Mmusculus_alphaE-catenin/1-906 Drerio_alphaE-catenin/1-907

Celegans_alpha-catenin/1-927 Dmelanogaster_alpha-catenin/1-917 913 FELDRRHOORINGRL 927

SUPPLEMENTARY FIGURE 1 – Multiple alignment of N. vectensis α -catenin aligned with characterized α -catenin orthologs from M. musculus, D. rerio, D. melanogaster, and C. elegans. Conserved domains shared between N. vectensis α -catenin and bilaterian α -catenins (blue bars) and the N. vectensis insert (green bars) are annotated. An 11 residue conserved motif within the insert is indicated (blue hashing), and a conserved phosphorylation site that is absent in N. vectensis is indicated (asterisk).

Ortholog	Homo- dimerization	β-Cat. binding	F-actin binding	Actin regulation	in vivo requirement
Mammalian αE-Catenin	Yes	Yes	Homodimer	Bundles F-actin; inhibits Arp2/3 and Cofilin	Adhesion in blastula; epidermal formation
D. rerio αE-Catenin	No	Yes	Monomer and heterodimer	Bundles F-actin	Epiboly and gastrulation
D. melanogaster α-Catenin	Yes	Yes	Monomer and homodimer	?	Embryogenesis and oogenesis
N. vectensis α-Catenin	Yes	Yes	Monomer and Heterodimer	Inhibits Arp2/3	?

SUPPLEMENTARY TABLE 1 – A comparative summary of the properties of characterized α -Catenin orthologs.