⁷⁴¹ APPENDIX A ⁷⁴² Alternate Models

 The primary contribution of the statistical method in this article is the Bayesian two level mixture component for random effects models. Modelling this mixture structure as a function of personality type and time permits the estimation of personality group level and also individual level posterior probabilities of (a) the occurence of spiralling behavior and (b) the cut point where spiralling behavior may commence. To stay on point, the main body of the article restricts the discussion to linear mean functions, monotonic either side of the cut point, and Gaussian errors. An advantage of Bayesian methods, coupled with MCMC techniques, is the easy extension to more general models. This allows us to readily fit different models and examine the results, in order to reduce the risk that any findings are a result of model misspecification. We note immediately, in what follows, although some inference at the individual level changes, none of the essential conclusions in the main text are altered, thereby strengthening the support for the ITA.

⁷⁵⁴ An equivalent way of writing the two level mixture model in the model development section is for 755 $i = 1, \ldots, J$ individuals and $t = 1, \ldots, T$ trials

$$
756 \qquad \bullet \text{ If } S_j = 0
$$

$$
y_{tj} = \alpha_j + \beta_{1j} f(t) + \varepsilon_{tj}, \quad \varepsilon_{tj} \sim \text{iid}
$$
 (.4)

• If $S_j = 1$ and conditional on $c_j = t^*$

$$
y_{tj} = \mathbf{x}_t \mathbf{\beta}_j + \varepsilon_{tj}, \quad \varepsilon_{tj} \sim \text{iid}
$$
 (.5)

where
$$
\mathbf{x}_t = (1, f(t) - (f(t) - f(t^*))^+, (f(t) - f(t^*))^+),
$$

\n
$$
(f(t) - f(t^*))^+ = \begin{cases} f(t) - f(t^*) & \text{if } f(t) - f(t^*) > 0\\ 0 & \text{otherwise,} \end{cases}
$$

 $\mathbf{B}_i = (\alpha_i, \beta_{1,i}, \beta_{2,i})'$ and $\epsilon_{t,i} \sim N(0, \sigma^2)$.

$$
y \leftarrow y + y + z y
$$

759 Now, write $z_j = (1,0)$ if individual *j* is an entity theorist, and $z_j = (0,1)$ if individual *j* is an ⁷⁶⁰ incremental theorist. We expand the model in 4 ways to allow

 761 1. the observational variance to be parameterized according to personality construct so that 762 incremental and entity theorists have separate variances. That is, for each individual *j*,

 $\sigma_j^2 = z_j(\sigma_E^2, \sigma_I^2)'$. Then if individual *j* is an entity theorist $\sigma_j^2 = \sigma_E^2$ and if individual *j* is σ_{764} an incremental theorist $\sigma_j^2 = \sigma_f^2$,

⁷⁶⁵ 2. the random effects variance parameters to be parametrized according to personality con- τ_{66} struct. That is $\tau_{\beta_1}^2 = (\tau_{\beta_{1E}}^2, \tau_{\beta_{1I}}^2)'$ and $\tau_{\beta_2}^2 = (\tau_{\beta_{2E}}^2, \tau_{\beta_{2I}}^2)'$.

3. the error structure to have a t_3 distribution, ε_{t} i $\sim \sigma_j t_3$ to dampen the effects wide tailed error ⁷⁶⁸ distributions or some extreme values,

4. the learning trajectory to accommodate exponential growth functions where $f(t) = 1 \exp(-\lambda t)$ depends upon another model parameter, λ . Functions of the form $\alpha + \beta_1(1$ $exp(-\lambda t)$, are often used in the GMM literature because they have the advantage that in addition to being monotonic, an upper and lower limit exists if $\lambda > 0$. If $\beta_1 > 0$ then the lower limit is α and occurs at time $t = 0$, while the upper limit is $\alpha + \beta_1$ and occurs as $t \to \infty$. Conversely if $\beta_1 < 0$, then the upper limit is α , while $\alpha + \beta_1$ is the lower limit. The parameter λ controls the rate at which the function approaches its upper/lower limit. The rate parameters have a random effects structure so each λ_i is generated by a Gaussian distribution, the mean of which depends upon the personality classification of individual *j*. Also, λ_i is constrained to be positive to ensure that the upper and lower limits exist. We write this as $\lambda_j \sim N_{C_+}(z_j(\mu_{\lambda_E}, \mu_{\lambda_I})', z_j(\tau_{\lambda_E}^2, \tau_{\lambda_I}^2)')$. Then the expected performance score of individual *j* on trial *t* conditional on $S_i = 0$ becomes

$$
E(y_{tj}) = \alpha_j + \beta_{1j}(1 - \exp\{-\lambda_j t\})
$$

and conditional on $S_j = 1$ and $c_j = t^*$

$$
E(y_{tj}) = \begin{cases} \alpha_j + \beta_{1j}(1 - \exp\{-\lambda_j t\}) & \text{if } t \leq c_j \\ \alpha_j + \beta_{1j}(1 - \exp\{-\lambda_j t^*\}) + \beta_{2j}(\exp\{-\lambda_j t^*\} - \exp\{-\lambda_j t\}) & \text{if } t > c_j. \end{cases}
$$

For this choice of function the coefficient, β_{1j} , represents the maximum gain in performance ⁷⁷⁰ before any possible spiral, not the rate of increase in performance. Also, since the rate which the asymptote is approached is modeled as a random effect, λ_i , the basis function is not common across individuals but rather for individual *j* is now $f_i(t)$.

⁷⁷³ Comparison of Results

Figure 7 contains posterior density estimates for the model with ε_{t} \sim $\sigma_{i}t_{3}$ and $f_{i}(t) = 1 - \exp{\lambda_{i}t}$.

 Panel (a) shows the difference in the probability of spiralling behavior between entity theorists and π ⁶ incremental theorists, π _{*E*} $-\pi$ *_I*. Panel (a) shows that the probability of spiralling is overwhelmingly higher for entity theorists than for incremental theorists and indeed $Pr(\pi_E - \pi_I > 0 | Y) \approx 0.98$. Panel (b) shows the difference in maximum performance gain before any possible spiral between $m_{1/2}$ entity and incremental theorists, $\mu_{\beta_{1E}} - \mu_{\beta_{1I}}$. Panel (b) shows that after accounting for potential spiralling behavior there exists no obvious difference in maximum gain during increasing perfor- T_{R1} mance between the two groups: $Pr(\mu_{\beta_{1E}} - \mu_{\beta_{1I}} < 0 | \mathbf{Y}) \approx 0.43$.

[FIGURE 7 about here.]

*f*_{*i*s} Figure 8 shows the individual fitted values when $f_j(t) = 1 - \exp{\lambda_j t}$ and $\varepsilon_{tj} \sim \sigma_j t_3$ and supports the results suggested by Figure 7. Figure 8 clearly shows that entity theorists are more likely to exhibit spiralling behavior. Moreover, among those individuals whose probability of spiralling is less than 0.5 (panel (a) Figure 8) there is no obvious difference in performance between entity theorists and incremental theorists. Importantly, Figures 8 and 7 support the broad conclusions of the statistical analysis in the main text regarding the ITA, suggesting model misspecification has not interfered with those aspects of the analysis.

[FIGURE 8 about here.]

 Table 3 provides additional insight to differences at the individual level by reporting the posterior probability of spiralling for each individual when $f(t) = t$, $f_i(t) = 1 - \exp{\lambda_i t}$ and for ϵ_{t} ϵ_{t} \sim $N(0,\sigma_j^2)$ and ϵ_{t} \sim σ_j t₃. This table shows that the probability of spiralling varies between $_{794}$ individuals of the same personality classification and demonstrates the need to model behavior at the individual level. Table 3 indicates those individuals who exhibit spiralling behavior – a $*$ or * indicates an individual classified as an entity theorist or incremental theorist respectively, for whom the probability of spiralling is greater than 0.5. The results are fairly consistent, particularly for the posterior median of the cut point, although Table 3 shows different combinations of mean functions and error distributions have a stronger influence inference at the individual level than the 800 group level.

ITABLE 3 about here.]

For instance, consider:

812 **IFIGURE 9** about here.]

813 2. In the majority of cases the probability that an individual classified as an incremental theorist $s₁₄$ exhibits spiralling behavior decreases when the mean functions are changed from $f(t) = t$ to $f_j(t) = 1 - \exp{\lambda_j t}$. This is because a linear relationship between performance and 816 trial may not be as appropriate as an exponential growth relationship. Perhaps performance B17 increases over time at a decreasing rate and if a linear mean function is used the method 818 occasionally interprets this decrease in the rate of improvement as the beginning of a spiral. 819 Using an exponential growth mean function appears to correct this.

820 **APPENDIX B** 821 Model Diagnostics and Simulations ⁸²² To check the validity of the model we report residual diagnostics and simulation results. Figure 10 823 shows that the residuals conform to the model assumption of a $\sigma_j \times t_3$ distribution. 824 **[FIGURE 10 about here.]** ⁸²⁵ Figure 11 displays boxplots of the posterior mean estimates of $\pi_E - \pi_I$ for 3 simulation settings of p_{26} π_E and π_I , with 50 replications each. The values of π_E and π_I for each setting appear in Table 4. In

⁸²⁷ all settings $\mu_{\beta_{1E}} = \mu_{\beta_{1I}} = 25$; and $\sigma_E^2 = \sigma_I^2 = 15$. These values were chosen because they are close 828 to the posterior mean of the parameters estimated from the data.

⁸²⁹ [TABLE 4 about here.]

830 In the first simulation setting the probability of spiralling was zero for both entity theorists and 831 incremental theorists. In the second setting the probability of spiralling was 0.5 for both entity ⁸³² theorists and incremental theorists, while in the third setting the probability of spiralling for entity 833 theorists was set to 0.6, while for incremental theorists it was 0.1. The values of the π 's for the 834 third setting were chosen to correspond to the posterior means estimated for the real data. Data 835 were generated from the models given by (.4) and (.5) with $\varepsilon_{tj} \sim \sigma_j \times t_3$.

836 Figure 11 shows that the median value of the posterior means is very close to the true value for all $\frac{1}{837}$ simulation settings. Additionally when $\pi_E = \pi_I = 0.0$ all the estimated posterior means are tightly 838 centred around zero with an interquartile range (IQR) of [-0.02, 0.01]. However when $\pi_E = \pi_I$ 839 0.5, there is more variability in the posterior median estimates and the IQR is [-0.19,0.11]. This is ⁸⁴⁰ to be expected because when spiralling behavior is not present our model detects this, and reduces 841 to a single random effects model. However when spiralling is present, the additional uncertainty ⁸⁴² surrounding the existence and commencement of spiralling behavior induces additional variability 843 in the parameter estimates.

844 In simulation setting 3, where all parameters were set to their estimated values for the real data, ⁸⁴⁵ the boxplots show that the model estimates these parameters well, with the true parameter values 846 very close to the median of the simulation estimates.

847 **[FIGURE 11 about here.]**

848 **APPENDIX C** 849 **Priors**

⁸⁵⁰ This paper uses model averaging to make inference regarding the existence of spiralling behavior. ⁸⁵¹ The Markov chain Monte Carlo algorithm we constructed is one of varying dimension; if spiralling ⁸⁵² behavior is not present then there is a single random effects model for performance behavior. If ⁸⁵³ spiralling behavior is present, then performance behavior is described by a mixture of two random ⁸⁵⁴ effects models, one before the spiral begins and one afterwards. Thus the dimension of the pa-⁸⁵⁵ rameter space changes dependent upon which model for individual performance behavior (spiral 856 or no spiral) is generated at each iteration. In model averaging, where the models are nested, the ⁸⁵⁷ posterior probability of the model with the lowest dimension will be equal to one if improper priors ⁸⁵⁸ are used, see S. A. Wood, Kohn, Shively, and Jiang (2002) and Clyde and George (2004) for a full 859 discussion. Furthermore even if the dimension of the parameter space is fixed, placing improper ⁸⁶⁰ priors on parameters in mixture models can result in improper posterior distributions, because there 861 is always the possibility that no observations are allocated to a component in the mixture. For these ⁸⁶² reasons we place proper priors all parameters.

863 Prior for δ

864 Our prior for the probability of exhibiting spiralling behavior is

$$
Pr(S_j = 1) = \frac{\exp(z_j \delta)}{1 + \exp(z_j \delta)}
$$

$$
p(\delta) \sim N(0, c_{\delta} I_2),
$$

⁸⁶⁵ where the parameter c_{δ} determines the how much the prior shrinks the values of δ_0 and δ_1 toward 866 zero, and hence controls the difference between an entity theorist spiralling and an incremental theorist spiralling, $\pi_E - \pi_I$. If the prior is totally uninformative, i.e. $c_{\delta} \rightarrow \infty$, then we are assuming ⁸⁶⁸ that the two classifications of personality type have nothing in common regarding the existence ⁸⁶⁹ of spiralling, and therefore may as well be analysed separately. However as the prior becomes 870 more informative, the probability of spiralling for an individual classified as an entity theorist will ⁸⁷¹ approach that of an individual classified as an incremental theorist. In the extreme, if $c_0 = 0$ then ⁸⁷² the probability of spiralling for an incremental theorist and an entity theorists will both be equal 0.5 ⁸⁷³ with probability 1. Figure 12 shows the effect of c_{δ} has on the prior for $\boldsymbol{\pi} = (\pi_E, \pi_I)$. In panel (a), s_{74} $c_{\delta} = 1$, in panel (b) $c_{\delta} = 4$ and in panel(c) $c_{\delta} = 10$.

875 **[FIGURE 12 about here.]**

876 As this figure shows placing an uninformative prior on δ , by letting $c_{\delta} \to \infty$ does not result in an uninformative prior for π . As $c_{\delta} \rightarrow \infty$ the prior weight for π_E and π_I is concentrated on either 1 878 or 0. Hence choosing a large value for $c_δ$ overstates the difference in the probability of spiralling 879 between entity theorists and incremental theorist. Conversely choosing a small value for c_{δ} un-880 derstates the difference in the probability of spiralling between entity theorists and incremental theorist. Choosing $c_{\alpha} = 4$, approximates a flat prior for π_E and π_I .

Prior for the μ **'s and** τ^2 **'s**

883 We now describe the priors the random effects variances and means parametrized by their person-⁸⁸⁴ ality type. Choosing priors for variance parameters in random effects models can be tricky because ⁸⁸⁵ of the potential for even weakly informative priors to dominate the information contained in the ⁸⁸⁶ likelihood. For example using the proper but "non-informative" conjugate inverse gamma prior, 887 IG(a,b), for a variance parameter, where *a* and *b* are small, will shrink the posterior distribution 888 of the variance towards zero. For a full discussion of the effect of prior distributions for variance 889 parameters in random effects models see (Gelman, 2006). The potential of the prior to dominate ⁸⁹⁰ the likelihood is obviously more pronounced if the number of individuals, *J*, is small. This is a 891 particular problem in this study where the number of individuals who exhibit spiralling behavior 892 can be small. This is a particular problem in this study where the number of individuals who ex-⁸⁹³ hibit spiralling behavior can be as small as two or three. To mitigate the potential of the prior to 894 dominate the likelihood we follow (Gelman, 2006) and (Browne & Draper, 2006) and place indepenass dent uniform priors on the standard deviations of the random effects $\tau \sim U(0, a_{\alpha}] \times U(0, a_{\beta}]$. The 896 priors on the hyperparameters are

$$
\mu_{\alpha} \sim N(g_{\alpha}, h_{\alpha}),
$$

\n
$$
\tau_{\alpha}^{2} \sim U(0, a_{\alpha}],
$$

\n
$$
\mu_{\beta_{1}} = (\mu_{\beta_{1E}}, \mu_{\beta_{1I}})' \sim N_{C_{+}}(g_{\beta_{1}} \times 1_{2}, h_{\beta_{1}} \times I_{2}),
$$

\n
$$
\mu_{\beta_{2}} = (\mu_{\beta_{2E}}, \mu_{\beta_{2I}})' \sim N_{C_{-}}(g_{\beta_{2}} \times 1_{2}, h_{\beta_{2}} \times I_{2}),
$$

\n
$$
\tau_{\beta_{1}}^{2} = (\tau_{\beta_{1E}}^{2}, \tau_{\beta_{1I}}^{2})' \sim U(0, a_{\beta_{1}}] \times U(0, a_{\beta_{1}}],
$$

\n
$$
\tau_{\beta_{2}}^{2} = (\tau_{\beta_{2E}}^{2}, \tau_{\beta_{2I}}^{2})' \sim U(0, a_{\beta_{2}}] \times U(0, a_{\beta_{2}}],
$$

897 where I_2 is the 2×2 identity matrix and I_2 is a vector of ones of length 2. If exponential growth

⁸⁹⁸ functions are used we have in addition

$$
\lambda_j \sim N\Big((z_j(\mu_{\lambda_E}, \mu_{\lambda_I})', z_j(\tau_{\lambda_E}^2, \tau_{\lambda_I}^2)'\Big) \n(\mu_{\lambda_E}, \mu_{\lambda_I}) \sim N(g_\lambda \times 1_2, h_\lambda \times I_2) \n(\tau_{\lambda_E}^2, \tau_{\lambda_I}^2) \sim U(0, a_\lambda] \times U(0, a_\lambda)
$$

899 and we adopt the following empirical Bayes approach to set the bounds:

900 1. If $f(t) = t$ denote the maximum likelihood estimate of the mean function coefficients for each individual (when $S_j = 0$) as $(\hat{\alpha}_j, \hat{\beta}_{1j})$ then set

$$
a_{\alpha} = \frac{(\max_j(\hat{\alpha}_j) - \min_j(\hat{\alpha}_j))^2}{4}
$$

\n
$$
a_{\beta_1} = \frac{(\max_j(\hat{\beta}_{1j}) - \min_j(\hat{\beta}_{1j}))^2}{4}
$$

\n
$$
a_{\beta_2} = a_{\beta_1},
$$

 $_{902}$ and $g_{\alpha} = \sum_{j=1}^{J} \hat{\alpha}_j / J$, $g_{\beta_1} = \sum_{j=1}^{J} \hat{\beta}_{1j} / J$, $g_{\beta_2} = -g_{\beta_1}$, $h_{\alpha} = a_{\alpha}/\sqrt{J}$, $h_{\beta_1} = a_{\beta_1}/\sqrt{J}$ and $h_{\beta_2} =$ ⁹⁰³ *a* β_2/\sqrt{J} .

⁹⁰⁴ 2. If $f_i(t) = 1 - \exp{\lambda_i t}$ denote the maximum likelihood estimate of the mean function coefficients for each individual (when $S_j = 0$) as $(\hat{\alpha}_j, \hat{\beta}_{1j}, \hat{\lambda}_j)$ then set

$$
a_{\alpha} = \frac{(\max_j(\hat{\alpha}_j) - \min_j(\hat{\alpha}_j))^2}{4}
$$

\n
$$
a_{\beta_1} = \frac{(\max_j(\hat{\beta}_{1j}) - \min_j(\hat{\beta}_{1j}))^2}{4}
$$

\n
$$
a_{\beta_2} = a_{\beta_1},
$$

\n
$$
a_{\lambda} = \frac{(\max_j(\hat{\lambda}_j) - \min_j(\hat{\lambda}_j))^2}{4}
$$

 $_{906}$ and $g_{\alpha} = \sum_{j=1}^{J} \hat{\alpha}_j / J$, $g_{\beta_1} = \sum_{j=1}^{J} \hat{\beta}_{1j} / J$, $g_{\beta_2} = -g_{\beta_1}$, $g_{\lambda} = \sum_{j=1}^{J} \hat{\lambda}_j / J$, $h_{\alpha} = a_{\alpha} / \sqrt{J}$, $h_{\beta_1} =$ ⁹⁰⁷ a_{β_1}/\sqrt{J} and $h_{\beta_2} = a_{\beta_2}/\sqrt{J}$ and $h_{\lambda} = a_{\lambda}/\sqrt{J}$.

908 Prior for σ^2

We set an uninformative uniform prior for the observational variances contained in σ^2 . That is, 910 $p(\sigma_E) \sim U(0,k]$ and $\sigma_I \sim U(0,k]$ for some large non-negative constant *k*.

911 **APPENDIX D** 912 **Sampling Scheme**

⁹¹³ Write $\mathbf{S} = (S_1, S_2, \dots, S_J)$, $\mathbf{C} = (c_1, c_2, \dots, c_J)$ and for the case when $S_j = 0$

$$
\boldsymbol{X}_{j|0} = \begin{bmatrix} 1 & f(1) \\ 1 & f(2) \\ \vdots & \vdots \\ 1 & f(T) \end{bmatrix} \text{ and } \boldsymbol{b}_{j|0} = (\alpha_j, \beta_{1j})'
$$

and for the case when $S_j = 1$ and conditioned on $c_j = t^*$

$$
\boldsymbol{X}_{j|1} = \begin{bmatrix} 1 & f(1) - (f(1) - f(t^*))^+ & (f(1) - f(t^*))^+ \\ 1 & f(2) - (f(2) - f(t^*))^+ & (f(2) - f(c^*))^+ \\ \vdots & \vdots & \vdots \\ 1 & f(T) - (f(T) - f(t^*))^+ & (f(T) - f(t^*))^+ \end{bmatrix} \text{ and } \boldsymbol{b}_{j|1} = (\alpha_j, \beta_{1j}, \beta_{2j})'.
$$

⁹¹⁴ Also, write $b_0 = \{b_{j|0} : S_j = 0\}$, $b_1 = \{b_{j|1} : S_j = 1\}$ and $B = \{\alpha, b_1\}$, $\Theta = (\Theta_0, \Theta_1)$, $\Theta_0 =$ $\{ \mu_{\alpha}, \tau_{\alpha}^2, \mu_{\beta_{1E}}, \mu_{\beta_{1I}}, \tau_{\beta_{1E}}^2, \tau_{\beta_{1I}}^2 \} = \{ \mu_{\alpha}, \tau_{\alpha}^2, \mu_{\beta_1}, \tau_{\beta_1}^2 \},$

 ${}_{\varphi_{16}} \quad \Theta_1 = \{\mu_\alpha, \tau_\alpha^2, \mu_{\beta_{1E}}, \mu_{\beta_{1I}}, \tau_{\beta_{1E}}^2, \tau_{\beta_{1I}}^2, \mu_{\beta_{2E}}, \mu_{\beta_{2I}}, \tau_{\beta_{2E}}^2, \tau_{\beta_{2I}}^2\} = \{\mu_\alpha, \tau_\alpha^2, \mu_{\beta_1}, \tau_{\beta_1}^2, \mu_{\beta_2}, \tau_{\beta_2}^2\}$. Finally, to implement the MCMC scheme when the ε_{tj} 's have a scaled t_3 distribution, define $\varepsilon_{tj} = e_{tj}\sqrt{3/(\kappa_{tj})}$, ⁹¹⁸ where $\kappa_{tj} \sim \chi_3^2$ and $e_{tj} \sim N(0, \sigma^2)$. Then conditional on κ_{tj} the distribution of $\varepsilon_{tj}|\kappa_{tj}$ is $N(0, \omega_{tj})$ ⁹¹⁹ where $\omega_{tj} = \sigma^2/ \kappa_{tj}$, and ω_{tj} is the *t*th, diagonal element of a diagonal matrix Ω_j . Finally, write $\Omega = {\Omega_j : j = 1, 2, ..., J}.$

921 The sampling scheme is then

⁹²² 1. Sample *S.*

$$
p(\mathbf{S}|\mathbf{Y},\mathbf{\Theta},\mathbf{\Omega})=\prod_{j=1}^J p(S_j|\mathbf{y}_j,\mathbf{\Omega}_j,\mathbf{\Theta})
$$

⁹²³ where

$$
p(S_j = 1 | \mathbf{y}_j, \Omega_j, \Theta_1) = \frac{p(\mathbf{y}_j | \Omega_j, \Theta_1, S_j = 1) P(S_j = 1)}{p(\mathbf{y}_j | \Omega_j, \Theta_1, S_j = 1) P(S_j = 1) + p(\mathbf{y}_j | \Omega_j, \Theta_0, S_j = 0) P(S_j = 0)}
$$

⁹²⁴ and

$$
p(\mathbf{y}_{j}|\Omega_{j},\Theta_{1},S_{j}=1) = \frac{\sum_{t=1}^{T-2} x}{T-2} \times \int_{\mathbb{R} \times C_{+} \times C_{-}} p(\mathbf{y}_{j}|S_{j}=1,\Omega_{j},\Theta_{1},c_{j}=t,\boldsymbol{b}_{j|1}) p(\boldsymbol{b}_{j|1}|\Theta_{1},S_{j}=1) d\boldsymbol{b}_{j|1} \Pr(c_{j}=t|S_{j}=1)
$$

$$
p(\mathbf{y}_{j}|\Omega_{j},\Theta_{0},S_{j}=0) = \int_{\mathbb{R} \times C_{+}} p(\mathbf{y}_{j}|S_{j}=0,\Omega_{j},\Theta_{0},\boldsymbol{b}_{j|0}) p(\boldsymbol{b}_{j|0}|\Theta_{0}) d\boldsymbol{b}_{j|0}
$$
 (.6)

925 The integrals in (.6) are equal to

(a)

$$
p(\mathbf{y}_{j}|\Omega_{j},\Theta_{0},S_{j}=0) = \frac{|\boldsymbol{T}_{j|0}^{*}|^{1/2}}{(2\pi)^{T/2}|\boldsymbol{T}_{j|0}|^{1/2}|\Omega_{j}|^{1/2}} \times \exp\left\{-\frac{1}{2}\left(\mathbf{y}_{j}^{\prime}\Omega_{j}^{-1}\mathbf{y}_{j}+\boldsymbol{M}_{j|0}^{\prime}\boldsymbol{T}_{j|0}^{-1}\boldsymbol{M}_{j|0}-\boldsymbol{M}_{j|0}^{*}\boldsymbol{T}_{j|0}^{*-1}\boldsymbol{M}_{j|0}^{*}\right)\right\} \times \frac{1-\Phi\left((\infty,0)^{\prime}|\boldsymbol{M}_{j|0}^{*},\boldsymbol{T}_{j|0}^{*}\right)}{1-\Phi\left((\infty,0)^{\prime}|\boldsymbol{M}_{j|0},\boldsymbol{T}_{j|0}\right)}
$$

where
\n
$$
\boldsymbol{T}_{j|0} = \begin{bmatrix} \tau_{\alpha}^2 & 0 \\ 0 & z_j \tau_{\beta_1}^2 \end{bmatrix}, \qquad \boldsymbol{M}_{j|0} = \begin{bmatrix} \mu_{\alpha} \\ z_j \boldsymbol{\mu}_{\beta_1} \end{bmatrix},
$$
\n
$$
\boldsymbol{T}_{j|0}^* = \left(\boldsymbol{X}_{j|0}' \Omega_j^{-1} \boldsymbol{X}_{j|0} + \boldsymbol{T}_{j|0}^{-1} \right)^{-1} \quad \text{and} \quad \boldsymbol{M}_{j|0}^* = \boldsymbol{T}_{j|0}^* \left(\boldsymbol{X}_{1|0}' \Omega_j^{-1} \boldsymbol{y}_j + \boldsymbol{T}_{j|0}^{-1} \boldsymbol{M}_{j|0} \right)
$$

$$
_{927} \qquad \qquad (b) \ \text{and}
$$

$$
p(\mathbf{y}_{j}|\Omega_{j},\Theta_{1},c_{j}=t,S_{j}=1) = \frac{|\boldsymbol{T}_{j|1}^{*}|^{1/2}|\mathbf{X}_{j|1}|^{1/2}}{(2\pi)^{T/2}|\boldsymbol{T}_{j|1}|^{1/2}|\Omega_{j}|^{1/2}} \times \exp\left\{-\frac{1}{2}\left(\mathbf{y}_{j}^{\prime}\Omega_{j}^{-1}\mathbf{y}_{j}+\boldsymbol{M}_{j|1}^{\prime}\boldsymbol{T}_{j|1}^{-1}\boldsymbol{M}_{j|1}-\boldsymbol{M}_{j|1}^{*}\boldsymbol{T}_{j|1}^{*-1}\boldsymbol{M}_{j|1}^{*}\right)\right\} \times \frac{\Phi((\infty,\infty,0)^{\prime}|\boldsymbol{M}_{1|j}^{*},\boldsymbol{T}_{1|j}^{*})-\Phi((\infty,0,0)^{\prime}|\boldsymbol{M}_{1|j}^{*},\boldsymbol{T}_{1|j}^{*})}{\Phi((\infty,\infty,0)^{\prime}|\boldsymbol{M}_{1|j},\boldsymbol{T}_{1|j})-\Phi((\infty,0,0)^{\prime}|\boldsymbol{M}_{1|j},\boldsymbol{T}_{1|j})}
$$

⁹²⁸ where

$$
\boldsymbol{T}_{j|1} = \begin{bmatrix} \tau_{\alpha}^2 & 0 & 0 \\ 0 & z_j \tau_{\beta_1}^2 & 0 \\ 0 & 0 & z_j \tau_{\beta_2}^2 \end{bmatrix}, \qquad \boldsymbol{M}_{j|1} = \begin{bmatrix} \mu_{\alpha} \\ z_j \mu_{\beta_1} \\ z_j \mu_{\beta_2} \end{bmatrix},
$$

$$
\boldsymbol{T}_{j|1}^* = \left(\boldsymbol{X}_{j|1}' \Omega_j^{-1} \boldsymbol{X}_{j|1} + \boldsymbol{T}_{j|1}^{-1} \right)^{-1} \quad \text{and} \quad \boldsymbol{M}_{j|1}^* = \boldsymbol{T}_{j|1}^* \left(\boldsymbol{X}_{j|1}' \Omega_j^{-1} \boldsymbol{y}_j + \boldsymbol{T}_{j|1}^{-1} \boldsymbol{M}_{j|1} \right)
$$

- ⁹²⁹ 2. Sample *C*.
- ⁹³⁰ Draw *C* from

$$
p(\mathbf{C}|\mathbf{Y},\mathbf{\Theta},\mathbf{S},\mathbf{\Omega})=\prod_{j=1}^J p(c_j=t|\mathbf{\Theta},\mathbf{y}_j,S_j,\Omega_j)
$$

If $S_j = 0$, c_j no sampling is required. Conditional on $S_j = 1$, c_j is drawn according to

$$
p(c_j = t | \mathbf{\Theta}, \mathbf{y}_j, S_j = 1) = \frac{\frac{1}{T-2} p(\mathbf{y}_j | \mathbf{\Theta}_1, c_j = t, S_j = 1, \Omega_j)}{\sum_{t'=1}^{T-2} \frac{1}{T-2} p(\mathbf{y}_j | \mathbf{\Theta}_1, c_j = t', S_j = 1, \Omega_j)}
$$

- ⁹³² where the densities in the denominator and numerator are given in step 1.
- ⁹³³ 3. Sample *B*.

⁹³⁴ Draw *B* from

$$
p(\mathbf{B}|\mathbf{Y},\mathbf{\Theta},\mathbf{S},\mathbf{C},\mathbf{\Omega})=\prod_{j:S_j=0}p(\mathbf{b}_{j|0}|\mathbf{y}_j,\mathbf{\Theta}_0,S_j=0,\mathbf{\Omega}_j)\prod_{j:S_j=1}p(\mathbf{b}_{j|1}|\mathbf{y}_j,\mathbf{\Theta}_1,S_j=1,c_j=t,\mathbf{\Omega}_j)
$$

Again, from step 1 we can see that $b_{j|0}$ is drawn according to $N(M^*_{j|0}, T^*_{j|0})$ restricted to the region $\mathbb{R} \times C_+$ and $\mathbf{b}_{j|1}$ is sampled according to $N(\mathbf{M}_{j|1}^*, \mathbf{T}_{j|1}^*)$ restricted to the region $\mathbb{R} \times C_+ \times C_-$. To draw $\mathbf{b}_{j|0}$ and $\mathbf{b}_{j|1}$ we note that linear transformations of truncated nor-⁹³⁸ mal vectors, and the one-dimensional conditional distributions, are also truncated normal (Rodriguez-Yam, Davis, & Scharf, 2004), so that drawing the elements of $\mathbf{b}_{j|0}$ and $\mathbf{b}_{j|1}$, 940 reduces to drawing a sequence of one-dimensional constrained conditional normal distribu-941 tions.

 $_{942}$ 4. Sample λ .

⁹⁴³ If the basis functions are exponential growth curves then draw $\lambda = (\lambda_1, \ldots, \lambda_J)$, from

$$
p(\lambda | \mathbf{Y}, \mathbf{S}, \mathbf{C}, \mathbf{B}, \mathbf{\Omega}, \mu_{\lambda}, \tau_{\lambda}^{2}) = \prod_{j=1}^{J} p(\lambda_{j} | \mathbf{y}_{j}, S_{j} = s_{j}, c_{j}, \mathbf{b}_{j | s_{j}}, \Omega_{j}, \mu_{\lambda}, \tau_{\lambda}^{2})
$$

=
$$
\prod_{j=1}^{J} p(\mathbf{y}_{j} | \lambda_{j}, S_{j} = s_{j}, c_{j}, \mathbf{b}_{j | s_{j}}, \Omega_{j}) p(\lambda_{j} | \mu_{\lambda}, \tau_{\lambda}^{2})
$$

using a Metropolis-Hastings step. If the current value of λ_j in the chain is λ_j^c then a new value, λ_j^N , is drawn from a proposal density $q(\lambda_j) \sim N_{C_\lambda}(\hat{\lambda}_j, \hat{\Sigma}_{\lambda_j})$. The value of $\hat{\lambda}_j$ is the value that maximizes $l(\lambda_j)$ where $l(\lambda_j) = \log(p(\mathbf{y}_j|\lambda_j, S_j = s_j, c_j, \mathbf{b}_{j|s_j}, \Omega_j)p(\lambda_j|\mu_\lambda, \tau_\lambda^2))$, and $\hat{\Sigma}_{\lambda_j}$ is equal to the inverse of the second derivative of $l(\lambda_j)$ evaluated at $\hat{\lambda}_j$. If $\lambda_j^N > 0$, λ_j^N is accepted with the usual Metropolis-Hastings probability, otherwise retain λ_j^c .

$$
_{949} \qquad 5. \text{ Sample } (\sigma_E^2, \sigma_I^2).
$$

$$
a_{950} \qquad \qquad \text{(a) When } \varepsilon_{tj} \sim N(0, (\sigma_E^2, \sigma_I^2)z_j) \text{ then draw } (\sigma_E^2, \sigma_I^2) \text{ from}
$$

$$
p(\sigma_E^2, \sigma_I^2 | \boldsymbol{Y}, \boldsymbol{B}, \boldsymbol{S}, \boldsymbol{C}) = p(\sigma_E^2 | \boldsymbol{Y}, \boldsymbol{B}, \boldsymbol{S}, \boldsymbol{C}) p(\sigma_I^2 | \boldsymbol{Y}, \boldsymbol{B}, \boldsymbol{S}, \boldsymbol{C})
$$

where

$$
\sigma_E^2 \sim IG\left(\frac{J_E}{2} - 1, \frac{\sum_{\{j: Z_j = (1,0)'\}} (\mathbf{y}_j - \hat{\mathbf{y}}_j) / (\mathbf{y}_j - \hat{\mathbf{y}}_j)}{2}\right) \mathbb{I}\{\sigma_E^2 \le k\},
$$
\n
$$
\mathbb{I}\{\sigma_E^2 \le k\} = \begin{cases} 0 & \text{if } \sigma_E^2 > k \\ 1 & \text{if } \sigma_E^2 \le k, \end{cases}
$$
\n
$$
\hat{\mathbf{y}}_j = \begin{cases} \mathbf{X}_{j|0}\boldsymbol{b}_{j|0} & \text{if } S_j = 0 \\ \mathbf{X}_{j|1}\boldsymbol{b}_{j|1} & \text{if } S_j = 1 \text{ and } c_j = t^* \end{cases}
$$
\n
$$
\text{and } J_E = \sum_{j=1}^J \mathbb{I}\{\mathbf{z}_j = (1,0)'\}. \text{ Similarly, draw } \sigma_I^2 \text{ with } \mathbf{z}_j = (0,1)'.
$$

$$
f_{\rm{max}}
$$

951

952

and

⁹⁵⁴ (b) If $\varepsilon_{jt} \sim \sigma_j t_3$ then draw σ_j^2 by

⁹⁵⁵ i. Generating κ_t ; from a Gamma distribution $G(u_a, u_b)$ with $u_a = 2$ and

$$
u_b = \frac{1}{2} \left(1 + \left(\frac{y_{tj} - \mathbf{X}_{tj|S_j} \mathbf{b}_{j|S_j}}{\sigma \sqrt{3}} \right)^2 \right)
$$

where $\mathbf{X}_{tj|S_j}$ is a row vector denoting the *t*th row of $\mathbf{X}_{j|S_j}$ for $t = 1, ..., T$ and 957 $j = 1, \ldots, J$.

⁹⁵⁸ ii. Generating $\sigma^2 = (\sigma_E^2, \sigma_I^2)z_j$. σ_E^2 and σ_I^2 have inverse gamma distribution with parameters (u_E, v_E) and (u_I, v_I) respectively. To draw σ_E^2 , we note $u_E = J_E/2 - 1$ $\sum_{j=1}^{J} \mathbb{I}\{z_j = (1,0)^{\prime}\}\$ and

$$
v_E = \frac{1}{2} \sum_{\{j: \mathbf{Z}_j = (1,0)'\}} \sum_{t=1}^T \left(\frac{y_{tj} - \mathbf{X}_{tjS_j} \mathbf{b}_{jS_j}}{\sqrt{\kappa_{tj}/3}} \right)^2
$$

 σ_I^2 is drawn in a similar fashion.

962 6. Sample $\delta = (\delta_0, \delta_1)$.

Draw δ from

 $p(\delta|Y, C, B, S) = p(\delta|S) \approx p(S|\delta)p(\delta)$

⁹⁶³ where $p(\delta)$ is the prior distribution of δ discussed in the main text. We use a Metropolis-Hastings method for this step. If the current value of δ in the chain is δ^c then a new value, δ^N , is drawn from a proposal density $q(\delta) \sim N(\hat{\delta}, \hat{\Sigma})$, where $\hat{\delta}$ is the value of δ which maximizes $\log p(\mathbf{S}|\mathbf{\delta})p(\mathbf{\delta})$, and $\hat{\Sigma}$ is equal to the inverse of the second derivative of $\log p(\mathbf{S}|\mathbf{\delta})p(\mathbf{\delta})$ evaluated at $\hat{\delta}$. This new value is accepted with the usual probability.

$$
968 \qquad 7. Sample (\mu_{\alpha}, \mu_{\beta_1}, \mu_{\beta_2}).
$$

 $_{969}$ First, draw μ_{α} from

$$
\mu_{\alpha}|\mathbf{B}, \tau_{\alpha}^2 \sim N\left(\frac{\tau_{\alpha}^2 g_{\alpha} + h_{\alpha} \sum_{j=1}^{J} \alpha_j}{J \times h_{\alpha} + \tau_{\alpha}^2}, \frac{J \times h_{\alpha} + \tau_{\alpha}^2}{\tau_{\alpha}^2 h_{\alpha}}\right)
$$

⁹⁷⁰ then draw $(\mu_{\beta_{1E}}, \mu_{\beta_{2E}})$ from

$$
p(\mu_{\beta_{1E}}, \mu_{\beta_{2E}} | \boldsymbol{Y}, \boldsymbol{B}, \tau_{\beta_{1E}}^2, \tau_{\beta_{2E}}^2) = p(\mu_{\beta_{1E}} | \boldsymbol{B}, \tau_{\beta_{1E}}^2) \times p(\mu_{\beta_{2E}} | \boldsymbol{B}, \tau_{\beta_{2E}}^2)
$$

971 where

$$
\mu_{\beta_{1E}}|\mathbf{B},\tau_{\beta_{1}E}^{2} \sim N_{C_{+}} \left(\frac{\tau_{\beta_{1E}}^{2}g_{\beta_{1}} + h_{\beta_{1}}\sum_{\{j:z_{j}=(1,0)\}}\beta_{1j}}{J_{E}h_{\beta_{1}} + \tau_{\beta_{1E}}^{2}} , \frac{J_{E}h_{\beta_{1}} + \tau_{\beta_{1E}}^{2}}{\tau_{\beta_{1E}}^{2}h_{\beta_{1}}} \right) \n\mu_{\beta_{2E}}|\mathbf{B},\tau_{2E}^{2} \sim N_{C_{-}} \left(\frac{\tau_{\beta_{2E}}^{2}g_{\beta_{2}} + h_{\beta_{2}}\sum_{\{j:z_{j}=(1,0),S_{j}=1\}}\beta_{2j}}{J_{E_{s}}h_{\beta_{2}} + \tau_{\beta_{2E}}^{2}} , \frac{J_{E_{s}}h_{\beta_{2}} + \tau_{\beta_{2E}}^{2}}{\tau_{\beta_{2E}}^{2}h_{\beta_{2}}} \right),
$$

⁹⁷² $J_E = \sum_{j=1}^{J} \mathbb{I}\{z_j = (1,0)'\}$ and $J_{E_s} = \sum_{j=1}^{J} \mathbb{I}\{z_j = (1,0)', S_j = 1\}$. Then draw $(\mu_{0I}, \mu_{\beta_{1I}}\mu_{\beta_{2I}})'$ ⁹⁷³ in a similar fashion but $z_j = (0,1)$.

974 8. Sample
$$
(\tau_{\alpha}^2, \tau_{\beta_{1I}}^2, \tau_{\beta_{2I}}^2, \tau_{\beta_{1E}}^2, \tau_{\beta_{2E}}^2)'
$$
.
First, draw τ_{α}^2 from $p(\tau_{\alpha}^2 | \mathbf{B}, \mu_{\alpha})$, then draw, $(\tau_{\beta_{1E}}^2, \tau_{\beta_{2E}}^2)'$ from

$$
p(\tau_{\beta_{1E}}^2, \tau_{\beta_{2E}}^2 | \boldsymbol{Y}, \boldsymbol{B}, \mu_{\beta_{1E}}, \mu_{\beta_{2E}}) = p(\tau_{\beta_{1E}}^2 | \boldsymbol{B}, \mu_{\beta_{1E}}) \times p(\tau_{\beta_{2E}}^2 | \boldsymbol{B}, \mu_{\beta_{2E}}).
$$

976 where

$$
\tau_{\alpha}^{2}|\mathbf{B},\mu_{\alpha} \sim IG\left(J/2-1,\frac{\sum_{j=1}^{J}(\alpha_{j}-\mu_{\alpha})^{2}}{2}\right) \mathbb{I}\{\tau_{\alpha}^{2} \leq a_{\alpha}\}\n\n\tau_{1E}^{2}|\mathbf{B},\mu_{\beta_{1E}} \sim IG\left(J_{E}/2-1,\frac{\sum_{\{j:Z_{j}=(1,0)\}}(\beta_{1j}-\mu_{\beta_{1E}})^{2}}{2}\right) \mathbb{I}\{\tau_{1E}^{2} \leq a_{\beta_{1}}\}\n\n\tau_{2E}^{2}|\mathbf{B},\mu_{\beta_{2E}} \sim IG\left(J_{E_{s}}/2-1,\frac{\sum_{\{j:Z_{j}=(1,0),S_{j}=1\}}(\beta_{2j}-\mu_{\beta_{2E}})^{2}}{2}\right) \mathbb{I}\{\tau_{1E}^{2} \leq a_{\beta_{1}}\}
$$

where J_E , J_{E_s} are as defined in step 7, the function $\mathbb{I}\{\cdot\}$ is as defined in step 5 and $a_{\alpha}, a_{\beta_1}, a_{\beta_2}$ are calculated as described in the Priors section. Then draw $(\tau_{\beta_{1}I}^2, \tau_{\beta_{2}I}^2)$ in a similar fashion 979 but with $z_j = (0, 1)$.

9. If the basis functions are exponential growth curves then μ_{λ} and τ_{λ}^2 are drawn as in steps 7 981 and 8 above with the appropriate constraints.

TABLE 3

Estimate of posteriors means for individual probability of spiralling, $\hat{Pr}(S_i = 1 | \mathbf{Y})$ for all individuals classified as entity theorists (red) and as incremental theorists (blue) for three basis functions and two type of error distribution. An $*$ or $*$ indicates an individual classified as an entity theorist or incremental theorist respectively for whom the probability of spiralling is greater than 0.5. An estimate of the median value of the point at which the spiral begins, c_j , is given in the last column for the case when $f_j(t) = 1 - \exp{\lbrace -\lambda_j t \rbrace}$.

	f(t) $= t$		$f_j(t) = 1 - \exp\{-\lambda_j t\}$		$\bar{\bar{\hat{c}}}_j$
Individual	Normal	t_3	Normal t_3		
1	0.06	0.06	0.01	$0.01\,$	0
	$0.88 *$	0.44	$0.99*$	$0.97 *$	5
	0.27	0.28	0.22	0.09	$\overline{0}$
	0.03	0.06	0.01	0.01	$\bf{0}$
2345678	0.16	0.25	0.20	0.09	$\boldsymbol{0}$
	0.01	0.03	0.00	0.00	$\boldsymbol{0}$
	0.05	0.08	0.01	0.01	$\boldsymbol{0}$
	0.10	0.11	0.02	0.03	$\bf{0}$
9	0.01	0.04	0.01	0.00	$\bf{0}$
10	0.20	0.37	0.22	0.07	$\bf{0}$
11	0.06	0.04	0.00	0.00	$\boldsymbol{0}$
12	0.12	0.13	0.02	0.03	$\boldsymbol{0}$
13	0.11	0.24	0.15	0.04	$\overline{0}$
14	$0.76*$	$0.68 *$	$0.77*$	$0.93 *$	$\overline{4}$
15	0.22	0.22	0.05	0.14	$\overline{0}$
16	$0.55*$	$0.58 *$	$0.54 *$	$0.66 *$	$\overline{\mathcal{A}}$
17	0.05	0.12	0.02	0.02	$\overline{0}$
18	0.98*	$0.87*$	$0.97*$	$1.00*$	
19	$0.97*$	$0.46*$	$0.66*$	0.07	
20	$0.96*$	$0.86*$	$0.95*$	$0.99*$	
21	$1.00*$	$0.92*$	$1.00*$	$0.97*$	3034303
$\overline{22}$	$0.99*$	$0.97*$	$1.00*$	$1.00*$	
23	0.01	0.05	0.01	0.01	
24	$0.59*$	$0.66*$	$0.59*$	$0.75*$	
25	0.03	0.11	0.01	0.02	$\overline{0}$
26	$1.00*$	$0.98*$	$1.00*$	$1.00*$	$\frac{2}{0}$
27	0.04	0.23	0.01	0.01	
28	$0.97 *$	$0.97 *$	$1.00*$	$0.94 *$	1
Average	0.63	0.68	0.64	0.61	
Average	0.17	0.19	0.14	0.14	

TABLE 4 Values of π_E and π_I used in simulation settings.

Parameter	Setting Number			
π_F	(0.0)	0.5	0.6	
π_I	00	0.5	01	
$-\pi$ ı	00	00		

Estimated posterior densities for the model $f_j(t) = 1 - \exp\{-\lambda_j t\}$ and $\epsilon \sim \sigma_j t_3$. Panel (a) displays the difference in the probability of spiralling between entity theorists and incremental theorists, $\pi_E - \pi_I$. Panel (b) shows the difference in maximal performance gain between entity and incremental theorists, $\mu_{\beta_{1E}} - \mu_{\beta_{1I}}$.

Panel (a); Posterior mean of all individual performance curves for entity theorists (red) and incremental theorists (blue) for the model with $f_j(t) = 1 - \exp{\lbrace -\lambda_j t \rbrace}$ and $\varepsilon_{it} \sim \sigma_{i}$. Panels (b) and (c) are similar plots for individuals for whom the prob-Panels (b) and (c) are similar plots for individuals for whom the probability of spiralling is less than 0.5 (panel (b)) and greater than 0.5 (panel (c)).

Observed performance of individual 19 and posterior mean of regression line when $\varepsilon_{jt} \sim$ $N(0, \sigma_j^2)$, dashed (- - -), and when $\varepsilon_{tj} \sim \sigma_j t_3$, dotted (...), for $f(t)_j = 1 - \exp\{-\lambda_j t\}$.

Histogram of residuals for the model given by (.4) and (.5) with $\varepsilon_{jt} \sim \sigma_j \times$ *t*₃, and $f_j(t) = 1 - \exp\{-\lambda_j t\}$, overlaid with the density function of a *t*₃.

Boxplots of posterior mean estimates for 3 simulation settings with 50 realisations in each simulation. In each panel, the left boxplot corresponds to the simulation when $\pi_E = \pi_I = 0$, the middle boxplot corresponds to the simulation when $\pi_E = \pi_I = 0.5$ and the right boxplot corresponds to the simulation when $\pi_E = 0.6$ and $\pi_I = 0.1$. Panel (a) reports posterior mean estimates of $\pi_E - \pi_I$. Panel (b) reports posterior mean estimates of $\mu_{\beta_{1E}} - \mu_{\beta_{1I}}$, Panel (c) reports posterior mean estimates of σ_E/σ_I . The horizontal blue dashed line is true values.

