
Supplemental material: Extracting Multiple
Interacting Root Systems using X-ray Micro

Computed Tomography

Here we give a detailed description of the proposed extraction technique, be-
ginning with the extraction of a single individual root system (i.e. assuming
that all root cross-sections belong to the same plant). A collision detec-
tion mechanism is then added to identify the interaction of multiple targets,
to which a shape constraint is imposed, allowing the extraction of multiple
interacting plant root systems.

Object Boundary Detection

We adopt the level set framework (Sethian, 1999) to search for the boundaries
of root cross-sections. We aim at finding the interface
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of a time-dependent function Φx,y,t that separates an object consisting of
comparable intensity values from its heterogeneous background. The inter-
face of Φx,y,t can be implicitly propagated by solving a partial differential
equation

∂Φx,y,t
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which can be approximated and rewritten using a finite forward difference
scheme in time

Φt+1
x,y − Φt

x,y

∆t
+ F

∣∣∇x,yΦ
t
x,y

∣∣ = 0 (3)

giving a general formulation of the time-discretized level set method, with
F being a speed function that defines the motion of the front over time t.
Assuming we have the greyscale intensity values of a known root object,
we use a kernel density estimator to build a statistical probability density
function, which we will refer to as our root appearance model pm
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where n is the number of data points, h the bandwidth and K a Gaussian
smoothing kernel K(x) = 1√

2π
e−

1
2
x2 . Using the Jensen-Shannon (JS) diver-

gence (Lin, 1991) as given in Equation 5, we compute the distance between
a probability density function pf estimated around the interface of the level
set function and our known root model pm

JS(pf , pm) = H(w1pf + w2pm)− w1H(pf )− w2H(pm) (5)

where H is the Shannon entropy function calculated as in Equation 6. w1 and
w2 are two weighting parameters w1, w2 ≥ 0, w1 +w2 = 1 used to balance the
contribution of the two statistical probability density functions and useful
for conditional probability studies where the weighting parameters represent
prior probabilities. In our case, however, we set w1 = w2 = 0.5.

H(p) = −
n∑
i=0

pi logb (pi) (6)

The JS divergence is a non-negative and symmetric dissimilarity measure,
bounded by [0, logb2]. Using a logarithm of base 2 results in a distance that
is measured within [0, 1], where 0 is considered a complete match between
two probability density functions. Given the above definitions, we can now
build them into a level set framework
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Multiple Interacting Objects

While tracking target objects through the image stack, their shape is noted
and used to control appearance model updates. We can, therefore, easily
recall an object’s outline and store the most recent shape information seen
before the interaction with other objects began. This information is kept
until the interaction ceases. Let U = {~ui|i = 1..Nu} be a set of data points
along the outline of a stored shape and V = {~vi|i = 1..Nv} be a set of data
points along a level set’s interface. The rotation matrix R and the translation
matrix T are sought which minimise the root mean squared distance between
U and V and therefore find the best alignment of the two point sets. This
can be achieved using the iterative closest point (ICP) algorithm (Besl and
McKay, 1992). By calculating the centre of mass ~µu and ~µv of the two
point clouds, it is possible to determine the cross-covariance matrix covuv =
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Nu

∑Nu

i=1[(~ui − ~µu)(~vi − ~µv)
ᵀ] for U and V . Using the cyclic components

~a = (A23, A31, A12) of a matrix A = covuv − covᵀuv allows the definition of a
4× 4 matrix Q

Q4×4 =

(
tr(covuv) ~aᵀ

~a covuv + covᵀuv − tr(covuv)I3

)
(8)

The eigenvector ~r = (q1 q2 q3 q4) of the matrix Q with the maximum
eigenvalue is used to define the rotation matrix R

R =


q21 + q22 − q23 − q24 2(q2q3 − q1q4) 2(q2q4 + q1q3) 0

2(q2q3 + q1q4) q21 + q23 − q22 − q24 2(q3q4 − q1q2) 0
2(q2q4 − q1q3) 2(q3q4 + q1q2) q21 + q24 − q22 − q23 0

0 0 0 1

 (9)

The vector ~t = ( ~µv −R ~µu) is used to define the translation matrix T

T =


1 0 0 t1
0 1 0 t2
0 0 1 t3
0 0 0 1

 (10)

The ICP algorithm is initialised by setting the rotation and translation
matrices equal to the identity matrix R = T = I and begins by iden-
tifying for each point ~u ∈ U the best match with the shortest distance
d(~u, V ) = min~v∈V ‖~v − ~u‖. This step can be efficiently performed using a
k-d tree (Rusinkiewicz and Levoy, 2001). With the set of matching pairs
as input, the best registration is calculated using the quaternion-based least
square method, determining R and T which are then applied to U . The
whole process is repeated iteratively, finding new matching points and their
transformation, until the change in mean squared error falls below a given
threshold.

The ICP algorithm, as described above, is used to find the best alignment
of the stored shape to the evolving interface. This leaves each point within
the interface in one of two possible states: it is either outside or inside of its
aligned region. Let S = {S1..Sn} be the enclosed areas of each aligned shape
to its corresponding level set function, L = {Φ1..Φn} be the set of level set
functions at time t and L∗ = {Φ∗1..Φ∗n} the set of their temporary states, then
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the final value of the level set function Φt+1
i at time step t + 1 and position

p is updated accordingly

Φt+1
i =


Φ∗i if (p ∈ Si) ∧ (p /∈ {S\Si})
max (Φ∗i ,−{Lj|p ∈ Sj}) if (p ∈ Si) ∧ (p ∩ {S\Si} 6= ∅)
max (Φ∗i ,−{L∗\Φ∗i }) if (p ∩ Si = ∅)

(11)
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