMK2alpha                                     | 0                                           | 0                                            |
| CDK2 (cycA)                                    | -1                                          | 2                                            |
| ERK2 (P42mapk)                                 | 7                                           | -1                                           |
| FLT-1 kinase (VEGFR1)                          | -3                                          | 5                                            |
| Fyn kinase                                     | -4                                          | -3                                           |
| IRK (InsR)                                     | 20                                          | -1                                           |
| Lyn A kinase                                   | -1                                          | -7                                           |
| p38alpha kinase                                | -1                                          | -1                                           |
| ZAP70 kinase                                   | -2                                          | 11                                           |
| acetylcholinesterase                           | 21                                          | 28                                           |
| COMT (catechol- O-methyl transferase)          | -4                                          | 5                                            |
| xanthine oxidase/<br>superoxide O2- scavenging | 5                                           | -8                                           |
| ATPase (Na+/K+)                                | 0                                           | 0                                            |

| GPCR Assay                                 | %[I] at 10 μM<br>(I-CBP112) (S) | %[I] at 10 μM<br>(I-CBP112) (R) |
|--------------------------------------------|---------------------------------|---------------------------------|
| A1 (ago. r.)                               | 4                               | -5                              |
| A2A (ago. r.)                              | 11                              | 1                               |
| A2B (anta. r.)                             | -4                              | -13                             |
| A3 (ago. r.)                               | -7                              | -4                              |
| alpha 1A (anta. r.)                        | 89                              | 89                              |
| alpha 1B (anta. r.)                        | 21                              | 52                              |
| alpha 2A (anta. r.)                        | 18                              | 24                              |
| alpha 2B (anta. r.)                        | -9                              | 49                              |
| alpha 2C (anta. r.)                        | 39                              | 50                              |
| beta 1 (ago. r.)                           | -4                              | -9                              |
| beta 2 (ago. r.)                           | 0                               | 1                               |
| beta 3 (anta. r.)                          | -3                              | -15                             |
| AT1 (anta. r.)                             | 21                              | 9                               |
| AT2 (ago. r.)                              | -8                              | -1                              |
| APJ (apelin) (ago. r.)                     | -3                              | -1                              |
| BZD (central) (ago. r.)                    | -5                              | -12                             |
| BB3 (ago. r.)                              | -10                             | -22                             |
| B2 (ago. r.)                               | -5                              | -7                              |
| CB1 (ago. r.)                              | -5                              | 0                               |
| CB2 (ago. r.)                              | 2                               | 5                               |
| CCK1 (CCKA) (ago. r.)                      | 6                               | -6                              |
| CCK2 (CCKB) (ago. r.)                      | -4                              | -10                             |
| CRF1 (ago. r.)                             | -19                             | -26                             |
| D1 (anta. r.)                              | 11                              | 17                              |
| D2S (ago. r.)                              | 12                              | 28                              |
| D3 (anta. r.)                              | -2                              | 18                              |
| ETA (ago. r.)                              | -2                              | -27                             |
| ETB (ago. r.)                              | -5                              | -2                              |
| GABAA1 (alpha 1,β2,γ2) (ago. r.)           | 12                              | -6                              |
| GABAB(1b) (anta. r.)                       | 0                               | 4                               |
| glucagon (ago. r.)                         | -8                              | -16                             |
| AMPA (ago. r.)                             | -14                             | -14                             |
| kainate ago.r.)                            | -7                              | -2                              |
| NMDA (anta. r.)                            | -16                             | 0                               |
| glycine (strychnine-insensitive)(anta. r.) | 0                               | 3                               |
| TNF-alpha (ago. r.)                        | -4                              | 14                              |
| CCR2 (ago. r.)                             | -10                             | 0                               |
| H1 (anta. r.)                              | 5                               | -8                              |
| H2 (anta. r.)                              | 3                               | 7                               |
| H3 (ago. r.)                               | 3                               | -5                              |
| H4 (ago. r.)                               | 2                               | -3                              |

# Supplemental Table 3 B (CEREP selectivity data (GPCRs and ion channels))

| BLT1 (LTB4) (ago. r.)              | 0   | -1  |
|------------------------------------|-----|-----|
| CysLT1 (LTD4) (ago. r.)            | -12 | -21 |
| MCH1 (ago. r.)                     | 7   | -9  |
| MC1(ago. r.)                       | 0   | 0   |
| MC3 (ago. r.)                      | -6  | -21 |
| MC4 (ago. r.)                      | -10 | 0   |
| MT1 (ML1A) (ago. r.)               | -15 | -11 |
| MT3 (ML2) (ago. r.)                | 45  | 54  |
| MAO-A (anta. r.)                   | -6  | -5  |
| motilin (ago. r.)                  | -1  | 2   |
| M1 (anta. r.)                      | 38  | 48  |
| M2 (anta. r.)                      | 67  | 49  |
| M3 (anta. r.)                      | 20  | 35  |
| M4 (anta. r.)                      | 74  | 63  |
| NK1 (ago. r.)                      | 4   | 8   |
| NK2 (ago. r.)                      | -8  | 2   |
| Y1 (ago. r.)                       | -10 | -10 |
| N neuronal alpha 4beta 2 (ago. r.) | 23  | 20  |
| N muscle-type (anta. r.)           | 19  | 19  |
| delta 2 (DOP) (ago. r.)            | 8   | -7  |
| kappa (KOP) (ago. r.)              | -6  | -9  |
| mu (MOP) (ago. r.)                 | 3   | 5   |
| NOP (ORL1) (ago. r.)               | 6   | 1   |
| PPARgamma (ago. r.)                | -8  | -9  |
| PAF (ago. r.)                      | 9   | 11  |
| PCP (anta. r.)                     | -4  | 3   |
| EP2 (ago. r.)                      | 9   | 8   |
| FP (ago. r.)                       | -4  | -5  |
| IP (PGI2) (ago. r.)                | -6  | -15 |
| LXRbeta (ago. r.)                  | 15  | 15  |
| 5-HT1A (ago. r.)                   | 16  | 58  |
| 5-HT1B (anta. r.)                  | 9   | 46  |
| 5-HT1D (ago. r.)                   | 18  | -1  |
| 5-HT2A (ago. r.)                   | 30  | 62  |
| 5-HT2B (ago. r.)                   | -17 | 7   |
| 5-HT2C (ago. r.)                   | 11  | 52  |
| 5-HT3 (anta. r.)                   | 3   | -11 |
| 5-HT4e (anta. r.)                  | 32  | 18  |
| 5-HT6 (ago. r.)                    | -6  | -3  |
| 5-HT7 (ago. r.)                    | 6   | 10  |
| sigma (non-selective) (ago. r.)    | 46  | 15  |
| sst1 (ago. r.)                     | 15  | 16  |
| sst4 (ago. r.)                     | -7  | -7  |
| GR (ago. r.)                       | -5  | -1  |

| ERalpha (agonist fluoligand)                                                  | 5   | 2   |
|-------------------------------------------------------------------------------|-----|-----|
| AR (ago. r.)                                                                  | -3  | -24 |
| TR (TH) (ago. r.)                                                             | -26 | -29 |
| UT (ago. r.)                                                                  | 8   | 21  |
| VPAC1 (VIP1) (ago. r.)                                                        | -2  | 1   |
| V1a (ago. r.)                                                                 | 4   | -2  |
| V2 (ago. r.)                                                                  | 4   | -6  |
| Ca <sup>2+</sup> channel (L, dihydropyridine site) (anta. r.)                 | 4   | 7   |
| Ca <sup>2+</sup> channel (L, diltiazem site)<br>(benzothiazepines)(anta. r.)  | 38  | 12  |
| Ca <sup>2+</sup> channel (L, Verapamii site)<br>(phenylalkylamine) (anta. r.) | 19  | 23  |
| Ca <sup>2+</sup> channel (N) (anta. r.)                                       | 13  | -15 |
| SKCa channel (anta. r.)                                                       | 6   | 4   |
| Na <sup>+</sup> channel (site 2) (anta. r.)                                   | 11  | 8   |
| Cl <sup>-</sup> channel (GABA-gated) (anta. r.)                               | -48 | -15 |
| norepinephrine transporter (anta. r.)                                         | 0   | -8  |
| dopamine transporter (anta. r.)                                               | -3  | -9  |
| GABA transporter (anta. r.)                                                   | 0   | 3   |
| choline transporter (CHT1) (anta. r.)                                         | 8   | 4   |
| 5-HT transporter (anta. r.)                                                   | -30 | -9  |

Assay data were provided by Cerep. Details on assay conditions and control compounds used can be found on the Cerep home page (<u>http://www.cerep.fr/Cerep/Users/index.asp</u>). Data are shown as [%] inhibition at 10  $\mu$ M compound concentration, (ago.r.) means (agonist radioligand) and (anta. r.) (antagonist radioligand), respectively.

| Protein | Peptide     | Κ <sub>Ρ</sub><br>(μΜ) | Δ <i>Η</i> <sup>obs</sup><br>(kcal/mol) | Ν     | T∆S<br>(kcal/mol) | ∆G<br>(kcal/mol) |
|---------|-------------|------------------------|-----------------------------------------|-------|-------------------|------------------|
|         | H3K56       | $13.8 \pm 0.4$         | -7.9 ± 0.1                              | 0.966 | -1.6              | -6.30            |
| CBP     | H4K5/K8     | $31.0 \pm 0.5$         | -13.7 ± 0.2                             | 0.581 | -7.8              | -5.85            |
|         | H4K5/K8/K12 | $29.0 \pm 0.7$         | -14.8 ± 0.3                             | 0.508 | -8.9              | -5.89            |
| P300    | H4K5/K8/K12 | 28.7 ± 0.6             | -14.1 ± 0.2                             | 0.602 | -8.2              | -5.90            |

# Supplemental Table 4:

Histone peptide sequences used in Isothermal Titration Calorimetry experiments.

| Histone Marks | Peptide Sequence                               |
|---------------|------------------------------------------------|
| H3K56         | IRRYQ <b>K</b> acSTELL                         |
| H4K5/K8       | SGRG <b>K</b> acGG <b>K</b> acGLG <b>Y</b>     |
| H4K5/K8/K12   | RG <b>K</b> acGG <b>K</b> acGLG <b>K</b> acGGY |

**Supplemental Table 4:** – Isothermal Titration Calorimetry of human CBP and p300 bromodomains with acetylated histone peptides. Titrations were carried out in 50 mM HEPES pH 7.5 (at 25  $^{\circ}$ C), 150 mM NaCl and 10  $^{\circ}$ C while stirring at 1000 rpm. Peptides were titrated into the protein solution.



**Supplemental Figure 2: FRAP data. A:** FRAP experiment showing nuclei of  $3xCBP_{BRD}/GFP$  transfected cells treated with DMSO (top row),  $3x BRD_{CBP}^{N1168F}/GFP$  transfected cells treated with DMSO (middle row) as well as  $3xCBP_{BRD}/GFP$  transfected cells treated with and 1.0  $\mu$ M I-CBP112. All cells were treated with 2.5  $\mu$ M SAHA to increase global acetylation levels. The bleached area is indicated by a red circle. **B:** Recovery of the normalized fluorescent signal. Shown are recovery curves averaged from at least 10 different nuclei for the different constructs as indicated in the figure capture. Experiments with SAHA treated cells (2.5  $\mu$ M) are indicated by & and are underlined.

# Supplemental Table 5 – Diffraction data collection and structure refinement statistics

| Data Collection                                           |                                        |
|-----------------------------------------------------------|----------------------------------------|
| PDB ID                                                    | 4NR6                                   |
| Protein/Ligand                                            | CBP/I-CBP112                           |
| Space group                                               | C2                                     |
| Cell dimensions: a, b, c (Å)<br>α, β, γ (deg)             | 89.71 34.14 40.40<br>90.00 93.00 90.00 |
| Resolution* (Å) (last shell)                              | 1.66 (1.75-1.66)                       |
| Unique observations*                                      | 14891 (2113)                           |
| Completeness* (%)                                         | 99.0 (97.9)                            |
| Redundancy*                                               | 3.4 (3.1)                              |
| R <sub>merge</sub> *                                      | 0.063 (0.478)                          |
| l/ σl*                                                    | 10.7 (2.1)                             |
| Refinement                                                |                                        |
| Resolution (Å)                                            | 1.66                                   |
| R <sub>work</sub> / R <sub>free</sub> (%)                 | 18.1/23.1                              |
| Number of atoms<br>(protein/other/water)                  | 971/108/34                             |
| B-factors (Ų)<br>(protein/other/water)21.85               | 28.75/32.55/29.79                      |
| r.m.s.d bonds (Å)<br>r.m.s.d angles (°)                   | 0.015<br>1.698                         |
| Ramachadran Favoured (%)<br>Allowed (%)<br>Disallowed (%) | 100.00<br>0.00<br>0.00                 |

\* Values in parentheses correspond to the highest resolution shell.

# Log Ratio (Drug/DMSO control) -0.2 -0.4 0.2 0.4 0.6 8.0 Profiles I-CBP112, 10 uM I-CBP112, 3.3 uM I-CBP112, 1.1 uM I-CBP112, 370.4 nM 3C 🔞 CD87/uPAF CXCLBIL-E CXCLBIL-E CXCL9/MIG HLA-DF Proliferation IL8 4H 🔞 COURT - A Court LPS 🐲 IL8 SINF SAg 🍪 slgG BT BF4T 10 ВЕЗС HLA-DR САЅМЗС Col-III ITAC HDF3CGF MMP1 PAI-I TIMP2 MMP9 KF3CT MyoF IMphg 🌈

#### Supplemental Figure 3: BioMAP data for I-CBP112.

Supplemental Figure 3: Full Biomap profile for I-CBP112. Monitored markers and cellular systems are described in the table below.

| <u>Relevance</u>                                                  | Cell Type                                                               | Read Out                                                                                                                                                                                                | <u>System</u> |
|-------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Allergy, Asthma,<br>Autoimmunity                                  | Venular<br>endothelial cells                                            | CCL2/MCP-1, CCL26/Eotaxin-3,<br>CD106/VCAM-1, CD62P/P-Selectin,<br>CD87/uPAR, SRB, VEGFR2,                                                                                                              | 4H            |
| Allergy, Asthma,<br>Autoimmunity,<br>Oncology                     | B cells +<br>Peripheral blood<br>mononuclear<br>cells                   | B cell Proliferation, PBMC Cytotoxicity,<br>Secreted IgG, sIL-17A, sIL-17F, sIL-2,<br>sIL-6, sTNF-α,                                                                                                    | вт            |
| Allergy, Asthma,<br>Fibrosis, Lung<br>Inflammation                | Bronchial<br>epithelial cells +<br>Dermal<br>fibroblasts                | CCL2/MCP-1, CCL26/Eotaxin-3,<br>CD106/VCAM-1, CD54/ICAM-1, CD90,<br>CXCL8/IL-8, IL-1 α, Keratin 8/18, MMP-<br>1, MMP-3, MMP-9, PAI-I, SRB, tPA,<br>uPA,                                                 | BF4T          |
| Autoimmune<br>Disease, Chronic<br>Inflammation                    | Peripheral blood<br>mononuclear<br>cells + Venular<br>endothelial cells | CCL2/MCP-1, CD38, CD40, CD62E/E-<br>Selectin, CD69, CXCL8/IL-8,<br>CXCL9/MIG, PBMC Cytotoxicity,<br>Proliferation, SRB,                                                                                 | SAg           |
| Cardiovascular<br>Disease, Chronic<br>Inflammation                | Venular<br>endothelial cells                                            | CCL2/MCP-1, CD106/VCAM-1,<br>CD141/Thrombomodulin, CD142/Tissue<br>Factor, CD54/ICAM-1, CD62E/E-<br>Selectin, CD87/uPAR, CXCL8/IL-8,<br>CXCL9/MIG, HLA-DR, Proliferation,<br>SRB,                       | 3C            |
| Cardiovascular<br>Disease, Chronic<br>Inflammation                | Peripheral blood<br>mononuclear<br>cells + Venular<br>endothelial cells | CCL2/MCP-1, CD106/VCAM-1,<br>CD141/Thrombomodulin, CD142/Tissue<br>Factor, CD40, CD62E/E-Selectin, CD69,<br>CXCL8/IL-8, IL-1 α, M-CSF, sPGE2,<br>SRB, sTNF-α,                                           | LPS           |
| Cardiovascular<br>Disease, Chronic<br>Inflammation,<br>Restenosis | Macrophages +<br>Venular<br>endothelial cells                           | CCL2/MCP-1, CCL3/MIP-1 α,<br>CD106/VCAM-1, CD40, CD62E/E-<br>Selectin, CD69, CXCL8/IL-8, IL-1 α, M-<br>CSF, sIL-10, SRB, SRB-Mphg,                                                                      | lMphg         |
| Cardiovascular<br>Disease, Restenosis                             | Coronary artery<br>smooth muscle<br>cells                               | CCL2/MCP-1, CD106/VCAM-1,<br>CD141/Thrombomodulin, CD142/Tissue<br>Factor, CD87/uPAR, CXCL8/IL-8,<br>CXCL9/MIG, HLA-DR, IL-6, LDLR, M-<br>CSF, PAI-I, Proliferation, Serum Amyloid<br>A, SRB,           | CASM3C        |
| Chronic<br>Inflammation,<br>Fibrosis                              | Dermal<br>fibroblasts                                                   | CCL2/MCP-1, CD106/VCAM-1,<br>CD54/ICAM-1, Collagen I, Collagen III,<br>CXCL10/IP-10, CXCL11/I-TAC,<br>CXCL8/IL-8, CXCL9/MIG, EGFR, M-<br>CSF, MMP-1, PAI-I, Proliferation_72hr,<br>SRB, TIMP-1, TIMP-2, | HDF3CGF       |
| Chronic<br>Inflammation,                                          | Lung fibroblasts                                                        | bFGF, CD106/VCAM-1, Collagen I,<br>Collagen III, Collagen IV, CXCL8/IL-8,                                                                                                                               | MyoF          |

| Fibrosis, Matrix         |                                          | Decorin, MMP-1, PAI-I, SRB, TIMP-1, α-                                                                         |       |
|--------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------|
| Remodeling,              |                                          | SM Actin,                                                                                                      |       |
| Wound Healing            |                                          |                                                                                                                |       |
|                          | Dronchiol                                | CD54/ICAM-1, CD87/uPAR,<br>CXCL10/IP-10, CXCL11/I-TAC,                                                         |       |
| Inflammation             | epithelial cells                         | CXCL8/IL-8, CXCL9/MIG, EGFR, HLA-<br>DR, IL-1 α, Keratin 8/18, MMP-1, MMP-<br>9, PAI-I, SRB, tPA, uPA,         | BE3C  |
| Dermatitis,<br>Psoriasis | Dermal<br>fibroblasts +<br>Keratinocytes | CCL2/MCP-1, CD54/ICAM-1,<br>CXCL10/IP-10, CXCL8/IL-8,<br>CXCL9/MIG, IL-1 α, MMP-9, PAI-I,<br>SRB, TIMP-2, uPA, | KF3CT |

A

D



Supplemental Figure 4: Effects of I-CBP112 on NUP98-HOXA9 and MLL-AF9 in vitro immortalized cells. Differentiation and clonogenic growth of mouse NUP98-HOXA9 and MLL-AF9. A: Cytospot images of NUP98-HOXA9 in vitro immortalized cells treated with DMSO (upper panel) and 1 µM I-CBP112 (lower panel). B: Cell survival of NUP98-HOXA9 in vitro immortalized cells treated with increasing concentration of I-CBP112. C: Effect of I-CBP112 on clonogenic growth of NUP98-HOXA9 (first and second plating). D: Cytospot images of MLL-AF9 in vitro immortalized cells treated with DMSO (upper panel) and 1 µM I-CBP112 (lower panel). B: Cell survival of MLL-AF9 in vitro immortalized cells treated with increasing concentration of I-CBP112. C: Effect of I-CBP112 on clonogenic growth of MLL-AF9 (first and second plating).

~0<sup>0</sup>

100

100

100





**Supplemental Figure 5: Immunephenotype of injected MLL- AF9+ blasts** Immunophenotype of injected MLL-AF9 cells prior to transplantation into recipient mice. Marker proteins (Gr-1, Mac-1, FcγRII/III, c-Kit) have been flow cytometrically analysed.

#### Supplemental Figure 6: Survival data limiting dilution transplantation



**Supplemental Figure 6:** Kaplan-Meier diagram showing significantly extended survival of mice injected with different number of I-CBP112 (5µM) treated cells (dotted lines) compared to vehicle-treated controls (solid lines). The number of injected cells were **A:** 50 000 cells and **B:** 5 000 cells. P- values were calculated using log- rank (Mantel-Cox) Test, Control group n=5, Treated-group n=4.



**Supplemental Figure 7: Cell survival of 18 human, leukemic cell lines after 72h in liquid culture.** Cell survival data of 18 human leukemic cell lines (**A:** MLL- Fusion+, **B:** MLL-WT) exposed to increasing concentrations of I-CBP112 for 72h in liquid culture. Cell vitality was assessed using WST1 proliferation/survival assays and was plotted as a function of compound (I-CBP112) concentration.

| Human cell line | Mutation (CCLE) |                   |
|-----------------|-----------------|-------------------|
|                 | CBP             | EP300             |
| K562            | -               | -                 |
| HEL             | -               | Chr. 22 3'UTR Del |
| THP1            | -               | -                 |
| RS4;11          | -               | -                 |
| MV4;11          | -               | -                 |
| MOLM13          | -               | -                 |
| SEM             | -               | -                 |
| KOPN8           | -               | -                 |
| PL21            | -               | -                 |
| HL60            | -               | -                 |
| KASUMI-1        | -               | -                 |
| REH             | -               | -                 |
| KG1             | -               | -                 |
| U937            | -               | -                 |
| MONOMAC         | -               | -                 |
| KOCL44          | -               | -                 |
| KOCL45          | -               | -                 |
| SKNO-1          | -               | -                 |

CBP/P300 mutation status of the used cell lines.

CBP and EP300 mutations in human leukemic cell lines used in this study. Mutations were retrieved from Cancer Cell Encyclopedia Database from Broad Institute.

(http://www.broadinstitute.org/ccle)



**Supplemental Figure 8: Prolonged exposure of KASUMI-1 to I-CBP112 A:** Cell Cycle phase distribution and **B:** Apoptosis of KASUMI-1 cells analysed by flow cytometry upon treatment with increasing doses of I-CBP112 at different time points. Medium and compound were renewed after 3 days.



**Supplemental Figure 9: Prolonged exposure of MOLM13 to I-CBP112. A:** Cell Cycle phase distribution and **B:** Apoptosis of MOLM13 cells analysed by flow cytometry upon treatment with increasing doses of I-CBP112 at different time points. Medium and compound were renewed after 3 days.



**Supplemental Figure 10: Prolonged exposure of SEM to I-CBP112. A:** Cell Cycle phase distribution and **B:** Apoptosis of SEM cells analysed by flow cytometry upon treatment with increasing doses of I-CBP112 at different time points. Medium and compound were renewed after 3 days.

С А KASUMI-1 В MOLM13 SEM 100-100 100-80 80 80 CFU (%) CFU (%) CFU (%) 60 60 60-40 40 40-20 20 20 T\_ 0-0 0 D Е U937 F MV4;11 Monomac 100 100 100 80 80-80 (%) 60-CEN (%) 40-CFU (%) CFU (%) 60-60-40-40-20 20-20 0-0-0-G L Н REH HL60 K562 100-100-100<sub>7</sub> 80 80 80-CFU (%) CFU (%) CFU (%) 60 60-60 40 40 40 20 20 20 0-0-0 Κ J L HEL THP1 KOCL-45 100-100-100-80-80 80 (%) 60-CEN (%) 40-CFU (%) CFU (%) 60 60 40 40 20-20 20 0 0-0-

Supplemental Figure 11: Colony formation of 12 human leukemic cell lines upon exposure to I-CBP112. Colony formation of 12 human leukemic cell lines in methylcellulose, exposed to increasing concentrations of I-CBP112.

🔳 DMSO 🔲 1μΜ 🔲 3μΜ 🗔 5μΜ



Supplemental Figure 12: Differentiation of CD34<sup>+</sup> HSCs derived from healthy donors upon exposure to I-CBP112. A: CD34<sup>+</sup> HSCs derived from healthy donors were plated into methylcellulose with increasing concentrations of I-CBP112. Cells were resuspended, spotted on glass slides, Wright- Giemsa stained and morphological changes microscopically analysed. The percentage of differentiated cells was normalized to the total amount counted cells. In total, 20 fields (n) were scored. Shown is the average of differentiation per condition (±SD). P- values were calculated using ANOVA and Dunnett multiple comparison, \* p<0.05. B- F: CD34<sup>+</sup> derived from healthy donors were plated into methylcellulose with increasing concentrations of I-CBP112. Cells were resuspended and stained with antibodies against CD11b, CD14, CD15, CD34 and CD33 and measured by flow cytometry. Percentages of differentiation per condition (±SD). P- values were normalized to vehicle- treated cells. Shown is the average of differentiation per condition (±SD). P- values were calculated using ANOVA and Dunnett multiple comparison, \* p<0.05, CD11b, CD14, CD15, CD34 and CD33 and measured by flow cytometry. Percentages of differentiation per condition (±SD). P- values were calculated using ANOVA and Dunnett multiple comparison, \* p<0.05, n=2.



В

|        |            | JQ-1 1x=0.1uM or |         | or      | DOXORUBICINE 1x=350nM |        | 50nM  |      |      |
|--------|------------|------------------|---------|---------|-----------------------|--------|-------|------|------|
|        |            | 8:1              | 4:1     | 2:1     | 1:1                   | 1:2    | 1:4   | 1:8  | 1:16 |
|        | 8x         | 1x               | 2x      | 4x      | 8x                    | 16x    | 32x   | 64x  | 128x |
|        | <b>4</b> x | 0.5x             | 1x      | 2x      | 4x                    | 8x     | 16x   | 32x  | 64x  |
| I-CBP  | 2x         | 0.25x            | 0.5x    | 1x      | 2x                    | 4x     | 8x    | 16x  | 32x  |
| 1x=3uM | 1x         | 0.125x           | 0.25x   | 0.5x    | 1x                    | 2x     | 4x    | 8x   | 16x  |
|        | 0.5x       | 0.0625x          | 0.125x  | 0.25x   | 0.5x                  | 1x     | 2x    | 4x   | 8x   |
|        | 0.25x      | 0.03x            | 0.0625x | 0.125x  | 0.25x                 | 0.5x   | 1x    | 2x   | 4x   |
|        | 0.125x     | 0.016x           | 0.03x   | 0.0625x | 0.125x                | 0.25x  | 0.5x  | 1x   | 2x   |
|        | 0.0625x    | 0.008x           | 0.016x  | 0.03x   | 0.0625x               | 0.125x | 0.25x | 0.5x | 1x   |

| С |                  | KASUMI                  |         |                  | SEM                     |         |                     | MOLM13               |         |
|---|------------------|-------------------------|---------|------------------|-------------------------|---------|---------------------|----------------------|---------|
|   | Dose JQ1<br>(µM) | Dose<br>iCBP112<br>(µM) | CI      | Dose JQ1<br>(µM) | Dose<br>iCBP112<br>(µM) | CI      | Dose<br>JQ1<br>(µM) | Dose<br>iCBP112 (µM) | CI      |
|   | 0.0125           | 0.1875                  | 0.07151 | 0.025            | 0.1875                  | 0.03736 | 0.025               | 0.75                 | 138229. |
|   | 0.0125           | 0.375                   | 0.08530 | 0.025            | 0.375                   | 0.04123 | 0.025               | 1.5                  | 0.59428 |
|   | 0.0125           | 0.75                    | 0.11946 | 0.025            | 0.75                    | 0.04741 | 0.025               | 3.0                  | 0.16364 |
|   | 0.0125           | 1.5                     | 0.07852 | 0.025            | 1.5                     | 0.04710 | 0.05                | 0.75                 | 138234. |
|   | 0.0125           | 3.0                     | 0.05995 | 0.025            | 3.0                     | 0.06295 | 0.05                | 1.5                  | 276458. |
|   | 0.025            | 0.187                   | 0.10927 | 0.05             | 0.1875                  | 0.07162 | 0.05                | 3.0                  | 552906. |
|   | 0.025            | 0.375                   | 0.13419 | 0.05             | 0.375                   | 0.08459 | 0.1                 | 0.75                 | 0.24331 |
|   | 0.025            | 0.75                    | 0.13744 | 0.05             | 0.75                    | 0.07302 | 0.1                 | 1.5                  | 0.13580 |
|   | 0.025            | 1.5                     | 0.14688 | 0.05             | 1.5                     | 0.07726 | 0.1                 | 3.0                  | 0.06637 |
|   | 0.025            | 3.0                     | 0.12384 | 0.05             | 3.0                     | 0.11681 | 0.2                 | 0.75                 | 0.09736 |
|   | 0.05             | 0.185                   | 0.13160 | 0.1              | 0.1875                  | 0.12969 | 0.2                 | 1.5                  | 0.21797 |
|   | 0.05             | 0.375                   | 0.27133 | 0.1              | 0.375                   | 0.16130 | 0.2                 | 3.0                  | 0.07806 |
|   | 0.05             | 0.75                    | 0.29643 | 0.1              | 0.75                    | 0.13019 | 0.4                 | 0.75                 | 0.07310 |
|   | 0.05             | 1.5                     | 0.22394 | 0.1              | 1.5                     | 0.10142 | 0.4                 | 1.5                  | 0.12545 |
|   | 0.05             | 3.0                     | 0.20312 | 0.1              | 3.0                     | 0.17312 | 0.4                 | 3.0                  | 0.13012 |
|   |                  |                         |         | 0.2              | 0.75                    | 0.24473 |                     |                      |         |
|   |                  |                         |         | 0.2              | 1.5                     | 0.16754 |                     |                      |         |
|   |                  |                         |         | 0.2              | 3.0                     | 0.18006 |                     |                      |         |
|   |                  |                         |         | 0.4              | 0.75                    | 0.41170 |                     |                      |         |
|   |                  |                         |         | 0.4              | 1.5                     | 0.41068 |                     |                      |         |
|   |                  |                         |         | 0.4              | 3.0                     | 0.26769 |                     |                      |         |

D

|                              | KASUMI               |         | SI                           | EM                  |         |                              | MOLM13               |         |
|------------------------------|----------------------|---------|------------------------------|---------------------|---------|------------------------------|----------------------|---------|
| Dose<br>Doxorubicine(<br>nM) | Dose iCBP112<br>(µM) | СІ      | Dose<br>Doxorubicine<br>(nM) | Dose<br>iCBP112(µM) | CI      | Dose<br>Doxorubicine<br>(nM) | Dose iCBP112<br>(µM) | CI      |
| 5.6                          | 0.375                | 0.09798 | 10.5                         | 0.75                | 0.27611 | 10.5                         | 3.0                  | 0.40183 |
| 10.5                         | 0.375                | 0.18102 | 10.5                         | 3.0                 | 0.55575 | 21.0                         | 0.75                 | 0.46833 |
| 10.5                         | 0.75                 | 0.12549 | 21.0                         | 0.75                | 0.96205 | 21.0                         | 1.5                  | 0.71276 |
| 21.0                         | 0.375                | 0.28315 | 21.0                         | 1.5                 | 1.59866 | 21.0                         | 3.0                  | 0.52810 |
| 21.0                         | 0.75                 | 0.32060 | 21.0                         | 3.0                 | 1.41032 | 44.0                         | 0.75                 | 0.71040 |
| 21.0                         | 1.5                  | 0.23050 | 44.0                         | 0.75                | 1.30639 | 44.0                         | 1.5                  | 0.85015 |
| 44.0                         | 0.375                | 0.73736 | 44.0                         | 1.5                 | 2.87646 | 44.0                         | 3.0                  | 0.64417 |
| 44.0                         | 0.75                 | 0.58487 | 44.0                         | 3.0                 | 0.57656 |                              |                      |         |
| 44.0                         | 1.5                  | 0.61536 |                              |                     |         |                              |                      |         |
| 44.0                         | 3.0                  | 0.52256 |                              |                     |         |                              |                      |         |

Supplemental Figure 13: Validation of the synergistic effect in drug combinantion studies. A: Assessment of cytotoxicity of JQ-1, I-CBP112 and Doxorubicin in KASUMI-1, SEM and MOLM13 cells. Cytotoxicity of panBET inhibitor JQ-1, I-CBP112 and Doxorubicin was assessed using WST1 proliferation/survival assays and was plotted as a function of increasing compound concentration. B: Schematic showing the set up of the different combinations of I-CBP112 and Doxorubicine or JQ1 used for the treatment of MOLM13, KASUMI-1 and SEM. Tables showing the combination index (CI) upon combination of I-CBP112 and JQ1 (C:) or Doxorubicine (D:) calculated by the CompuSyn software for KASUMI-1, SEM and MOLM13. Concentrations that gave either no or extreme effect for the single treatment were excluded. CI<1 indicates synergism.



#### Supplemental Figure 14: Effect of I-CBP112 drug combinations on yH2Ax

**A:** SEM, MOLM13 and KASUMI-1 cells were treated with I-CBP112, JQ1, doxorubicine or combination and γH2Ax (pSer<sup>139</sup>) was assessed by flow cytometry.

B-D: Immunofluorescent staining of γH2Ax. Representative images for SEM (B) MOLM13 (C) and KASUMI-1 cells (D). Concentrations used for SEM and MOLM13 cells 1.5µM I-CBP112 were and 0.4µM JQ1 or both and 3µM I-CBP112 and 44nM doxorubicine or For KASUMI-1, both. concentrations used were 0.187µM I-CBP112 and 12.5nM JQ1 or both and 3µM I-CBP and 44nM doxorubicine or both. Bar: 10µm

| SYMBOL       | ACCESSION      | logFC        |
|--------------|----------------|--------------|
| RNASE2       | NM_002934.2    | -1.877835933 |
| FCGR1B       | NM_001017986.1 | -1.702248652 |
| TNFSF13B     | NM_006573.3    | -1.67989315  |
| SLC2A5       | NM_003039.1    | -1.672716922 |
| ANKRD22      | NM_144590.2    | -1.627742908 |
| TNFSF13B     | NM_006573.3    | -1.602234026 |
| TRH          | NM_007117.1    | -1.427931544 |
| DHRS9        | NM_005771.3    | -1.417342182 |
| RN7SK        | NR_001445.1    | 1.401097459  |
| FCGR1A       | NM_000566.2    | -1.400344501 |
| ANKRD22      | NM_144590.1    | -1.36621096  |
| HIST1H2BD    | NM_138720.1    | 1.329553007  |
| CTSG         | NM_001911.2    | -1.30647185  |
| TP53INP1     | NM_033285.2    | 1.292337987  |
| TP53INP1     | NM_033285.2    | 1.284178791  |
| PDE4B        | NM_002600.3    | -1.275221813 |
|              | BU521176       | 1.266766603  |
| SLC18A2      | NM_003054.2    | -1.226578349 |
| GAL          | NM_015973.3    | -1.193818971 |
| P2RY13       | NM_023914.2    | -1.187211052 |
| LILRA2       | NM_006866.1    | -1.177311285 |
| CLEC5A       | NM_013252.2    | -1.164826148 |
| TGM5         | NM_004245.2    | -1.150686072 |
| PRIC285      | NM_033405.2    | 1.147669149  |
| RNASE3       | NM_002935.2    | -1.13822367  |
| CA2          | NM_000067.1    | -1.116445878 |
| RNU1G2       | NR_004426.1    | 1.111258156  |
| IRF8         | NM_002163.2    | -1.108626173 |
| LOC100008588 | NR_003286.1    | 1.102030627  |
| CFC1B        | NM_001079530.1 | -1.098726204 |
| FCGR1B       | NM_001004340.1 | -1.079403736 |
| SLC22A4      | NM_003059.2    | -1.078694844 |
| IL8          | NM_000584.2    | -1.07207046  |
| LOC643332    | XR_016287.1    | -1.065588146 |
| TCTEX1D1     | NM_152665.1    | -1.063047603 |
| ARHGAP5      | NM_001173.2    | -1.057545115 |
| RNU1A3       | NR_004430.1    | 1.045536953  |
| LCP1         | NM_002298.2    | -1.039447122 |
| CLECL1       | NM_172004.2    | -1.033544741 |
| LOC100008589 | NR_003287.1    | 1.03060784   |
| TCEA3        | NM 003196.1    | -1.025015506 |

**Supplemental Table 7**: Significantly regulated genes by exposure to I-CBP112 in KASUMI-1 cells after a 4 day exposure.

| SLC44A2      | NM_020428.2    | 1.023368002  |
|--------------|----------------|--------------|
| KIAA1666     | XM_942124.2    | 1.022623989  |
| RNU1-3       | NR_004408.1    | 1.02212079   |
| GATS         | NM_178831.4    | 1.01158528   |
| RN7SK        | NR_001445.1    | 1.010060857  |
| IGFBP7       | NM_001553.1    | -1.007405198 |
| ITM2A        | NM_004867.3    | 1.003967171  |
| LMNA         | NM_005572.3    | 0.996687984  |
| ABTB1        | NM_032548.2    | 0.986131497  |
| MXD4         | NM_006454.2    | 0.980475523  |
| RNU1-5       | NR_004400.1    | 0.977493995  |
| SERPINA1     | NM_001002236.1 | -0.976151167 |
| IL11RA       | NM_004512.3    | 0.975740714  |
| VSIG4        | NM_007268.2    | -0.965293232 |
| DNAH10       | NM_001083900.1 | -0.956736082 |
| ID2          | NM_002166.4    | 0.945885703  |
| LOC730517    | XM_001126166.1 | -0.94501104  |
| ALOX5        | XM_001127464.1 | 0.927333724  |
| ID2          | NM_002166.4    | 0.926328665  |
| NPTX1        | NM_002522.2    | -0.9251063   |
| CUGBP2       | NM_001025076.2 | 0.923891112  |
| LOC100132394 | XM_001713809.1 | 0.92349068   |
| KLHL24       | NM_017644.3    | 0.923149838  |
| CCL5         | NM_002985.2    | -0.920773455 |
| NCRNA00085   | NR_024330.1    | 0.91845852   |
| FCGR1C       | NM_001128589.1 | -0.916015504 |
| LPP          | NM_005578.2    | 0.913557764  |
| TGM5         | NM_201631.2    | -0.911908708 |
| CCDC92       | NM_025140.1    | 0.911353818  |
| SIGLEC12     | NM_053003.2    | -0.910665443 |
| PLAC8        | NM_016619.1    | -0.909829172 |
| ADCY6        | NM_020983.2    | 0.909384648  |
| P2RY13       | NM_176894.1    | -0.909315511 |
| PLAC8        | NM_016619.1    | -0.908090985 |
| LOC100133565 | XM_001724542.1 | 0.905216492  |
| KIF1A        | NM_004321.4    | -0.900979672 |
| LOC100132564 | XM_001713808.1 | 0.893565916  |
| PTRF         | NM_012232.3    | 0.892204925  |
| SERPINA1     | NM_001002235.1 | -0.888617683 |
| YPEL5        | NM_016061.1    | 0.886604293  |
| MLKL         | XM_001126647.1 | -0.885082105 |
| LOC727877    | XM_001126181.1 | 0.883305271  |
| CCL5         | NM_002985.2    | -0.879878746 |
| PRSSL1       | NM_214710.2    | -0.875868217 |
| RNU4-2       | NR_003137.2    | 0.874835085  |

| SMPDL3B      | NM_014474.2    | -0.872676098 |
|--------------|----------------|--------------|
| TM7SF2       | NM_003273.2    | 0.86554732   |
| KIAA1370     | NM_019600.2    | 0.862331804  |
| NINJ2        | NM_016533.4    | -0.855603147 |
| TMEM71       | NM_144649.1    | 0.855409203  |
| RGL4         | NM_153615.1    | -0.854372522 |
| TESK2        | NM_007170.2    | 0.853568261  |
| RASSF2       | NM_170773.1    | 0.8534815    |
| NCOA3        | NM_181659.1    | 0.849884433  |
| LOC100008589 | NR_003287.1    | 0.848939478  |
| INSIG1       | NM_198336.1    | -0.848246145 |
| DLK1         | NM_003836.4    | -0.846431063 |
| HIST1H2AC    | NM_003512.3    | 0.843040423  |
| CA2          | NM_000067.1    | -0.841206782 |
| SECISBP2L    | NM_014701.2    | 0.837905551  |
|              | CA841942       | 0.834963108  |
| RPS6KA2      | NM_001006932.1 | 0.833074165  |
| LGALS12      | NM_033101.2    | -0.831446232 |
| SRGN         | NM_002727.2    | -0.830685962 |
| RNU6-1       | NR_004394.1    | 0.829563839  |
| STMN3        | NM_015894.2    | 0.829339729  |
| C1orf63      | NM_020317.3    | 0.828028355  |
| FTHL12       | NR_002205.1    | 0.825968874  |
| CCNG2        | NM_004354.1    | 0.824977259  |
| CYTH2        | NM_017457.4    | 0.824749723  |
| SMPDL3B      | NM_014474.2    | -0.823444679 |
| SAT2         | NM_133491.2    | 0.822114216  |
| ZFP36L1      | NM_004926.2    | 0.820692762  |
| LOC441763    | XM_930284.1    | 0.819514952  |
| KRCC1        | NM_016618.1    | 0.818167224  |
| CHST4        | NM_005769.1    | -0.81320542  |
| ABCB1        | NM_000927.3    | 0.812903278  |
| STOM         | NM_004099.4    | -0.811988893 |
| SH3GLB2      | NM_020145.2    | 0.81025036   |
| OCIAD2       | NM_001014446.1 | 0.809796052  |
| MT2A         | NM_005953.2    | -0.808054071 |
| FTHL16       | XR_041433.1    | 0.805749392  |
| NCOA7        | NM_181782.2    | -0.805381486 |
| ALOX5AP      | NM_001629.2    | -0.80425683  |
| ITM2C        | NM_001012516.1 | 0.800105429  |
| LBR          | NM_002296.2    | -0.798207513 |
| FTHL8        | NR_002203.1    | 0.794555377  |
| RNU6-15      | NR_028372.1    | 0.794393014  |
| DHRS9        | NM_005771.3    | -0.793265337 |
| NCF2         | NM_000433.2    | -0.791115019 |

| ITM2C        | NM_001012516.1 | 0.790243251  |
|--------------|----------------|--------------|
| VSTM1        | NM_198481.3    | -0.788502886 |
| NFE2         | NM_006163.1    | -0.78583396  |
| KIAA1370     | NM_019600.1    | 0.783799882  |
| CD247        | NM_000734.2    | -0.783573864 |
| DRAM1        | NM_018370.2    | -0.780332899 |
| TRPT1        | NM_031472.2    | 0.780034716  |
| LAMA5        | NM_005560.3    | 0.77978001   |
| SLC22A4      | NM_003059.2    | -0.778123798 |
|              | U62823         | 0.777208339  |
| CEACAM6      | NM_002483.3    | -0.776121412 |
| LAX1         | NM_017773.2    | -0.77448784  |
| CAPN5        | NM_004055.4    | 0.77336783   |
| GAPT         | NM_152687.2    | -0.772746224 |
|              | AK092638       | 0.772226064  |
| EMR2         | NM_152916.1    | 0.770953593  |
| CCM2         | NM_001029835.1 | 0.76700636   |
| LOC338758    | XM_931359.2    | 0.766703959  |
| LOC100134364 | XM_001713810.1 | 0.766591561  |
| BMF          | NM_033503.3    | 0.764226844  |
|              | BC035116       | 0.762094469  |
| TP53I3       | NM_147184.1    | 0.760896032  |
| SLC22A18     | NM_002555.3    | 0.76042985   |
| CSF3R        | NM_172313.1    | -0.759201113 |
| SESN1        | NM_014454.1    | 0.756629772  |
| ITGA3        | NM_002204.1    | 0.755436013  |
| FTHL11       | NR_002204.1    | 0.755052893  |
| ST3GAL6      | NM_006100.2    | -0.753690727 |
| RET          | NM_020975.4    | -0.752906428 |
| GPR84        | NM_020370.1    | -0.752814282 |
| KIAA0913     | NM_015037.2    | 0.750458835  |
| EAF2         | NM_018456.4    | -0.74608937  |
| AGTRAP       | NM_001040196.1 | -0.745490903 |
| PIK3IP1      | NM_052880.3    | 0.744644082  |
| HBP1         | NM_012257.3    | 0.744163883  |
| FAM116B      | NM_001001794.2 | 0.740225594  |
| KIAA1683     | NM_025249.1    | 0.738507873  |
| ID3          | NM_002167.2    | 0.737841726  |
| ECHDC2       | NM_018281.2    | 0.73715926   |
| POLR3G       | NM_006467.2    | -0.735486629 |
| LOC730517    | XM_001715215.1 | -0.732031558 |
| HLA-DMA      | NM_006120.2    | 0.731783475  |
| SHISA2       | NM_001007538.1 | -0.731193571 |
| CCM2         | NM_001029835.1 | 0.730566218  |
| IRF7         | NM_004029.2    | 0.73052072   |

| MERTK        | NM_006343.2    | 0.730178672  |
|--------------|----------------|--------------|
| CCNG1        | NM_199246.1    | 0.730060899  |
|              | AK055652       | 0.7274365    |
| AIF1         | NM_032955.1    | -0.726402363 |
| NDRG1        | NM_006096.2    | 0.724979086  |
| C1orf63      | NM_207035.1    | 0.724226792  |
| S100P        | NM_005980.2    | -0.721819575 |
| CUGBP2       | NM_006561.2    | 0.720962508  |
| SSBP2        | NM_012446.2    | 0.7209271    |
| RGL1         | NM_015149.3    | 0.720319412  |
|              | AF131784       | 0.717526357  |
| NMI          | NM_004688.1    | -0.716831381 |
| CTSB         | NM_001908.3    | 0.716777886  |
| ECE2         | NM_014693.2    | -0.715872055 |
| BTG1         | NM_001731.1    | 0.715026787  |
| CD247        | NM_198053.1    | -0.712791412 |
| LMNA         | NM_005572.3    | 0.712283107  |
| RNU1F1       | NR_004402.1    | 0.709590265  |
| LOC100133999 | XM_001716785.1 | 0.709133489  |
| AMT          | NM_000481.2    | 0.708810348  |
| FTHL7        | NR_002202.2    | 0.705767355  |
| ХРОТ         | NM_007235.3    | -0.705013519 |
| IL1RAP       | NM_002182.2    | -0.704628555 |
| IL1RAP       | NM_134470.2    | -0.703317255 |
| MGST1        | NM_020300.3    | -0.701071913 |
| RPS7         | NM_001011.3    | -0.698490687 |
| RNU6ATAC     | NR_023344.1    | 0.697287569  |
| GSN          | NM_198252.2    | -0.695932003 |
| PCBP4        | NM_020418.2    | 0.694727061  |
| KLF12        | NM_007249.4    | 0.694174037  |
| CDR2L        | NM_014603.1    | 0.691743337  |
| TIPIN        | NM_017858.1    | -0.691653487 |
| CFD          | NM_001928.2    | 0.690555215  |
| RFC2         | NM_181471.1    | -0.689877528 |
| FTHL12       | NR_002205.1    | 0.689573183  |
| MOAP1        | NM_022151.4    | 0.686746952  |
| KIFC2        | NM_145754.2    | 0.685649227  |
| FAM89A       | NM_198552.1    | 0.685606807  |
| XYLT1        | NM_022166.3    | 0.685480593  |
| RET          | NM_020630.4    | -0.684257621 |
| FTHL2        | NR_002200.1    | 0.682539387  |
| C5orf41      | NM_153607.1    | 0.682279717  |
| LOC729843    | XR_016056.1    | 0.682173146  |
| TMEM48       | NM_018087.3    | -0.681631469 |
| KIAA0355     | NM_014686.3    | 0.680904277  |

| POLR3G       | NM_006467.2    | -0.680346596 |
|--------------|----------------|--------------|
| FAM176B      | NM_018166.1    | 0.680203808  |
| GOLGA8B      | NM_001023567.2 | 0.679706172  |
| SPSB3        | NM_080861.3    | 0.6772486    |
| PDE4B        | NM_002600.3    | -0.676925141 |
| ATP9A        | NM_006045.1    | -0.676837733 |
| SYNGR1       | NM_004711.3    | -0.676686047 |
| OSTalpha     | NM_152672.4    | -0.675509103 |
| KIAA1602     | NM_020941.1    | 0.675010441  |
| DDAH2        | NM_013974.1    | 0.674953842  |
| TNFAIP8      | NM_001077654.1 | -0.674662204 |
| IGLL1        | NM_020070.2    | -0.674187524 |
| LOC100128291 | XR_039099.1    | -0.673925454 |
| PSCD1        | NM_017456.1    | 0.672916405  |
| BCL6         | NM_001706.2    | 0.670887872  |
| FTHL11       | NR_002204.1    | 0.670263229  |
| TRIM8        | NM_030912.2    | 0.669794276  |
| HSPD1        | NM_002156.4    | -0.669694607 |
| TRIP13       | NM_004237.2    | -0.66856334  |
| SLC7A5       | NM_003486.5    | -0.666822405 |
| ECM1         | NM_022664.1    | -0.666818915 |
| CEBPE        | NM_001805.2    | -0.665448617 |
| LOC730167    | XM_001726158.1 | -0.664750249 |
| MT1G         | NM_005950.1    | -0.664688101 |
| P2RX1        | NM_002558.2    | 0.663092985  |
| BNIP3L       | NM_004331.2    | 0.66282058   |
| HIST1H2BD    | NM_138720.1    | 0.661919954  |
| AKNA         | NM_030767.3    | 0.659628157  |
| CDO1         | NM_001801.2    | 0.656206461  |
| PRKDC        | NM_006904.6    | -0.65620356  |
| CDKN2C       | NM_078626.2    | 0.655944952  |
| RRAS         | NM_006270.3    | 0.655916007  |
| CYTH1        | NM_017456.2    | 0.655539202  |
|              | BX097705       | -0.655389778 |
| MRPL35       | NM_145644.1    | -0.653997665 |
| TXNIP        | NM_006472.2    | 0.653424334  |
| GHDC         | NM_032484.3    | 0.653006313  |
| CORO1B       | NM_001018070.1 | 0.652516334  |
| PPP1R15A     | NM_014330.2    | 0.652091186  |
| CTSB         | NM_147780.2    | 0.651905251  |
| UBE1         | NM_153280.1    | -0.651303867 |
| NTSR1        | NM_002531.2    | -0.65071254  |
| MLKL         | NM_152649.1    | -0.650248547 |
| RANBP1       | NM_002882.2    | -0.649999647 |
| STX5         | NM_003164.3    | 0.649182523  |

| LYAR         | NM_017816.1    | -0.648106132 |
|--------------|----------------|--------------|
| CCND3        | NM_001760.2    | 0.647916175  |
| CCDC58       | NM_001017928.2 | -0.64726471  |
| TTLL3        | NM_015644.3    | 0.644822356  |
| SNORD3D      | NR_006882.1    | 0.644508922  |
| MFSD6        | NM_017694.3    | 0.642543707  |
| LOC100134144 | XM_001717999.1 | 0.642472057  |
| GAPT         | NM_152687.2    | -0.641792835 |
| LMO2         | NM_005574.2    | -0.641576633 |
| ADCY6        | NM_020983.2    | 0.641492433  |
| C9orf103     | NM_001001551.1 | 0.639404177  |
| RN5S9        | NR_023371.1    | 0.638596481  |
| HOMER2       | NM_199332.2    | -0.638269318 |
| SLC25A19     | NM_021734.3    | -0.6381119   |
| ECM1         | NM_004425.2    | -0.638015907 |
| DNAJB2       | NM_006736.5    | 0.63765721   |
| AXUD1        | NM_033027.2    | 0.636833989  |
| DBN1         | NM_004395.2    | 0.636620656  |
| TNFRSF6B     | NM_032945.2    | 0.636470315  |
| LOC643870    | XM_927140.1    | 0.63623206   |
| SRGN         | NM_002727.2    | -0.635497918 |
| LTA4H        | NM_000895.1    | 0.635176309  |
| LAIR2        | NM_021270.2    | -0.634719989 |
| BIK          | NM_001197.3    | -0.63449453  |
| RASGRP2      | NM_005825.2    | -0.633425058 |
| SYT11        | NM_152280.2    | 0.633056298  |
| FAM43A       | NM_153690.4    | 0.632231485  |
| CTDSP2       | NM_005730.3    | 0.631752015  |
| ZNF581       | NM_016535.3    | 0.631005189  |
| CACNB3       | NM_000725.2    | 0.629865677  |
| P2RY5        | NM_005767.4    | 0.629641289  |
|              | BX641108       | 0.628565042  |
| LRRC17       | NM_005824.1    | -0.628457473 |
| LOC85390     | NR_001454.1    | -0.628300935 |
| CD68         | NM_001251.1    | -0.627528383 |
| ZNF211       | NM_006385.2    | 0.627481848  |
| S100A4       | NM_019554.2    | 0.627175686  |
| PPM1G        | NM_177983.1    | -0.62456829  |
| SC4MOL       | NM_006745.3    | -0.624455616 |
| MS4A7        | NM_206938.1    | -0.623637243 |
| PTGER2       | NM_000956.2    | -0.622068997 |
| TUG1         | NR_002323.1    | 0.621592305  |
| TSPAN9       | NM_006675.3    | 0.620161447  |
| C2orf65      | NM_138804.3    | -0.619464591 |
| ICAM3        | NM_002162.2    | 0.61939787   |

| PTMS      | NM_002824.4    | 0.619301501  |
|-----------|----------------|--------------|
| ZMIZ1     | NM_020338.2    | 0.618878221  |
| MLKL      | XM_001126647.1 | -0.61866213  |
| MYO1G     | NM_033054.1    | 0.617504858  |
| FAM89A    | XM_939093.1    | 0.617246513  |
| GART      | NM_175085.1    | -0.61661938  |
| HOMER2    | NM_199331.2    | -0.616447403 |
| MNDA      | NM_002432.1    | -0.616388269 |
| MGEA5     | NM_012215.2    | 0.615816839  |
| LRMP      | NM_006152.2    | -0.615757849 |
| ASMTL     | XM_942506.1    | 0.614244868  |
| MTSS1     | NM_014751.4    | 0.613367328  |
| PHF17     | NM_024900.3    | -0.613235638 |
| TUFT1     | NM_020127.1    | 0.612393134  |
| NFKBIE    | NM_004556.2    | -0.61212368  |
| RHOC      | NM_175744.4    | 0.611937489  |
| RCOR3     | NM_018254.2    | 0.610821781  |
| ASS1      | NM_000050.4    | -0.609848981 |
| TGFBR2    | NM_001024847.2 | 0.609692395  |
| BRI3BP    | NM_080626.5    | -0.609568246 |
| PDE4D     | NM_006203.3    | -0.609471243 |
| ANKDD1A   | NM_182703.3    | 0.608932951  |
| LRCH4     | NM_002319.2    | 0.608665413  |
| INSIG1    | NM_198336.1    | -0.608446056 |
| CNFN      | NM_032488.2    | 0.607397975  |
| BRI3BP    | NM_080626.5    | -0.606384615 |
| ATP5G1    | NM_005175.2    | -0.606358576 |
| LOC728047 | XM_001126912.1 | -0.606015376 |
| ARSD      | NM_001669.2    | 0.605826016  |
| MFSD6     | NM_017694.3    | 0.604045483  |
| RPL37     | NM_000997.3    | 0.604005073  |
| CDC25A    | NM_001789.2    | -0.603948054 |
| SHANK3    | NM_001080420.1 | 0.603667952  |
| LOC727761 | XM_001126211.1 | -0.603332553 |
| MMP28     | NM_001032278.1 | 0.603221248  |
| GATA2     | NM_032638.3    | 0.60315307   |
| ELOVL6    | NM_024090.1    | -0.601851932 |
| CROP      | NM_016424.3    | 0.601134848  |
| LOC791120 | NR_015357.1    | 0.601015752  |
| SLC38A5   | NM_033518.1    | -0.600923909 |
| BAZ2B     | NM_013450.2    | 0.600864634  |
| LYAR      | NM_017816.1    | -0.600640929 |
| PHACTR1   | NM_030948.1    | -0.599881581 |
| NMB       | NM_021077.3    | -0.599807393 |
| PKD2      | NM_000297.2    | 0.599096317  |

| TOR3A        | NM 022371.3    | -0.598939175 |
|--------------|----------------|--------------|
| RNU4-1       | NR 003925.1    | 0.598803729  |
| LOC100130892 | XM 001720172.1 | 0.598800657  |
| LRRC17       | NM 001031692.1 | -0.598235129 |
| LOC653344    | XM 933085.1    | 0.598008851  |
| ABCB1        | NM 000927.3    | 0.597637727  |
| TSPYL3       | XR_001421.1    | 0.597611318  |
| FAM89B       | NM_001098784.1 | 0.597217488  |
|              | AK092074       | 0.597188448  |
| CEBPD        | NM_005195.3    | -0.596688203 |
| TPRG1L       | NM_182752.3    | 0.596467979  |
| NPC2         | NM_006432.3    | 0.59639002   |
| LGSN         | NM_016571.1    | 0.596251234  |
| LOC644914    | XM_930111.2    | 0.59622382   |
| ERO1L        | NM_014584.1    | -0.595578478 |
| CCDC24       | NM_152499.1    | 0.595513371  |
| PRIM2A       | XM_001134299.1 | -0.594758774 |
| NCRNA00219   | NR_015370.1    | 0.594001793  |
| HCST         | NM_001007469.1 | 0.593612238  |
| LPIN1        | NM_145693.1    | 0.593567028  |
| BHLHB2       | NM_003670.1    | 0.59334335   |
| ZWILCH       | NM_017975.3    | -0.592021701 |
| RRS1         | NM_015169.3    | -0.591416436 |
| ZNF326       | NM_182976.1    | -0.591339579 |
| C5orf41      | NM_153607.1    | 0.590530783  |
| LOC644162    | XM_933956.1    | -0.590046944 |
| LSM12        | NM_152344.2    | -0.58963917  |
| GTF2H3       | NM_001516.3    | -0.588718397 |
| C14orf179    | NM_052873.1    | 0.587394635  |
| COL4A5       | NM_000495.3    | 0.587210266  |
| OSBPL2       | NM_144498.1    | 0.586381288  |
| CAST         | NM_001042442.1 | 0.586223935  |
| B3GNTL1      | NM_001009905.1 | -0.586183713 |
| SLC38A10     | NM_138570.2    | -0.586011882 |

| SYMBOL    | ACCESSION      | logFC        |
|-----------|----------------|--------------|
| PRG2      | NM_002728.4    | -1.639232194 |
| MS4A3     | NM_006138.4    | -1.47321975  |
| IL8       | NM_000584.2    | -1.396195453 |
| CACNA2D3  | NM_018398.2    | -1.344117221 |
| MPO       | NM_000250.1    | -1.327633118 |
| MS4A3     | NM_006138.4    | -1.297766477 |
| AIF1      | NM_032955.1    | -1.295411069 |
| CST7      | NM_003650.2    | -1.285628397 |
| RNASE3    | NM_002935.2    | -1.262303279 |
| CTSG      | NM_001911.2    | -1.261036568 |
| CHI3L1    | NM_001276.2    | -1.217610872 |
| SERPINB10 | NM_005024.1    | -1.131353157 |
| CUX2      | NM_015267.2    | -1.118701772 |
| NFE2      | NM_006163.1    | -1.109079544 |
| LOC643332 | XR_016287.1    | -1.09412978  |
| FCGR1A    | NM_000566.2    | -1.089914598 |
| RNASE2    | NM_002934.2    | -1.074627798 |
| C5orf20   | NM_130848.2    | -1.032472915 |
| EGR1      | NM_001964.2    | 1.011502202  |
| MS4A6A    | NM_152851.1    | -1.002900864 |
| RGS18     | NM_130782.2    | -1.002391126 |
| S100A8    | NM_002964.3    | -1.001889746 |
| AIF1      | NM_001623.3    | -0.993513043 |
| S100A9    | NM_002965.2    | -0.972289041 |
| CFC1B     | NM_001079530.1 | -0.957997689 |
| FGR       | NM_001042729.1 | -0.955300402 |
| IL8       | NM_000584.2    | -0.949369292 |
| C19orf59  | NM_174918.2    | -0.946978511 |
| SPNS3     | NM_182538.3    | -0.944210941 |
| CCR2      | NM_000647.3    | -0.941974527 |
| LOC730517 | XM_001126166.1 | -0.938078431 |
| CORO2A    | NM_003389.2    | -0.927753323 |
| SNORA12   | NR_002954.1    | 0.923431985  |
| PRSSL1    | NM_214710.2    | -0.90604267  |
| ARHGAP5   | NM_001173.2    | -0.885604357 |
| MS4A6A    | NM_022349.2    | -0.866908432 |
| CD36      | NM_000072.2    | -0.853740183 |
| ORM1      | NM_000607.1    | -0.853486456 |
| LILRA2    | NM_006866.1    | -0.849052167 |
| RAB7B     | NM_177403.3    | -0.848573119 |
| CCR2      | NM 000647.4    | -0.84591215  |

**Supplemental Table 8:** Significantly regulated genes by exposure to I-CBP112 in MOLM13 cells after a 4 day exposure.

| CSF3R    | NM_172313.1    | -0.84467196  |
|----------|----------------|--------------|
| SERPINB2 | NM_002575.1    | -0.833119858 |
| PECAM1   | NM_000442.3    | -0.831750476 |
| SERPINB2 | NM_002575.1    | -0.830261994 |
| MLC1     | NM_015166.3    | -0.829717972 |
| FCGR1B   | NM_001017986.1 | -0.824932499 |
| BPI      | NM_001725.1    | -0.824047912 |
| CCL3L1   | NM_021006.4    | -0.82157174  |
| CD52     | NM_001803.2    | -0.813481394 |
| TNFSF13B | NM_006573.3    | -0.812783834 |
| THBS4    | NM_003248.3    | -0.810154773 |
| HLA-DRA  | NM_019111.3    | -0.792283023 |
| SCARNA14 | NR_004388.1    | 0.778835793  |
| MNDA     | NM_002432.1    | -0.778103696 |
| TIFAB    | NM_001099221.1 | -0.769664747 |
| CCR2     | NM_000648.2    | -0.769503313 |
| TSPAN32  | NM_005705.4    | -0.768712406 |
| SERPINB8 | NM_002640.3    | -0.767695904 |
| FCGR1B   | NM_001004340.1 | -0.753559572 |
| MS4A4A   | NM_148975.1    | -0.752748701 |
| ASMTL    | XM_942506.1    | 0.747425804  |
| SCARNA13 | NR_003002.1    | 0.746507053  |
| RN5S9    | NR_023371.1    | 0.742090357  |
| CXCR4    | NM_001008540.1 | -0.740410413 |
| FCER2    | NM_002002.3    | -0.724726185 |
| IFI6     | NM_022873.2    | 0.721309592  |
| ARHGEF10 | NM_014629.2    | -0.719462384 |
| LST1     | NM_007161.2    | -0.717548735 |
| CPVL     | NM_019029.2    | 0.714203485  |
| TBC1D10C | NM_198517.2    | -0.711969457 |
| C13orf18 | NM_025113.1    | -0.707352932 |
| SNORD31  | NR_002560.1    | 0.705285853  |
| TMEM45A  | NM_018004.1    | -0.704596247 |
| TRAPPC6A | NM_024108.1    | 0.703279731  |
| CSPG4    | NM_001897.4    | -0.701991311 |
| PRDM8    | NM_020226.3    | -0.699029818 |
| TGM5     | NM_004245.2    | -0.696730621 |
| CD36     | NM_001001548.1 | -0.694044215 |
| S1PR3    | NM_005226.2    | -0.685589366 |
| FCGR1C   | NM_001128589.1 | -0.675616436 |
| CYFIP2   | NM_014376.2    | 0.671141626  |
| ATP6V1C2 | NM_144583.3    | -0.669259049 |
| TMEM14A  | NM_014051.3    | 0.667309603  |
| MS4A6A   | NM_152851.1    | -0.663502021 |
| PNOC     | NM_006228.3    | -0.663144916 |

| SNORA57      | NR_004390.1    | 0.660109179  |
|--------------|----------------|--------------|
| GPR18        | NM_001098200.1 | -0.659289432 |
| LY96         | NM_015364.2    | 0.658397331  |
| RARRES3      | NM_004585.3    | 0.656919611  |
| IDI1         | NM_004508.2    | -0.656310383 |
|              | AY129027       | -0.6537868   |
| 37134        | NM_002688.4    | -0.650478319 |
| DHRS9        | NM_005771.3    | -0.645904872 |
| FTHL7        | NR_002202.2    | 0.645039294  |
|              | BX093329       | -0.638482928 |
| PTPN22       | NM_015967.3    | -0.638457746 |
| NANOS1       | NM_001009553.1 | -0.636033874 |
| SNX10        | NM_013322.2    | -0.635840359 |
| DYSF         | NM_003494.2    | -0.635214108 |
| SCARNA8      | NR_003009.1    | 0.635192062  |
| SYTL1        | NM_032872.1    | -0.628275589 |
| PSAP         | NM_001042465.1 | 0.626516856  |
| BASP1        | NM_006317.3    | -0.624755931 |
| LOC100134379 | XM_001720508.1 | -0.623016327 |
| TGM5         | NM_201631.2    | -0.621688195 |
| SERPINB8     | NM_198833.1    | -0.621530316 |
| CLCF1        | NM_013246.2    | -0.616351318 |
| TNFSF13B     | NM_006573.3    | -0.615822026 |
| FCER1G       | NM_004106.1    | -0.613515389 |
| RASGRP2      | NM_005825.2    | -0.612685259 |
| PLAC8        | NM_016619.1    | -0.612598797 |
| C13orf18     | NM_025113.1    | -0.611826776 |
| GPR84        | NM_020370.1    | -0.610399762 |
| LOC100134648 | XM_001724681.1 | 0.608430501  |
| SQRDL        | NM_021199.2    | -0.606590774 |
| SLC22A4      | NM_003059.2    | -0.606522551 |
| IGLL1        | NM_020070.2    | -0.606142732 |
| MLKL         | NM_152649.1    | -0.605608678 |
| WNT7B        | NM_058238.1    | -0.605008071 |
| PSTPIP1      | NM_003978.2    | -0.604192959 |
| CCL3L3       | NM_001001437.3 | -0.595676743 |
| SHISA2       | NM_001007538.1 | -0.59528192  |
| METTL7B      | NM_152637.1    | -0.594434951 |
| C3orf54      | NM_203370.1    | -0.591699864 |
| CAT          | NM_001752.2    | -0.589083482 |
| INSIG1       | NM_198336.1    | -0.586611857 |
| CHST13       | NM_152889.1    | -0.586012155 |
| PLD3         | NM_001031696.1 | 0.585269752  |

| 0/0/000      | 4.005001011     | 1 50         |
|--------------|-----------------|--------------|
| SYIVIBOL     | ACCESSION       | logFC        |
| LOC100008589 | NR_003287.1     | 2.444459698  |
| LOC100132394 | XM_001713809.1  | 2.318606627  |
| LOC100008589 | NR_003287.1     | 2.310711627  |
| LOC100134364 | XM_001713810.1  | 2.063037994  |
| LOC100133565 | XM_001724542.1  | 1.990136006  |
| CSF1R        | NM_005211.2     | -1.985680186 |
| ADAMTSL2     | NM_014694.2     | 1.902519787  |
| LOC441763    | XM_930284.1     | 1.887924452  |
| SLC7A7       | NM_003982.2     | -1.842173109 |
| ID2          | NM_002166.4     | 1.730565243  |
| ID2          | NM_002166.4     | 1.637947926  |
| MGC33556     | NM_001004307.1  | -1.63673205  |
| SMAD7        | NM_005904.2     | 1.63331177   |
| VENTX        | NM_014468.2     | -1.566521159 |
| HSPB7        | NM_014424.3     | -1.525703903 |
| SNORA12      | NR_002954.1     | 1.519383144  |
| CST7         | NM_003650.2     | -1.512389163 |
| CSPG4        | NM_001897.4     | -1.505235008 |
| NFE2         | NM_006163.1     | -1.471124194 |
| BMF          | NM_033503.3     | 1.432866046  |
| PDGFRB       | NM_002609.3     | -1.401235528 |
| PRSSL1       | NM_214710.2     | -1.331933325 |
| TMEM119      | NM_181724.1     | 1.305513996  |
| IL21R        | NM_181078.1     | -1.299587543 |
| SCD          | NM_005063.4     | -1.297479005 |
| ADA          | NM_000022.2     | -1.28400768  |
| ANXA2        | NM_001002857.1  | -1.279952046 |
| CD72         | NM_001782.1     | -1.278144098 |
| NELL2        | NM_006159.1     | 1.27783016   |
| MIR1978      | NR_031742.1     | -1.270179683 |
| SMAD7        | NM_005904.2     | 1.260744223  |
| SCARNA13     | NR_003002.1     | 1.259635487  |
| CD52         | NM_001803.2     | -1.252455896 |
| ISG20        | NM_002201.4     | -1.247740807 |
| CYSLTR1      | NM_006639.2     | -1.245432152 |
| IFITM1       | NM 003641.3     | -1.232095307 |
| LCN6         | NM_198946.2     | -1.231159153 |
| SLC43A2      | <br>NM_152346.1 | 1.228705384  |
| C17orf87     | NM_207103.1     | -1.226024261 |
| I RIG1       | <br>NM_015541.2 | 1 207224498  |

**Supplemental Table 9:** Significantly regulated genes by exposure to I-CBP112 in SEM cells after a 4 day exposure.

| RGS2      | NM 002923.1    | -1.206134551 |
|-----------|----------------|--------------|
| BMF       | NM 001003943.1 | 1.203282656  |
| ECM1      | NM 022664.1    | -1.192197833 |
| NQO1      | NM 000903.2    | 1,18281644   |
| FOS       | NM 005252.2    | -1.17586733  |
| BAMBI     | NM 012342.2    | 1.164360057  |
| MXD4      | NM 006454.2    | 1,160080602  |
| ACAD11    | NM 032169.4    | -1.14365653  |
| HLA-DRB4  | NM 021983.4    | -1.139998934 |
| EGR1      | NM 001964.2    | -1.137059502 |
| AK3L1     | NM 013410.2    | -1.120208128 |
| TLE4      | NM 007005.3    | 1.119221832  |
| LILRA2    | NM 006866.1    | -1.115064082 |
| CA2       | NM 000067.1    | -1.108890281 |
| PLEK      | NM 002664.1    | -1.107076323 |
| CYP1A1    | NM 000499.2    | 1.107044348  |
| PGAM1     | NM 002629.2    | -1.097093724 |
| LRIG1     | NM 015541.2    | 1.09512074   |
| DAAM1     | NM 014992.1    | 1.093623976  |
| SREBF1    | NM_001005291.1 | -1.093074921 |
|           | AK026966       | -1 088680791 |
| GP9       | NM 000174 2    | -1 087262843 |
| NI GN4X   | NM 020742.2    | -1 085104953 |
| RFFP1     | NM 022912 1    | 1 066683035  |
| C17orf87  | NM 207103 2    | -1.065368685 |
| CCI 5     | NM 002985 2    | -1 053819584 |
| NPW       | NM_001099456.2 | -1 052619524 |
| SI C15A3  | NM 016582 1    | -1 051897951 |
| FVI       | NM 016337.2    | -1 05121774  |
| NKG7      | NM 005601.3    | -1.047671857 |
| CTNNBI 1  | NM 030877.3    | -1 033308027 |
| FAM69B    | XM_001130258.1 | -1 033251279 |
| VWA5A     | NM 014622.4    | 1 026270141  |
| SORBS2    | NM 003603 4    | 1.024122526  |
| HSH2D     | NM 032855 2    | -1 007776123 |
| CHN2      | NM 004067 2    | 1.007047038  |
|           | XM_001126103.2 | -1 004808883 |
|           | NM_015086_1    | -1 004787523 |
| SNORD13   | NR 003041 1    | 0.99059668   |
| APORECISC | NM 021822 1    | -0 988783363 |
|           | NM 17236/ /    | -0 98177/033 |
| RETNI1    | NM 015150 1    | 0.001709217  |
|           | NM 007005 3    | 0.301430214  |
|           | NM 001660 2    | 0.0711/2067  |
|           | NM 001110 2    | 0.070105502  |
| AUAKDI    |                | 0.9/01000003 |

| НОРХ      | NM 139212.2    | 0.969015484  |
|-----------|----------------|--------------|
| LIMS2     | NM 017980.3    | -0.968395228 |
| RGL1      | NM 015149.3    | 0.965748132  |
| S100A13   | NM 001024211.1 | -0.96570075  |
| KAZALD1   | NM 030929.3    | -0.959295913 |
| SLC16A3   | NM 004207.2    | -0.958353187 |
| CARD9     | NM 052813.3    | -0.950676565 |
| RUNX2     | NM 001024630.2 | 0.949879104  |
| AK3L1     | NM 203464.1    | -0.948593208 |
| CTSO      | NM 001334.2    | 0.944958519  |
| LOC387841 | XM 932678.1    | -0.941383181 |
| ANPEP     | NM 001150.1    | 0.940240348  |
| SLA       | NM_006748.1    | -0.933212782 |
| MCOLN2    | NM 153259.2    | -0.92582889  |
| SH3BP4    | NM_014521.2    | 0.922806371  |
| ACACA     | NM_198839.1    | -0.915553918 |
| CLEC11A   | NM_002975.2    | -0.912467558 |
| TBC1D10C  | NM 198517.2    | -0.911651062 |
| ANGPT1    | NM_001146.3    | -0.908733882 |
| LOC643384 | XR 016363.2    | -0.906382262 |
| CCDC81    | NM 021827.3    | -0.905115396 |
| SPIRE1    | NM 020148.2    | 0.900306925  |
| CYTH1     | NM_017456.2    | 0.899583409  |
| SORBS2    | NM_003603.4    | 0.898761626  |
| CTNNA1    | NM_001903.2    | 0.898648128  |
| HNRPLL    | NM_138394.2    | 0.898274719  |
| UNC93B1   | NM_030930.2    | -0.898201169 |
| CA2       | NM_000067.1    | -0.89534568  |
| SORD      | XM_001132175.1 | -0.893251578 |
| ABLIM1    | NM_006720.3    | 0.890419807  |
| MYO10     | NM_012334.1    | 0.889352737  |
| SLC22A16  | NM_033125.2    | -0.886518474 |
| GPM6B     | NM_001001995.1 | -0.885789177 |
| CRMP1     | NM_001014809.1 | 0.884390825  |
| EFNB2     | NM_004093.2    | 0.884331445  |
| IRAK2     | NM_001570.3    | -0.882557916 |
| FADS1     | NM_013402.3    | -0.881501449 |
| MPPE1     | NM_023075.4    | 0.880816171  |
| CD86      | NM_006889.3    | -0.880811133 |
| CCL5      | NM_002985.2    | -0.879251206 |
| C19orf59  | NM_174918.2    | -0.87427298  |
| ITPRIPL2  | NM_001034841.2 | -0.870008173 |
| TCF7      | NM_213648.1    | 0.866048729  |
| DHCR7     | NM_001360.1    | -0.865962211 |
| FAM65B    | NM 015864.2    | -0.862169363 |

| TCF7         | NM_201632.1    | 0.861658995  |
|--------------|----------------|--------------|
| GPM6B        | NM_001001995.1 | -0.861527561 |
| GNB4         | NM_021629.2    | -0.861055954 |
| PRICKLE1     | NM_153026.1    | -0.860069071 |
| KCNK3        | NM_002246.1    | 0.85800232   |
| GREM1        | NM_013372.5    | 0.854828333  |
| RPS6KA2      | NM_001006932.1 | 0.854536594  |
| RAPGEF2      | NM_014247.2    | 0.853714263  |
|              | AF131834       | 0.853567135  |
| RN7SK        | NR_001445.1    | 0.850423205  |
| KLHL24       | NM_017644.3    | 0.850310568  |
| CD79B        | NM_000626.1    | -0.850076641 |
| TPMT         | NM_000367.2    | 0.847480228  |
| PKDCC        | NM_138370.2    | -0.846514463 |
| TP53INP1     | NM_033285.2    | 0.84550346   |
| NRCAM        | NM_005010.3    | 0.839689695  |
| SYTL2        | NM_206929.1    | 0.838653717  |
| S100A13      | NM_001024211.1 | -0.83706123  |
| CDKN1A       | NM_000389.2    | -0.836309224 |
| PSCD1        | NM_017456.1    | 0.834015203  |
| S100A13      | NM_001024212.1 | -0.832242313 |
| PLAUR        | NM_001005376.1 | -0.831926161 |
| SNORD12C     | NR_002433.1    | -0.831206099 |
| FASN         | NM_004104.4    | -0.830498859 |
| C1orf63      | NM_020317.3    | 0.826372736  |
| CORO1A       | NM_007074.2    | -0.82591161  |
| LOC649143    | XM_944822.1    | -0.825680121 |
| HLA-DRB6     | NR_001298.1    | -0.823764332 |
| FSCN1        | NM_003088.2    | -0.823182387 |
| CCDC106      | NM_013301.2    | -0.822315318 |
| CEBPB        | NM_005194.2    | 0.821110697  |
| GNB4         | NM_021629.3    | -0.819776351 |
| MFI2         | NM_033316.2    | 0.818571438  |
| CD93         | NM_012072.3    | -0.816159575 |
| EMILIN1      | NM_007046.1    | -0.813510621 |
| RASGRP3      | NM_170672.1    | 0.811159888  |
| LOC100132564 | XM_001713808.1 | 0.81094413   |
| CHI3L2       | NM_004000.2    | -0.807882681 |
| MYH9         | NM_002473.3    | 0.807819307  |
| CCND3        | NM_001760.2    | -0.807598849 |
| MACROD1      | NM_014067.2    | -0.80702333  |
| HSZFP36      | NM_001080493.1 | 0.806301402  |
| INSIG1       | NM_198336.1    | -0.805443491 |
| ACACA        | NM_198836.1    | -0.803813867 |
| DSTN         | NM_001011546.1 | 0.803560296  |

| TMEM158   | NM_015444.2    | 0.802197413  |
|-----------|----------------|--------------|
| NMT2      | NM_004808.1    | 0.799218365  |
| C17orf60  | NM_001085423.1 | -0.798368058 |
| PSD2      | NM_032289.2    | 0.796925959  |
| TNFSF13B  | NM_006573.3    | -0.795673942 |
| INSIG1    | NM_198336.1    | -0.794985025 |
| RERE      | NM_001042682.1 | 0.792276266  |
| KCNS3     | NM_002252.3    | 0.790742178  |
| ANXA2     | NM_001002858.1 | -0.789939269 |
| CKAP2     | NM_018204.2    | 0.788627091  |
| C17orf53  | NM_024032.2    | -0.785977439 |
| DHRS3     | NM_004753.4    | -0.785922885 |
| RAB8A     | NM_005370.4    | -0.784060143 |
| CD79B     | NM_001039933.1 | -0.781067398 |
| MLL5      | NM_018682.3    | 0.77969212   |
| IFITM2    | NM_006435.2    | -0.77933967  |
| TP53INP1  | NM_033285.2    | 0.775735014  |
| ORC6L     | NM_014321.2    | -0.775294049 |
| DHCR7     | NM_001360.2    | -0.774882646 |
| NME1      | NM_000269.2    | -0.77414241  |
| ARHGEF3   | NM_019555.1    | 0.773258218  |
| CRIP2     | NM_001312.2    | 0.772792745  |
| PLAUR     | NM_001005376.1 | -0.772070605 |
| BATF3     | NM_018664.1    | -0.771561379 |
| XYLT1     | NM_022166.3    | 0.768200247  |
| SLAMF1    | NM_003037.1    | 0.768193908  |
| CCNA1     | NM_003914.2    | -0.765017913 |
| LOC730415 | XM_001720835.1 | -0.764130725 |
| WDR19     | NM_025132.3    | 0.763971117  |
| BASP1     | NM_006317.3    | 0.762283331  |
| C7orf41   | NM_152793.2    | 0.762046698  |
| NLGN4X    | NM_020742.2    | -0.760206794 |
| TSC22D1   | NM_006022.2    | 0.760161323  |
| ARHGAP30  | NM_181720.2    | -0.758455574 |
| ORC1L     | NM_004153.2    | -0.753760954 |
| SNORA64   | NR_002326.1    | -0.751872187 |
| SRGN      | NM_002727.2    | -0.751278386 |
| RALGAPA1  | NM_194301.2    | 0.749416514  |
| PACS1     | NM_018026.2    | 0.748461229  |
| ABCB6     | NM_005689.1    | 0.74727924   |
| RASD2     | NM_014310.3    | -0.746399733 |
| AKR1C3    | NM_003739.4    | 0.745651589  |
| P2RY11    | NM_002566.4    | -0.745464666 |
| DPAGT1    | NM_001382.2    | -0.744598043 |
| PELI2     | NM_021255.2    | 0.744449396  |

| TAGLN2    | NM_003564.1    | -0.7425604   |
|-----------|----------------|--------------|
| THOC4     | NM_005782.2    | -0.742357178 |
| ABHD4     | NM_022060.2    | -0.741618223 |
| GNA15     | NM_002068.1    | -0.741519715 |
| LOC653994 | XM_944429.1    | -0.740046121 |
| LONRF1    | NM_152271.3    | -0.739563349 |
| DNAJB2    | NM_006736.5    | 0.73891344   |
| LOC283340 | XM_932919.1    | -0.73719782  |
|           | AK091337       | 0.736178708  |
| MT1F      | NM_005949.2    | 0.734524054  |
| SPI1      | NM_001080547.1 | -0.733382841 |
| PRPH      | NM_006262.3    | 0.73233737   |
| PTPN7     | NM_080588.1    | -0.732276344 |
| GABARAPL1 | NM_031412.2    | 0.731455528  |
| TMEM184B  | NM_012264.3    | 0.730626486  |
| AIF1      | NM_032955.1    | -0.727723146 |
| FOXO3     | NM_201559.2    | 0.727459876  |
| SPSB1     | NM_025106.2    | 0.727249395  |
|           | CR592039       | -0.726340753 |
| FAM81A    | NM_152450.2    | -0.726234273 |
| MYO6      | NM_004999.3    | 0.725608325  |
| PER3      | NM_016831.1    | -0.725275464 |
| SLC27A3   | NM_024330.1    | -0.724281449 |
| ARHGEF7   | NM_003899.2    | 0.722758858  |
| PLAC8     | NM_016619.1    | -0.722430732 |
| DAAM1     | NM_014992.1    | 0.720986722  |
| ATP6V0B   | NM_001039457.1 | -0.720863614 |
| MIR1228   | NR_031597.1    | -0.71991893  |
| N4BP2     | NM_018177.2    | 0.717874259  |
| WASPIP    | NM_003387.3    | -0.716850411 |
| PLXDC2    | NM_032812.7    | -0.715873849 |
| CD9       | NM_001769.2    | -0.713654668 |
| FAM89B    | NM_001098784.1 | 0.71349931   |
| SREBF1    | NM_004176.3    | -0.713134511 |
| FADS2     | NM_004265.2    | -0.712844496 |
| CCDC46    | NM_145036.2    | 0.712773073  |
| ICAM2     | NM_001099786.1 | -0.712426759 |
| PFN2      | NM_053024.2    | 0.711844445  |
| ANGPTL2   | NM_012098.2    | -0.709989181 |
| TNFSF13B  | NM_006573.3    | -0.709680205 |
| CHES1     | NM_005197.2    | 0.709176554  |
| FTHL12    | NR_002205.1    | 0.708816999  |
| DTNA      | NM_001392.3    | -0.708414524 |
| MCM7      | NM_005916.3    | -0.707842881 |
| FGFBP2    | NM_031950.2    | 0.707193716  |

| EP400         | NM_015409.3    | 0.705403807  |
|---------------|----------------|--------------|
| SPEN          | NM_015001.2    | 0.704464632  |
| SLC44A1       | NM_080546.3    | 0.704169385  |
| PLEKHA1       | NM_001001974.1 | 0.703853535  |
| WIPI1         | NM_017983.4    | 0.703416801  |
| SNORA84       | NR_003704.2    | -0.702967194 |
| HLA-DRB6      | NR_001298.1    | -0.702334473 |
| IRF8          | NM_002163.2    | -0.701635165 |
| LPAR5         | NM_020400.4    | -0.700983852 |
| RERE          | NM_012102.3    | 0.699629987  |
| MEGF6         | NM_001409.3    | -0.699164069 |
| NR4A2         | NM_006186.2    | 0.698587739  |
| DKFZp761P0423 | XM_291277.4    | -0.697975731 |
| APOBEC3G      | NM_021822.1    | -0.696939404 |
| CYTSA         | NM_015330.1    | 0.696089763  |
| ABR           | NM_001092.3    | 0.695731865  |
| BIRC2         | NM_001166.3    | 0.694728775  |
| ANXA2P1       | NR_001562.1    | -0.694703887 |
| LOC606724     | NR_002454.2    | -0.694394455 |
| SNX7          | NM_152238.1    | 0.693747011  |
| S100A4        | NM_019554.2    | -0.693102104 |
| LOC100130458  | XM_001716901.1 | 0.691620303  |
| RN7SK         | NR_001445.1    | 0.690301409  |
| IKZF1         | NM_006060.3    | -0.689947242 |
| ACSL1         | NM_001995.2    | 0.689773956  |
| PGAM1         | NM_002629.2    | -0.688517646 |
|               | BC070337       | -0.685450515 |
| KIAA1267      | NM_015443.2    | 0.685421104  |
| MRPL33        | NM_145330.2    | -0.685155012 |
| SLC44A1       | NM_080546.3    | 0.682603348  |
| HSPC111       | NM_016391.3    | -0.68231748  |
| NBPF20        | NM_001037675.1 | 0.681704163  |
| LOC200030     | NM_183372.3    | 0.681457263  |
| UGT3A2        | NM_174914.2    | -0.681293839 |
| PPM1M         | NM_144641.1    | -0.681267452 |
| SNORA6        | NR_002325.1    | -0.680799166 |
| MYRIP         | NM_015460.2    | 0.680797942  |
| UHRF1         | NM_013282.3    | -0.680666563 |
| SC4MOL        | NM_001017369.1 | -0.679834498 |
| UPP1          | NM_003364.2    | 0.679441135  |
| C1orf63       | NM_207035.1    | 0.679172853  |
| PRAGMIN       | NM_001080826.1 | -0.678817544 |
| KCNN4         | NM_002250.2    | -0.678465652 |
| FCRLA         | NM_032738.3    | -0.678355953 |
| LY86          | NM_004271.3    | -0.678141134 |

| BCOR      | NM_017745.4    | 0.677505994  |
|-----------|----------------|--------------|
| NOP16     | NM_016391.4    | -0.676470351 |
| GRAMD4    | NM_015124.2    | -0.675770436 |
| TSC22D1   | NM_006022.2    | 0.675406222  |
| SLC7A3    | NM_032803.4    | 0.674809903  |
| NRCAM     | NM_005010.3    | 0.674104604  |
| SC4MOL    | NM_006745.3    | -0.672643926 |
| SLITRK4   | NM_173078.2    | -0.672543813 |
| GREM1     | NM_013372.5    | 0.672368369  |
| LOC732007 | XR_015684.1    | -0.672357074 |
| IL1RN     | NM_173843.1    | -0.672179882 |
| CRLF2     | XM_001133960.1 | -0.671181222 |
| KCNMB1    | NM_004137.2    | -0.66862687  |
| C11orf67  | NM_024684.2    | 0.668543353  |
| RPL8      | NM_033301.1    | -0.668538471 |
| FBXO32    | NM_148177.1    | 0.666753111  |
| CSRP2     | NM_001321.1    | 0.665099304  |
| RPL13     | NM_033251.1    | -0.664996087 |
| BTG2      | NM_006763.2    | 0.663564702  |
| NPAL3     | NM_020448.3    | 0.663548569  |
| ZNF232    | NM_014519.2    | -0.662934829 |
| SNORD36C  | NR_000016.1    | -0.661906138 |
| MRPL33    | NM_004891.2    | -0.661887392 |
| RYBP      | NM_012234.4    | 0.661408682  |
| CD33      | NM_001772.3    | -0.660964461 |
| CD70      | NM_001252.3    | -0.660833443 |
| THOC4     | XM_001134346.1 | -0.660795321 |
| CTNNA1    | NM_001903.2    | 0.660382476  |
| ZNF443    | NM_005815.2    | 0.660298437  |
| AFMID     | NM_001010982.2 | -0.659539886 |
| ATP2A3    | NM_174955.1    | 0.659244172  |
| MPRIP     | NM_015134.2    | 0.658742528  |
| OPTN      | NM_001008213.1 | 0.65841584   |
| WASF3     | NM_006646.4    | 0.657175649  |
| PPP2R5C   | NM_002719.2    | -0.65687046  |
| NMT2      | NM_004808.2    | 0.656717521  |
| ADORA2B   | NM_000676.2    | -0.65594592  |
| SNORD31   | NR_002560.1    | -0.655228044 |
| ZNF627    | NM_145295.2    | 0.654253431  |
| BCOR      | NM_020926.2    | 0.653166196  |
| TRO       | NM_001039705.1 | 0.652965423  |
| SLC24A6   | NM_024959.2    | 0.652627683  |
| LOC644063 | XR_016547.1    | -0.652535845 |
| FAM113B   | NM_138371.1    | -0.649967636 |
| ANKRD41   | NM_152363.2    | -0.649857101 |

| RALGPS1      | NM_014636.1    | 0.649695753  |
|--------------|----------------|--------------|
| PNKD         | NM_022572.2    | -0.649414801 |
| ARHGAP30     | NM_001025598.1 | -0.649255942 |
| GARNL4       | NM_015085.3    | -0.64848921  |
| PSMC4        | NM_006503.2    | -0.6479817   |
| KLRC3        | NM_002261.2    | 0.64701401   |
| LOC284422    | XM_209196.5    | -0.646875501 |
| ALDH3B1      | NM_000694.2    | -0.646530138 |
| LOC646786    | XM_929738.1    | 0.646084199  |
| MLKL         | NM_152649.1    | -0.645118512 |
| NPHP3        | NM_153240.3    | 0.645039308  |
| CXXC5        | NM_016463.7    | 0.644395259  |
| RFXANK       | NM_134440.1    | -0.642224833 |
| WDR74        | XM_001125771.1 | -0.642045054 |
| SLA          | NM_001045557.1 | -0.641383126 |
| FAIM3        | NM_005449.3    | -0.641012722 |
| CHN2         | NM_004067.2    | 0.640984355  |
| UNC93B1      | NM_030930.2    | -0.640806438 |
| CIDEB        | NM_014430.2    | -0.640771253 |
| LIN28B       | NM_001004317.2 | -0.640636269 |
| ZNF84        | NM_003428.4    | 0.639943429  |
| BDH1         | NM_203314.2    | -0.639367962 |
| SLC17A9      | NM_022082.3    | -0.638944344 |
| BHLHB2       | NM_003670.1    | 0.637554076  |
| SFXN4        | NM_213650.1    | -0.636624224 |
| LOC91461     | NM_138370.1    | -0.636305323 |
| ADD1         | NM_001119.3    | 0.636170683  |
| CD99         | NM_002414.3    | 0.635133593  |
| WDR12        | NM_018256.2    | -0.634143054 |
| SPTAN1       | NM_003127.1    | 0.633805715  |
| RN5S9        | NR_023371.1    | 0.63237276   |
| TESK2        | NM_007170.2    | 0.6322145    |
| SNORA45      | NR_002977.1    | -0.631567028 |
| GATM         | NM_001482.2    | -0.631159587 |
| DHCR24       | NM_014762.3    | -0.630778043 |
| PKD2         | NM_000297.2    | 0.630322351  |
| LOC100133163 | XM_001726385.1 | 0.629845066  |
| ACBD7        | XM_928013.1    | 0.62967076   |
| MAZ          | NM_001042539.1 | 0.629612286  |
| TEAD4        | NM_201443.1    | -0.628645045 |
| RNF125       | NM_017831.3    | -0.628633249 |
| LOC643446    | XM_001131589.1 | -0.6284174   |
| XAF1         | NM_199139.1    | -0.627507825 |
| CRBN         | NM_016302.2    | 0.627302686  |
| TRO          | NM_001039705.1 | 0.627277535  |

| STMN3     | NM_015894.2    | 0.627136233  |
|-----------|----------------|--------------|
| RTN4R     | NM_023004.5    | -0.625796205 |
| ZSWIM6    | XM_035299.8    | 0.624776878  |
| MAPK13    | NM_002754.3    | -0.624688488 |
| LOC642755 | XM_926382.2    | 0.622726918  |
| HMGCS1    | NM_002130.6    | -0.622305774 |
| 38595     | NM_006640.3    | 0.621840242  |
| RASSF1    | NM_170712.1    | -0.620625957 |
| ITGB2     | NM_000211.1    | -0.620385442 |
| SLC26A9   | NM_052934.2    | -0.619343218 |
| ULK1      | NM_003565.1    | 0.618800676  |
| LACTB     | NM_032857.2    | 0.618271457  |
| S100A4    | NM_019554.2    | -0.61813018  |
| C6orf185  | XM_168055.6    | -0.618095485 |
| ZNF296    | NM_145288.1    | -0.617960852 |
| ALDOC     | NM_005165.2    | -0.617390503 |
| ACVR1     | NM_001105.2    | 0.61715559   |
| ULK1      | NM_003565.1    | 0.616869259  |
| PLEKHA1   | NM_021622.3    | 0.61686098   |
| SRGN      | NM_002727.2    | -0.616781535 |
| FLJ20021  | XM_028217.4    | 0.616513635  |
| PHLDA1    | NM_007350.3    | 0.616480507  |
| TMEM91    | NM_001042595.1 | 0.616312108  |
| UBL3      | NM_007106.2    | 0.615953795  |
| TRPM2     | NM_001001188.3 | -0.615708759 |
| LOC401152 | NM_001001701.1 | 0.615024343  |
| LOC651697 | XR_039237.1    | -0.61461379  |
| ARHGAP9   | NM_001080156.1 | -0.614417583 |
| GCLC      | NM_001498.2    | 0.61415459   |
|           | AW967735       | -0.613868384 |
| PDCD6IP   | NM_013374.3    | 0.613377252  |
| CST3      | NM_000099.2    | 0.61197513   |
| AK3L1     | NM_203464.1    | -0.611936431 |
| APOBEC3B  | NM_004900.3    | -0.611789771 |
| TLR10     | NM_001017388.1 | -0.610641386 |
| CAST      | NM_001042442.1 | 0.609957429  |
| ZNF823    | NM_001080493.2 | 0.608611175  |
| COMTD1    | NM_144589.2    | -0.608323553 |
| FYN       | NM_153047.1    | 0.608228747  |
| LOC401233 | NM_001013680.1 | 0.607740554  |
| YPEL5     | NM_016061.1    | 0.606964344  |
| TBC1D8B   | NM_198881.1    | -0.606928041 |
| ZNF232    | NM_014519.2    | -0.606378267 |
| MOAP1     | NM_022151.4    | 0.605427504  |
| ABLIM1    | NM 001003407.1 | 0.605036661  |

| STAMBPL1     | NM_020799.2    | -0.604874337 |
|--------------|----------------|--------------|
| CXXC5        | NM_016463.5    | 0.604256568  |
| CD79A        | NM_001783.3    | -0.603661787 |
| CECR1        | NM_177405.1    | 0.603017303  |
|              | BC035116       | 0.602337079  |
| TSEN34       | NM_001077446.1 | 0.601990962  |
| FNBP1        | NM_015033.2    | 0.601625635  |
| BAZ2B        | NM_013450.2    | 0.600526755  |
| ΙΤΡΚΑ        | NM_002220.1    | -0.598355197 |
| FTHL2        | NR_002200.1    | 0.598093312  |
| TMEM135      | NM_022918.2    | -0.596435772 |
| RASSF1       | NM_007182.4    | -0.595928474 |
| GBF1         | NM_004193.1    | 0.595736805  |
| DKFZp451A211 | NM_001003399.1 | -0.595537191 |
| LOC653994    | XM_944439.2    | -0.594321004 |
| SMG7         | NM_173156.1    | 0.594065009  |
| PFKFB3       | NM_004566.2    | 0.59329284   |
| RPL34        | NM_033625.2    | -0.593059328 |
| INPP5D       | NM_005541.3    | -0.592531692 |
| SULT1A1      | NM_177536.1    | -0.592004332 |
| DNAJC12      | NM_021800.2    | -0.591627104 |
| AKAP13       | NM_007200.3    | 0.591541714  |
| SLC13A5      | NM_177550.2    | -0.591283368 |
| CTSK         | NM_000396.2    | 0.591155904  |
| DACT3        | NM_145056.1    | 0.591148876  |
| DNAJC12      | NM_201262.1    | -0.591050343 |
| SPG11        | NM_025137.3    | 0.590916844  |
| KIF7         | NM_198525.1    | 0.589781842  |
| DUSP18       | NM_152511.3    | 0.589514735  |
| FAM101B      | NM_182705.2    | -0.589219517 |
| GLIPR2       | NM_022343.2    | 0.589119895  |
| DAZAP1       | NM_170711.1    | -0.588276915 |
| NLRP3        | NM_004895.3    | -0.587847422 |
| NP           | NM_000270.1    | -0.587826014 |
| ATF4         | NM_001675.2    | -0.587796083 |
| LDLR         | NM_000527.2    | -0.586050414 |
| BTBD11       | NM 152322.2    | 0.585595313  |



Supplemental Figure 15. Expression changes of selected cell cycle regulator target genes on mRNA level in KASUMI-1 cells upon exposure of I-CBP112: Expression changes of selected cell cycle target genes on mRNA level, measured by q-RTPCR, in KASUMI-1 cells upon exposure of I-CBP112 ( $3\mu$ M) for 8 hours, 1 and 4 days. Ct were first normalized to GAPDH housekeeping gene and then to the average of vehicle- treated (DMSO) cells (Relative expression=1). P- values were calculated using a two- way ANOVA test and Turkey multiple comparison: ns= not significant, \* p<0.05 \*\* p<0.01 \*\*\* p<0.001 \*\*\*\* p<0.0001, n=2.



Supplemental Figure 16. ChIP qPCR data on two regulated genes. I-CBP112-induced reduction of P300-binding to gene loci of ID2 and TNFSF13B. ChIP qPCR from different gene regions of the ID2 and the TNFSF13B locus after treatment with DMSO or 3  $\mu$ M I-CBP112 for 8 h (**A**) or 4 days (**B**). The relative enrichment is expressed as mean and error bars represent the standard deviation. DMSO treated cells are indicated by a "-" and I-CBP112 treated cells by "+".