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1 Methodology

1.1 A general two-compartment model

We consider a two-compartment model consisting of SCs and differentiated
cells. We will refer to the number of stem cells as i and to the number of dif-
ferentiated cells as j. Suppose further the existence of several (K) processes
that may change the numbers of cells. Each process is characterized by the
associated change in cell numbers, (∆ki,∆kj), 1 ≤ k ≤ K. For example, the
process of proliferation of a SC increases the number of SCs by one and does
not change the number of differentiated cells. The process of differentiation
decreases the number of SCs by one and increases the number of differenti-
ated cells by two. The process of differentiated cell death decreases j by 1.
These are the three processes that we considered in [1]. In the present formal-
ism, this amounts to K = 3 nontrivial transition probabilities summarized
below:

Q1 : Proliferation of SCs, ∆1i = 1, ∆1j = 0,

Q2 : Differentiation of SCs, ∆2i = −1, ∆2j = 2, (1)

Q3 : Death of differentiated cells, ∆3i = 0, ∆3j = −1.

Other possible processes include a SC death (∆i = −1, ∆j = 0); an asym-
metric SC division (∆i = 0, ∆j = 1), a de-differentiation event (∆i = −1,
∆j = 1) etc.

We assume that the dynamics of cells is governed by a continuous-time
Markov process characterized by transition probabilities Qk(i, j) associated
with the K processes. In an infinitely small time interval, ∆t, the provability
that the cell numbers will change by (∆ki,∆kj) is given by Qk(i, j)∆t, for

1 ≤ k ≤ K, and the probability of no change is given by 1−∆t
K∑
k=1

Qk(i, j).

1.1.1 The equilibrium state and the deterministic description for
the two-compartment model

Let us assume the existence of an equilibrium state, (i∗, j∗) characterized by

K∑
k=1

Qk(i∗, j∗)∆ki =
K∑
k=1

Qk(i∗, j∗)∆kj = 0.
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In what follows, we will use the notation

Qk∗ = Qk(i∗, j∗), 1 ≤ k ≤ K.

The phenomenological equations for the mean numbers, x = 〈i〉, and
y = 〈i〉 read,

ẋ =
K∑
k=1

Qk(x, y)∆ki, (2)

ẏ =
K∑
k=1

Qk(x, y)∆kj, (3)

where we replaced Qk(i, j) → Qk(x, y). Such equations are commonly used
in deterministic modeling of SCs (see e.q. [2]). They can be derived from the
stochastic process by using the linear noise approximation of Van Kampen,
where they appear as the zero-order expansion and comprise the “macro-
scopic law”.

The stability analysis of the equilibrium state, x = i∗, y = j∗ results in
the Jacobian,

J =

(
a11 a12

a21 a22

)
,

where

a11 =
K∑
k=1

∂Qk

∂x
∆ki, a12 =

K∑
k=1

∂Qk

∂y
∆ki,

a21 =
K∑
k=1

∂Qk

∂x
∆kj, a22 =

K∑
k=1

∂Qk

∂y
∆kj.

The stability conditions are

Det(J) > 0⇔ a11a22 − a12a21 > 0, (4)

Tr(J) < 0⇔ a11 + a22 < 0. (5)

The deterministic analysis is not capable of informing us about the variance
of the cell numbers. In order to find out how big the spread of values is, we
need to perform stochastic analysis detailed next.
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1.1.2 Stochastic analysis of the two-compartment model

For convenience, let us use the notation i and j for the difference between
the actual number of SCs and differentiated cells and their equilibrium values
(such that at equilibrium, i = j = 0). Based on the transition probabilities,
one can write down the Kolmogorov forward equations for the probability
ϕi,j(t) to be in the state (i, j) at time t:

ϕ̇i,j =
K∑
k=1

ϕi−∆ki,j−∆kj(t)Qk(i−∆ki, j −∆kj)− ϕi,j(t)
K∑
k=1

Qk(i, j). (6)

Let us use the following notation for the moments:

xα,β(t) =
∑
i,j

ϕi,j(t)i
αjβ.

We can derive equations for moments by multiplying equation (6) by iαjβ

and summing up in both indices. We have at order (α, β):

ẋα,β =
K∑
k=1

∑
i,j

ϕi,j(t)Qk(i, j)(i+ ∆ki)
α(j + ∆kj)

β −
K∑
k=1

∑
i,j

Qk(i, j)i
αjβ.

In these equations, we will use the binomial formulas:

(i+ ∆ki)
α =

α∑
r=0

(
α

r

)
ir(∆ki)

α−r, (7)

(j + ∆kj)
β =

β∑
s=0

(
β

s

)
js(∆kj)

β−s. (8)

Near the equilibrium we can expand the probability rates Qk(i, j) in Taylor
series, keeping only the terms up to the first order:

Qk(i, j) = Qk∗ +
∂Qk∗

∂x
i+

∂Qk∗

∂y
j,

where the two partial derivatives are taken at the equilibrium. The linear
noise approximation [3] can be obtained by assuming that probability rates
depend weakly on their variables, which means that the change in a given
rate caused by adding or removing one cell is small relative to the rate itself.
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The details are given in [1] and also [4], which suggests a simpler way of
deriving the equations for the moments. We obtain the following system:

ẋ = Ax + F = ~0, (9)

where
x = (x10, x01, x20, x02, x11)T ,

F = (0, 0, sii, sjj, sij)
T

with

sii =
K∑
k=1

Qk∗(∆ki)
2 ≥ 0, sjj =

K∑
k=1

Qk∗(∆kj)
2 ≥ 0, sij =

K∑
k=1

Qk∗∆ki∆kj.

The matrix A is given by

A =


a11 a12 0 0 0
a21 a22 0 0 0
∗ ∗ 2a11 0 2a12

∗ ∗ 0 2a22 2a21

∗ ∗ a21 a12 a11 + a22

 .

The entries marked by stars are unimportant for the stability analysis because
of the block structure of the matrix A. Let us denote

∆ = Det(J) = a11a22 − a12a21, B = −Tr(J) = −a11 − a22.

We can see that at equilibrium, x10 = x01 = 0, and

V ar[i] = x20 =
1

2B∆

(
sii∆ + siia

2
22 − 2sija21a22 + sjja

2
21

)
, (10)

V ar[j] = x02 =
1

2B∆

(
sjj∆ + sjja

2
11 − 2sija12a11 + siia

2
12

)
. (11)

The stability conditions for this equilibrium are the same as (4-5), because
the eigenvalues of the matrix W are given by −B and −B ±

√
B2 − 4∆,

where the matrix W is the the submatrix A{3,4,5},{3,4,5}.
Condition on the positivity of the variances are obtained from equations

(10-11) and are given by

2sija21a22 < sii(∆ + a2
22) + sjja

2
21, (12)

2sija12a11 < sjj(∆ + a2
11) + siia

2
12. (13)

Note that the right hand sides of these inequalities are always positive.
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1.2 A general multi-compartment model

Now suppose there are n compartments, and the numbers of cells in each
compartment are denoted as i1, . . . , in. The transition rates Qk(i

1, . . . , in)
define the rates of change by a vector-valued increment (∆ki

1, . . . ,∆ki
n).

The equilibrium and the deterministic description for the multi-
compartment model

The equilibrium (i1∗, . . . , i
n
∗ ) is defined by n equations:

K∑
k=1

Qk(i
1
∗, . . . , i

n
∗ )∆ki

1 = 0, . . . ,
K∑
k=1

Qk(i
1
∗, . . . , i

n
∗ )∆ki

n = 0. (14)

The deterministic equations describing this system are given by

ẋm =
K∑
k=1

Qk(x
1, . . . xn)∆ki

m, 1 ≤ m ≤ n,

where xm = 〈im〉 for 1 ≤ m ≤ n. This should be compared with the two-
compartment case (2-3). The Jacobian corresponding to the equilibrium
point is given by

J = {amj}, amj =
K∑
k=1

∂Qk

∂xj
∆ki

m, 1 ≤ m, j ≤ n. (15)

Let us assume that the deterministic system under consideration is stable,
and therefore the real parts of all the eigenvalues of J are negative. Next,
we examine the stability conditions arising from the stochastic description.

1.2.1 Stochastic analysis of the multi-compartment model

The Kolmogorov forward equation for a multi-compartment system is a direct
generalization of equation (6):

ϕ̇i1,...,in =
K∑
k=1

ϕi1−∆ki1,...,in−∆kin(t)Qk(i
1 −∆ki

1, . . . , in −∆ki
n)

−ϕi1,...,in(t)
K∑
k=1

Qk(i
1, . . . , in) (16)
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Let us adopt the following notations for the first moments:

ym =
∑
i1,...,in

ϕi1,...,ini
m,

and for the second moments:

yqp =
∑
i1,...,in

ϕi1,...,ini
qip.

By multiplying both sides of Kolmogorov forward equation (16) by im and
by ipiq, and summing over these indices, we obtain at the equilibrium:

K∑
k=1

∑
i1,...,in

ϕi1,...,in(t)Qk(i
1, . . . , in)(im + ∆ki

m)

−
K∑
k=1

∑
i1,...,in

ϕi1,...,in(t)Qk(i
1, . . . , in)im = 0,

K∑
k=1

∑
i1,...,in

ϕi1,...,in(t)Qk(i
1, . . . , in)(ip + ∆ki

p)(iq + ∆ki
q)

−
K∑
k=1

∑
i1,...,in

ϕi1,...,in(t)Qk(i
1, . . . , in)ipiq = 0, (17)

where m = 1, 2, . . . , n and p, q = 1, 2, . . . , n.
Similar to the development for the two-compartment system, we assume

a weak dependence of the probability rates on the cell numbers, and expand
functions Qk in Taylor series near the equilibrium. We only need to keep the
terms up to the first order:

Qk(i
1, i2, . . . , in) ≈ Qk∗ +

n∑
j=1

∂Qk

∂xj
∆ki

j. (18)

By following the steps of the linear noise approximation [3] (or the procedure
explained in [4]), we obtain equations for the first and second moments of
the cell numbers:

am1y1 + am2y2 + . . .+ amnyn = 0, 1 ≤ m ≤ n, (19)
n∑
j=1

apjyjq +
n∑
j=1

aqjypj = −spq, 1 ≤ p, q ≤ n, (20)
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where

amj =
K∑
k=1

∂Qk

∂xj
∆ki

m, spq =
K∑
k=1

Qk∗∆ki
p∆ki

q. (21)

There are n equations for the first moments, n equations for the 2nd moments
of type yqq, and n(n−1) equations for mixed second order moments, yqp = ypq
with q 6= p (in order to use the matrix formalism, we treat variables ypq
and yqp as separate; the solutions for them are the same, as follows from
symmetries). Let us form the vector

y = (y1, . . . , yn, y11, y12, . . . , ynn)T .

The equations for the moments can then be written in the form

ẏ = Ay + F. (22)

By the right hand side of equations (19, 20), F has a concise form:

F = (0, 0, . . . , 0, s11, s12, . . . , snn)T ,

where the first n terms of F are 0, and the rest of the terms are elements of
the matrix [sij]n×n with the elements defined in (21).

The matrix A in equation (22) has the form

A =

(
J 0
∗ W

)
,

where 0 denotes the matrix of zeros of dimensionality n× n2, and ∗ denotes
a matrix of dimensionality n2 × n. The n2 × n2 matrix W defines the long-
term behavior of the second moments. Because of formula (20), it can be
represented as the Kronecker sum

W = J ⊕ J ≡ J ⊗ I + I ⊗ J, (23)

where matrix I represents the identity matrix. Recall that the tensor product
of two matrices [Aij]m×p and [Bij]n×q is a mp × nq matrix, which is defined
by:

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB
· · · · · · · · · · · ·
am1B an2B · · · amnB


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First of all, we observe that similarly to the two-compartment model,
the equations for the first moments completely decouple from those for the
second moments, and thus the value in block ∗ of matrix A are unimportant.

Second, we note that matrix A has the same n eigenvalues as the matrix J
(coming from block J in A), plus n2 other eigenvalues defined by the matrix
W . These eigenvalues are given by the sums of all pairs of the eigenvalues
of matrix J . The proof of these facts can be found in [5], Theorem 4.4.5.
Therefore, if all the eigenvalues of J have negative real parts, then all the
eigenvalues of A also have negative real parts. Similarly, if J has eigenvalues
with a nonnegative real part, then so will A. This shows that like in the
two-compartment model, in the n-compartment model the stability analysis
of the stochastic system gives the same results as the stability analysis of the
simple deterministic system.

Finally, based on equation (22) and the form of F , we can find expressions
for the second moments of the cell populations, ypq. To do this, we need to
solve the linear system

W~y = −~s, (24)

where ~y = (y11, y12, . . . , ynn)T and ~s is an n2 × 1 vector with elements

spq =
K∑
k=1

Qk∗∆ki
p∆ki

q, p, q = 1, 2, . . . , n. (25)

Quantities y11, . . . , ynn then correspond to second central moments, or the
variances, of the cell populations.

2 Examples

2.1 A two-compartment model

Let us apply the methodology developed for two-compartmental systems to
the example studied previously in [1], see system (1) of the main text. In
this example, we assume that at each time step with probability Q(i, j) one
stem cell divides and with probability 1 − Q(i, j) one daughter cell dies.
Furthermore, we assume that a stem cell can divide into two daughter cells
with probability P (i, j) (differentiation), and into two stem cells with prob-
ability 1 − P (i, j) (proliferation). We further assume a specific form of the
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probabilities,

Q(i, j) =
b

1 + h(i+ j)
, P (i, j) =

r

1 + gj
.

This model has 3 transition probabilities:

Q1 : ∆1i = 1, ∆1j = 0,

Q1(i, j) =
b

1 + h(i+ j)
∗ (1− r

1 + gj
) =

1

4
− h

8b
i+ (− h

8b
+

g

8r
)j

Q2 : ∆2i = −1, ∆2j = 2,

Q2(i, j) =
b

1 + h(i+ j)
∗ r

1 + gj
=

1

4
− h

8b
i+ (− h

8b
− g

8r
)j

Q3 : ∆3i = 0, ∆3j = −1,

Q3(i, j) = 1− b

1 + h(i+ j)
=

1

2
+
h

4b
i+

h

4b
j

After some calculations, we obtain the following coefficients:

a11 =
3∑

k=1

∂Qk

∂x
∆ki = 0, a12 =

3∑
k=1

∂Qk

∂y
∆ki =

g

4r
,

a21 =
3∑

k=1

∂Qk

∂x
∆kj = − h

2b
, a22 =

3∑
k=1

∂Qk

∂y
∆kj = − h

2b
− g

4r
,

B = −a11 − a22 =
h

2b
+

g

4r
, ∆ = a11a22 − a12a21 =

hg

8br
,

sii =
1

2
, sij = −1

2
, sjj =

3

2
.

By formula (11) of the main text, we have

V ar[j] =
1

2B∆
(sjj∆ + sjja

2
11 + 2sija21a11 + siia

2
21) =

r(3bg + 2hr)

g(bg + 2hr)
,

which coincides with the result of [1]. Similarly, we can prove that both
methods also have the same answer for V ar[i].

2.2 A 3-compartment system with negative control of
divisions and differentiation

Next, we provide examples of the general theory for multi-compartmental
lineages. As the first example, we consider a system described in [1]. This
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system consists of three compartments, which we will call stem cells, transit
amplifying (TA, or “intermediate”) cells, and terminally differentiated cells.
Stem cells and intermediate cells are capable of symmetric divisions (either
differentiations or proliferations), and differentiated cells can die at a certain
rate. Therefore, there are altogether 5 processes that can happen:

Q1 : Differentiation of stem cells, ∆1i
1 = −1, ∆1i

2 = 2, ∆1i
3 = 0,

Q2 : Proliferation of stem cells, ∆2i
1 = 1, ∆2i

2 = 0, ∆2i
3 = 0,

Q3 : Differentiation of int. cells, ∆3i
1 = 0, ∆3i

2 = −1, ∆3i
3 = 2, (26)

Q4 : Proliferation of int. cells, ∆4i
1 = 0, ∆4i

2 = 0, ∆4i
3 = 1,

Q5 : Death of differentiated cells, ∆5i
1 = 0, ∆5i

2 = 0, ∆5i
3 = −1.

The probabilities of the different events are in general functions of the vari-
ables (i1, i2, i3). We say that process k is controlled by population m if
function Qk depends in non-trivial way on the variable im, that is,

∂Qk

∂im
6= 0.

It has been shown in [1] that for stability in a three-compartment system, it is
necessary to have at least three such control loops, and all three populations
must be involved in the control. There are exactly 20 systems with “minimal
control” (that is, only 3 control loops). Here we concentrate on one of them,
namely, the system depicted in the first schematic of figure 5 in [1]. This
particular system contains three negative feedback loops:

• The probability of stem cell divisions is negatively controlled by the
number of stem cells.

• The probability of stem cell differentiation (vs proliferation) is nega-
tively controlled by the intermediate cells;

• The probability of intermediate cell divisions is negatively controlled
by the number of differentiated cells.

The rest of the probabilities are characterized by constant (independent of
the current population) numbers.

Negative control of cell divisions has been documented in the literature.
For example, in [9] it is stated that in adult neurogenesis, neural stem cell
divisions are orchestrated by the mature nervous system environment, and
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adult-generated neurons and glia appear to be produced on demand, rather
than on a fixed schedule. In colon, a negative feedback loop via Lrig1 helps
to fine-tune population size and proliferative activity of intestinal progenitor
cells [10]. In [11], it is suggested that a negative control loop exists between
the active stem cells and quiescent stem cells, which controls divisions of stem
cells in hair, intestine, and bone marrow. These mechanisms are described
in a “crowd-control” model proposed in [12].

It has been further observed that the type of cell divisions, like the divi-
sion rate, is also under regulation of various types of control loops. In the
context of the adult neurogenesis, it has been proposed that once generated,
neural stem cell descendants can trigger some type of feedback mechanism to
stop stem cell differentiation [13]. Among the candidate mechanisms, Notch
signaling [14] and Prox1 expression [15] have been proposed. In [16] it is re-
ported that haematopoietic stem cells are regulated by their mature progeny.
A feedback loop is described in which platelet numbers, through regulation of
available thrombopoietin levels, regulates the entry of haematopoietic stem
cells into cycle.

In order to create a numerical example consistent with this system, we
will choose some specific (hypothetical) functional forms of the control loops,
which correspond to the regulation network described above, both in terms
of topology and signs of controls. Denoting for convenience the number of
stem, transit amplifying, and differentiated cells as x, y and z, we postulate
the following dependencies:

L1 = e−m1εx, P1 = e−m2εy, L2 = e−m3εz,

ε is a small parameter, quantities m1,m2,m3 regulate the rate of dependence
on the cell numbers, and functions Li and Pi are the rate of division and the
probability of differentiation for compartment i, respectively. Assuming that
P2 = α, and the death rate of differentiated cells is β, both constant, we have
the following functional forms for our five processes:

Q1 = L1P1 = e−ε1(m1x+m2y),

Q2 = L1(1− P1) = e−εm1x(1− e−εm2y),

Q3 = L2P2 = e−εm3zα, (27)

Q4 = L2(1− P2) = e−εm3z(1− α),

Q5 = β.
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The equilibrium point in this simple system can be found analytically and is
given by

x = − 1

εm1

ln

[(
α− 1

2

)
β

α

]
, y =

ln 2

εm2

, z = − 1

εm3

ln

[
β

2α

]
. (28)

It is positive as long as α > 1/2. Figure 1(a) shows a typical numerical run
of this model for a particular parameter set. The three populations, the stem
cells, the TA cells, and the differentiated cells, are plotted as a function of
the time-step of the simulation. The variance in the three cell populations
can be obtained either as a solution of system (24) of the main text or by
formula (26) of the main text, and can be obtained as a (slightly long) closed
form expression, which we omit here.
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Figure 1: Numerical and analytical studies of a three-compartment stem
cell system, (27). (a) A typical numerical simulation; the three populations,
the stem cells, the TA cells, and the differentiated cells, are plotted as a
function of the time-step of the simulation. The initial condition is given
by the theoretically calculated means, equations (28). The parameters are
α = 0.95, β = 0.95, ε = 0.005, m1 = 5,m2 = 2,m3 = 1. (b) The variance
of the three population sizes, as a function of parameter α. The solid lines
are the theoretical curves, and the points are calculated numerically, from at
least 105 time-steps. The rest of the parameters are as in part (a).

There are several points that follow from this analysis. The system is
only stable if the transit amplifying cells differentiate more than 50% of
the time. As the controls become weaker (ε decreases), the means increase
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as 1/ε, and the standard deviations as 1/
√
ε. That is, as controls become

weaker, the relative size of the fluctuations decreases. The probability of
cell death, β, does not influence the variances, but only the means of stem
and differentiated cells. The mean number of transit amplifying cells and
the variance of the differentiated cells do not depend on the probability of
TA differentiation, α. The variance of the stem and transit amplifying cells
decays with the probability of differentiation, α. The latter trends are seen
in figure 1(b), where we plot the variance of the three cell populations as a
function of α. The solid lines correspond to the analytical solution, and the
dots show the numerically calculated values of the variance.

2.3 A 3-compartment system with positive control of
differentiation and negative control of divisions

Our second example again comes from one of the minimal (3-compartment,
3-control loop) systems of [1] and includes the five processes listed in (37).
We consider the tenth schematic of figure 5 in [1], which contains two positive
and one negative feedback loops:

• The probability of stem cell differentiation is positively controlled by
the number of stem cells.

• The probability of intermediate cell differentiation is positively con-
trolled by the number of intermediate cells;

• The probability of stem cell divisions is negatively controlled by the
number of differentiated cells.

The rest of the probabilities are characterized by constant (independent of
the current population) numbers.

Positive control of differentiation by cell numbers has been discussed in
the literature. Extracellular signals and the micro-environment constitute
a niche, in which stem cells compete for limiting concentrations of growth
factors, thereby maintaining a balance between self-renewal and differenti-
ation. Wnt protein has been shown to promote stem cell self-renewal [17].
If such self-renewal-promoting factor is secreted by the cells of the stem cell
niche, then the stem cells in the proximity of the source of the signal will
tend to self-renew, while stem cells further away will tend to differentiate.
This corresponds to a positive control of differentiation by the stem cells: the
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more stem cells there are, the more likely it is that a given stem cell will find
itself relatively far from the niche, and thus its probability to differentiate
will increase. Furthermore, in some cases, mechanical strain has been shown
to increase cell differentiation [18, 19, 20], leading to the same trend. Finally,
it has been suggested that stem cells have to be spatially localized to their
niches, which keeps them protected from the differentiating influences of the
surrounding microenvironment [21]. Therefore, as the number of stem cells
increases, the probability to be exposed to the differentiation signals from
the outside increases, resulting in a positive control loop.
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Figure 2: Numerical and analytical studies of a three-compartment stem cell
system, (29). (a) A typical numerical simulation; the three populations, the
stem cells, the TA cells, and the differentiated cells, are plotted as a function
of the time-step of the simulation. The initial condition is given by the
theoretically calculated means, equations (30). The parameters are γ = 0.4,
β = 0.6, ε = 0.005. (b) The variance of the three population sizes, as a
function of parameter β. The solid lines are the theoretical curves (formula
(26) of the main text), and the points are calculated numerically, from at
least 105 time-steps. The rest of the parameters are as in part (a).

Now we return to the example at hand. To be specific, we postulate the
following dependencies:

L1 =
1

1 + εz
, P1 = 1− e−εx, P2 = 1− e−εy.

15



Assuming that L2 = γ, and the death rate of differentiated cells is β, both
constant, we have the following functional forms for our five processes:

Q1 = L1P1 =
1

1 + εz
(1− e−εx),

Q2 = L1(1− P1) =
1

1 + εz
e−εx,

Q3 = L2P2 = γ(1− e−εy)α, (29)

Q4 = L2(1− P2) = γe−εy,

Q5 = β,

The equilibrium point in this simple system can be found analytically and is
given by

x = − ln 2

ε
, y = −1

ε

[
1− β

2γ

]
, z =

1 + γ − β
ε(β − γ)

. (30)

It is positive as long as γ < β < 2γ. Figure 1(a) shows a typical numerical
run of this model for a particular parameter set. Part (b) of the figure
shows the variance of the three populations as a function of parameter β, the
differentiated cell death rate. Again, the variance can be obtained either as a
solution of system (24) or by formula (26) of the main text; for this example
the analytical solution is slightly cumbersome and is not presented explicitly.

3 Stability and variance calculations

In this paper we apply variance calculations of different cell populations to
compare different parameters and networks with each other. A question
arises on the similarities and difference between this approach and the usual
stability analysis of the deterministic system. Using two simple examples,
we will demonstrate that the two methods are compatible, but the analysis
of variances can provide further insights into cell population behavior.

We will consider the two minimal control systems described in [1]. There
are two populations, stem cells (x) and differentiated cells (y). The division
rate of stem cells is denoted by L(x, y), the differentiation probability P (x, y),
and death rate as D(x, y). The deterministic system is given by

ẋ = L(1− 2P ), (31)

ẏ = 2LP −D. (32)
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The four controls that enter the calculations of stability and variances are

qx =
∂(L−D)

∂x
, qy =

∂(L−D)

∂y
, px =

∂P

∂x
, px =

∂P

∂y
,

see [1] for explicit expressions for the variances. Each of the two minimal
systems only contains two nonzero controls.

The first minimal control corresponds to qx = 0, py = 0, px > 0, qy < 0.
In this case (see figure 3), the eigenvalues of the linear system are minimized
for px large and |qy| large (and qy negative), see panels (a) and (b) of figure
3 (respectively). Simultaneous minimization of both eigenvalues (which cor-
responds to increased stability) happens as one increases px and decreases
negative qy.

When we consider the variances of stem cells (panel (c)) and differenti-
ated cells (panel (d)), we can see that their simultaneous minimizations also
occurs for large px and large negative qy. Therefore, both types of analysis
point to the same optimization procedure for the parameters, which is not
surprising. Both types of analysis suggest that increasing the absolute values
of quantities px and qy will lead to an increased overall stability and decreases
variance in the system.

In this case, the only advantage of the variance method is that it allows us
to calculate the numerical values of the variances. If biological information
is available on the acceptable % change of a population size in a given tissue,
this could be directly translated into constraints on the system parameters,
given the analytic expressions for the variances.

The second minimal control corresponds to px = 0, qy = 0, py < 0, qx <
0. In this case (see figure 4), we have a different pictures. One of the eigen-
values (panel (a)) is minimized when both qx and py are large and negative.
The other eigenvalue (panel (b)) is minimized when qx is small and negative
and py is large and negative.

The same pictures is observed when we consider the two variances (pan-
els 4(c) and (d)). Again, this is not surprising, and we expect to obtain a
qualitatively similar result when using both methods. In the present case
however the knowledge of the variances allows us to formulate meaningful
minimization problems that have biologically relevant solutions. For exam-
ple, the quantity

√
V ar(x)/E(x)+

√
V ar(y)/E(y) is the sum of two relative

17



q y
	
  

q y
	
  

q y
	
  

q y
	
  

px	
   px	
  

px	
   px	
  

Eigenvalues	
  
Variances	
  

(a)	
   (b)	
  

(c)	
   (d)	
  

Figure 3: Stability and variance analysis of the first minimal system. Heat
plots of the two linear eigenvalues ((a) and (b)) and variances of the stem cell
population (c) and differentiated cell population (d) are presented, depending
on the controls px and qy. Blue corresponds to lower values.

standard deviations of the two cell populations. Figure 5 shows that this
quantity is minimized when both px and qy have the largest magnitude.

18



q x
	
  

q x
	
  

q x
	
  

q x
	
  

py	
   py	
  

py	
   py	
  

Eigenvalues	
  
Variances	
  

(a)	
   (b)	
  

(c)	
   (d)	
  

Figure 4: Stability and variance analysis of the second minimal system. Heat
plots of the two linear eigenvalues ((a) and (b)) and variances of the stem cell
population (c) and differentiated cell population (d) are presented, depending
on the controls py and qx. Blue corresponds to lower values.

4 Mouse airway epithelium: examples of net-

works, their stability, and recovery dynam-

ics

Let us study the dynamics of the airway epithelium by including all the
processes listed in Table 1 of the main text. System (14) of the main text can
be solved to express three of the equilibrium values of the control parameters
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Figure 5: Heat plot of the quantity
√
V ar(x)/E(x)+

√
V ar(y)/E(y) for the

second minimal system. Blue corresponds to lower values.

in terms of the other 8. Solving for Q4,0, Q5,0, Q6,0, we obtain

2Q4,0 = −2Q2,0 +Q8,0 −Q10,0 −Q11,0, (33)

2Q5,0 −2Q1,0 − 2Q3,0 + 2Q7,0 +Q8,0 − 2Q9,0 −Q10,0 −Q11,0, (34)

Q6,0 = Q1,0 +Q2,0 −Q3,0. (35)

In the most general case we can assume that all the processes are controlled
by all the variables, that is, all derivatives Qix, Qiy, Qiz are nonzero for 1 ≤
i ≤ 11.

Stability of the solution is determined by calculating the eigenvalues of
matrix J defined by equation (15) of the main text, which in this most general
case, is equivalent to solving a cubic equation. Stability, which is equivalent
to negativity of the real part of all the eigenvalues, can be tested by using
the Routh Hurwitz criterion.

A simplification is obtained if we assume that CilCs do not exert control
over any processes except for their own death, that is, Qiz = 0 for i 6= 8.
In this case, matrix J is separable, and one of the eigenvalues has a simple
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form, λ3 = −Q8z. In this case, the assumption Q8z > 0 is the required for
stability. The other two eigenvalues have a negative real part if

Q1x +Q2x −Q3x −Q6x − 2Q1y +Q4y −Q5y +Q6y +Q7y −Q9y > 0,

− Q4xQ1y +Q5xQ1y +Q6xQ1y −Q7xQ1y +Q9xQ1y −Q4xQ2y +Q5xQ2y

− Q6xQ2y −Q7xQ2y +Q9xQ2y +Q4xQ3y −Q5xQ3y +Q6xQ3y +Q7xQ3y

− Q9xQ3y −Q6xQ4y +Q6xQ5y +Q4xQ6y −Q5xQ6y +Q7xQ6y −Q9xQ6y

− Q6xQ7y +Q1x(2Q2y − 2Q3y +Q4y −Q5y −Q6y +Q7y −Q9y)

+ Q2x(−2Q1y +Q4y −Q5y +Q6y +Q7y −Q9y) +Q6xQ9y

+ Q3x(2Q1y −Q4y +Q5y −Q6y −Q7y +Q9y) > 0. (36)

Next, let us restrict ourselves to a simpler case where only a subset of
x- and y- controls are nonzero, assuming the following possibly negative
controls:

Q1y, Q2y, Q3y, Q4x, Q5x, Q6x, Q9y, Q10,y, Q11,y ≤ 0, (37)

together with the condition
Q8z > 0, (38)

as follows from the previous analysis. We assume that the rest of the controls
are zero. The stability conditions simplify to

Q8z > 0, (39)

Q6x + 2Q1y +Q9y < 0, (40)

−Q4x(Q1y +Q2y −Q3y) +Q5x(Q1y +Q2y −Q3y)

+Q6x(Q1y −Q2y +Q3y +Q9y) > 0. (41)

While the first two of these conditions are always satisfied as long as the
controls have a correct sign, the third condition is more restrictive.

4.1 Only symmetric divisions

Let us assume that only symmetric divisions take place for both SCs and
SecrCs, see figure 6. This means that processes Q9, Q10, Q11 do not take
place, and at homeostasis we have

2Q4,0 = −2Q2,0 +Q8,0, (42)

2Q5,0 −2Q1,0 − 2Q3,0 + 2Q7,0 +Q8,0, (43)

Q6,0 = Q1,0 +Q2,0 −Q3,0. (44)
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The stability condition (under the assumption on the signs as in (37,38)) is
now given by

−Q4x(Q1y +Q2y−Q3y) +Q5x(Q1y +Q2y−Q3y) +Q6x(Q1y−Q2y +Q3y) > 0.
(45)

The variance of the three populations can be calculated analytically by using
equation (24) of the main text. The expressions are quite cumbersome and
are not provided here.

Figure 6: A schematic of cellular processes under the assumption of purely
symmetric divisions of SCs and SecrCs. In figures 6 and 8, divisions are
symmetric if denoted by solid arrows, and asymmetric if denoted by dashed
arrows. Low-rate process associated with the slow dynamics of CilCs are
depicted in green.

We have performed numerical simulations to investigate if such a sys-
tem is capable of exhibiting homeostasis and recovery behavior consistent
with observations. To generate such a system, assigned 11 parameter val-
ues: 4 values for the equlibrium rates, Q1,0, Q2,0, Q3,0, Q7,0 (we set Q8,0 = 0);
3 negative controls by SecrCs (Q1y, Q2y, Q3y); 3 negative controls by SCs
(Q4x, Q5x, Q6x); and the control of the death rate of CilCs, Q8z > 0. The
values were assigned randomly (with the correct sign), from a uniform dis-
tribution. We also had to make sure that the death of CilCs is low (see the
main text), and therefore their production (processes Q2 and Q4) are also
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Figure 7: Homeostasis and recovery dynamics under the assumption of
purely symmetric divisions. Typical runs with different initial condi-
tions are presented. (a) Homeostasis: the initial condition is given by
x = x0, y = y0, z = z0. (b) Experimental scenario I: the initial condition is
given by x = x0, y = y0, z = 0.1 z0. (c) Scenario II: x = 0.1x0, y = y0, z = z0.
(d) Scenario III: x = x0, y = 0.1 y0, z = 0.1 z0. Parameters are generated
randomly by means of the procedure described in the text.

slow; we achieved that by multiplying the corresponding coefficients by 10−3.
The affected rates are marked by green arrows in figure 6. Stability condition
(45) is easy to satisfy; about 70% of all randomly generated systems satisfy
it, so the system is relatively robust.

A typical run in homeostasis for such a system is presented in figure 7(a).
Further, examples of recovery dynamics according to scenarios (I), (II), and
(III) are shown in figures 7(b-d), see the main text for the details of the
different scenarios and corresponding experimental findings. The conclusion
is that a system with purely symmetric divisions can be stable, and is capable
of reproducing qualitatively correct recovery behavior under three different
types of injury.
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4.2 Only asymmetric divisions

Let us now assume that only asymmetric divisions take place for both SCs
and SecrCs, see figure 8. This means that processes Q1, Q2, Q3, Q4, Q5 (sym-
metric divisions) do not take place, and instead we have processesQ9, Q10, Q11

(asymmetric divisions). At homeostasis, the solution must satisfy

Q6,0 = 0, Q9,0 = Q7,0, Q11,0 = Q8,0 −Q10,0.

The general stability conditions simplify to

Q6x < 0, Q9y < 0, Q8z > 0,

which are satisfied as long as the controls have correct signs, as defined by
(37,38); no additional stability conditions are required.

The expressions for the variance obtained from equation (24) of the main
text are as follows:

y11 = 0,

y22 = −Q7,0

Q9y

,

y33 =
Q7,0Q

2
10y +Q8,0Q9y(Q9y −Q8z)

Q9yQ8z(Q9y −Q8z)
.

As expected, the variance of SCs, y11, is zero because SCs only divide asym-
metrically. The variance of SecrCs, y22, is nonzero because these cells can
die and de-differentiate, and get replenished by divisions of SCs. We further
observe, by taking the derivatives of y22 and y33 with respect to Q9y, that
tighter negative control of SC divisions by the SecrC population, which cor-
responds to larger absolute values of Q9y, leads to smaller variances of SecrC
and CilC populations, that is smaller y22 and y33 values. Smaller death rates
of SecrCs (Q7,0) will decrease both variances. On the other hand, SecrC
control of SC divisions producing CilCs, or controls of de-differentiation and
SecrC divisions do not help decrease variance.

As with purely symmetric divisions, we have tested if the asymmetrically
dividing system is capable of showing realistic homeostasis and recovery dy-
namics. We have performed numerical simulations by randomly generating
8 parameter values: 2 values for the equlibrium rates of processes Q7,0, Q10,0

(we again set Q8,0 = 0); 3 negative controls by SecrCs (Q9y, Q10y, Q11y); 2
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Figure 8: A schematic of cellular processes under the assumption of purely
asymmetric divisions of SCs and SecrCs. In figures 6 and 8, divisions are
symmetric if denoted by solid arrows, and asymmetric if denoted by dashed
arrows. Low-rate process associated with the slow dynamics of CilCs are
depicted in green.

negative controls by stem cells (Q11x, Q6x), and the death rate control of
CilCs, Q8z > 0. Again, to ensure slow dynamics of CilCs, we multiplied all
rates associated with these cells (Q8, Q10, Q11) by 10−3. The affected rates
are marked by green arrows in figure 8. 100% of systems generated in this
way are stable.

A typical run in homeostasis for such a system is presented in figure
9(a). Further, examples of recovery dynamics according to scenarios (I),
(II), and (III) are shown in figures 9(b-d), see the main text for the details of
the different scenarios and corresponding experimental findings. Again, the
conclusion is that a system with purely asymmetric divisions can be stable,
and is capable of reproducing qualitatively correct recovery behavior under
three different types of injury.

5 Minimization of variance as a function of

the equilibrium rates

This section provides a theoretical foundation for the claim that asymmetric
SC divisions in the airway epithelium system correspond to the minimal
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Figure 9: Homeostasis and recovery dynamics under the assumption of purely
asymmetric divisions. Typical runs with different initial conditions are
presented. (a) Homeostasis: the initial condition is given by x = x0, y =
y0, z = z0. (b) Experimental scenario I: the initial condition is given by
x = x0, y = y0, z = 0.1 z0. (c) Scenario II: x = 0.1x0, y = y0, z = z0.
(d) Scenario III: x = x0, y = 0.1 y0, z = 0.1 z0. Parameters are generated
randomly by means of the procedure described in the text.

variance of the cell numbers. We perform the analysis in two cases: (1) First
we assume that the smallness of rates Q2, Q4, Q8, Q10 and Q11 implies the
smallness of their derivatives at the equilibrium. (2) Then we remove this
assumption and present a general proof.

5.1 Assumption of the smallness of derivatives

First, we study the stability of this effectively two-compartment system. The
eigenvalues of the Jacobian (15) satisfy the equations

λ2 + αλ+ β = 0,
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where we denoted

α = −(Q6x + 2Q1y +Q9y) > 0, (46)

β = Q5x(Q1y −Q3y) +Q6x(Q1y +Q3y +Q9y). (47)

The eigenvalues have a negative real part if β > 0. Expressions for the
variances of SCs and SecrCs can be obtained by using equation (6) of the
main text, they turn out to be linear functions of Q1,0 and Q3,0. We can
write these expressions in the following form:

V ar[x] = c1Q1,0 + c3Q3,0 + c0, (48)

V ar[y] = d1Q1,0 + d3Q3,0 + d0, (49)

where c1, c3, c0 and d1, d3, d0 are independent of Q1,0 and Q3,0 (but depend
on the derivatives of the controls). The goal is to find the values Q1,0 and
Q3,0 that minimize he variances, but at the same time are compatible with
existence and stability of solutions. For each of the variance expressions,
this comprises a linear minimization problem with a finite 2D feasible re-
gion defined by the positivity of all the control magnitudes, including the
expressions in (32-33) of the main text:

Q3,0 ≤ A−Q1,0, A = Q7,0 −Q9,0 ≥ 0, (50)

Q3,0 ≤ Q1,0, (51)

Q3,0 ≥ 0. (52)

In the (Q1,0, Q3,0) coordinates this is a triangular region with the corners at
(0, 0), (A, 0), and (A/2, A/2). The minimum of functions V ar[x] and V ar[y]
can be found by evaluating the expressions (48) and (49) in the three corners,
and finding the lowest value. For example, for V ar[x], the three values are
respectively

c0, c0 + Ac1, c0 + A(c1 + c3)/2.

The minimum corresponds to corner (0, 0) if c1 > 0 and c1+c3 > 0. Similarly,
the minimum of V ar[y] is achieved in the zero corner if d1 > 0 and d1+d3 > 0.
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Using some algebra we find:

c1 = −2β +Q5x(Q5x +Q6x)

β(Q6x + 2Q1y +Q9y)
> 0, (53)

c1 + c3 = − β +Q2
5x

β(Q6x + 2Qy1 +Q9y)
> 0, (54)

d1 = −β + (Q1y +Q3y +Q9y)(2Q3y +Q9y)

β(Q6x + 2Q1y +Q9y)
> 0, (55)

d1 + d3 = −β + (Q1y +Q3y +Q9y)
2

β(Q6x + 2Q1y +Q9y)
> 0, (56)

where we used the negativity of the partial derivatives and stability condi-
tion for this system, β > 0. This means both SC and SecrC variances are
minimized for zero values of Q1,0 and Q3,0, which in turns suggests that the
optimal SC division pattern from the point of view of homeostasis mainte-
nance is asymmetric divisions.

5.2 General proof

Now we assume that even though the equilibrium values of the rates that
influence the dynamics of CilCs are small, the derivatives of these rates at
the equilibrium may not be small. The analysis of the previous subsection
can be carried out in the same way, but now instead of expressions (53-56)
we have

c1 = −2β + (Q5x −Q4x)(Q5x −Q4x +Q6x)

β(Q6x + 2Q1y +Q9y)
, (57)

c1 + c3 = − β + (Q5x −Q4x)
2

β(Q6x + 2Qy1 +Q9y)
> 0, (58)

d1 = −β + (Q1y +Q3y −Q2y +Q9y)(2(Q3y −Q2y) +Q9y)

β(Q6x + 2Q1y +Q9y)
, (59)

d1 + d3 = −β + (Q1y +Q3y −Q2y +Q9y)
2

β(Q6x + 2Q1y +Q9y)
> 0, (60)

where

β = −Q4x(Q1y +Q2y −Q3y)+Q5x(Q1y +Q2y −Q3y)+Q6x(Q1y −Q2y +Q3y +Q9y) > 0.

One can see that while quantities c1 + c3 and d1 + d3 are always positive, the
signs of coefficients c1 and d1 are harder to determine.
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It turns out that the non-negativity of these quantities can be proven in
general, for any stem cell system. For the proof, it is convenient to use the
solution for the second moments given by equation (26) of the main text:

Y =

∫ ∞
0

exp(Jt)S exp(JT t) dt, (61)

It is clear that Y = {ypq}, the matrix of moments, depends linearly on the

equilibrium rates, Qk∗, through the matrix S = {spq} = {
∑K

k=1Qk∗∆ki
p∆ki

q}.
Let us determine the sign in front of the coefficients that multiply the equi-
librium rates, Ql∗:

∂Y

∂Ql∗
=

∫ ∞
0

exp(Jt)
∂S

∂Ql∗
exp(JT t) dt, (62)

where
∂S

∂Ql∗
= {∆li

p∆li
q},

a cross-product of vector (∆li
1, . . . ,∆li

n) with itself. Note that, by virtue of
being a cross-product, this is a positive semi-definite matrix.

Let us present the Jacobian matrix J and its transpose by means of its
singular value decomposition:

J = UWV T , JT = VWUT ,

where W is a diagonal matrix and U and V are unitary matrices. Then the
expression inside the integral in (61) can be written as

UeWtV T ∂S

∂Ql∗
V EWtUT = P

∂S

∂Ql∗
P T ,

where we denoted
P = UeWtV T .

Then we have for the diagonal entries of Y ,

∂yii
∂Ql∗

=

∫ ∞
0

(Pi)
∂S

∂Ql∗
(Pi)

T dt ≥ 0,

where (Pi) denotes the ith line of matrix P . The inequality follows from the
fact that matrix ∂S

∂Ql∗
is positive semi-definite.

As a consequence, expressions (57) and (59) are nonnegative, and the
variances are minimized by Q1,0 = Q3,0 = 0.
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