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methods: GSEA and enrichment of differentially expressed genes. Similarity Venn Diagrams and 
individual patient ROC curves illustrate and quantify that the in vivo dysregulation is recapitulated ex 
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Dear JBI Reviewers, 

We would like to thank you for considering our paper entitled “Concordance between ex vivo PBMC 
and in vivo human infections confirmed by N-of-1-pathways analysis of single-subject 
transcriptome”.   
We agreed with all reviewers’ comments and have rewritten the manuscript to thoroughly address 
them. The revised manuscript is now submitted for your further review and journal submission.  

Associate Editor's Comments: 
Comment. Please be sure to add a notation that this paper is an expanded and updated version of a 
peer-reviewed presentation at the TBC meeting, per Reviewer #3's concern. 

Response. We agree with the reviewer and apologize for the lack of acknowledgement of this 
presentation (though there were neither associated abstract nor paper). We were invited by Dr. Ted 
Shortliffe to publish the presentation in JBI, and added the following disclosure in the 
acknowledgment.  

(Acknowledgements) “This manuscript is an original publication that extends a peer-reviewed 
presentation held at the 4th Translational Bioinformatics Conference (ISB/TBC 2014), organized by the 
Chinese Academy of Sciences and Qingdao University held in Qingdao, China, October 24-27, 2014. 
We thank the leadership of the conference for selecting and recommending this work for publication.” 

Reviewers' comments: 
----- Reviewer #1 -----  
This is an interesting study by Gardeux, et al. that describes the possible relationship between ex vivo 
and in vivo knowledge within the context of an N-of-1 pathway framework. Overall, the work is well 
motivated and the results are interesting (although the results do not appear to be unexpected based 
on previous work published by the authors; the condition is now different, which does further 
demonstrate the generalizability of the method).   

è Thank you 

Comment 1.a. However, the presentation of the material could be expanded to better convey the 
points that the authors are aiming to make. 

Response 1.a. We agree and have expanded the paper to better cover the points as shown below in 
the other responses. 

Comment 1.b. The abstract could be made more concise. Additionally, the Background section in the 
Abstract might be broken into Background and Objective sections. 

Response 1.b. We agree and reduced it from 460 words to 296 words, as shown below. 
(Abstract) Background. Understanding individual patient host-response to viruses is key to designing 
optimal personalized therapy. Unsurprisingly, in vivo human experimentation to understand 
individualized dynamic response of the transcriptome to viruses are rarely studied because of the 
obviously limitations stemming from ethical considerations of the clinical risk.  
Objective. In this rhinovirus study, we first hypothesize that ex vivo human cells response to virus can 
serve as proxy for otherwise controversial in vivo human experimentation. We further hypothesized that 
the N-of-1-pathways framework, previously validated in cancer, can be effective in understanding the 
more subtle individual transcriptomic response to viral infection. 
Method. N-of-1-pathways computes a significance score for a given list of gene sets at the patient level, 
using merely the ‘omics profiles of two paired samples as input. We extracted the peripheral blood 
mononuclear cells (PBMC) of four human subjects, aliquoted in two paired samples, one subjected to 
ex vivo rhinovirus infection. Their dysregulated genes and pathways were then compared to those of 9 
human subjects prior and after intranasal inoculation in vivo with rhinovirus. Additionally, we developed 
the Similarity Venn Diagram, a novel visualization method that goes beyond conventional overlap to 
show the similarity between two sets of qualitative measures. 
Results. We evaluated the individual N-of-1-pathways results using two established cohort-based 
methods: GSEA and enrichment of differentially expressed genes. Similarity Venn Diagrams and 
individual patient ROC curves illustrate and quantify that the in vivo dysregulation is recapitulated ex 
vivo both at the gene and pathway level (p-values≤0.004). 
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Conclusion. We established the first evidence that an interpretable dynamic transcriptome metric, 
conducted as an ex vivo assays for a single subject, has the potential to predict individualized response 
to infectious disease without the clinical risks otherwise associated to in vivo challenges. These results 
serve as foundational work for personalized “virograms”.  

Comment 1.c. The Introduction and Discussion sections are admirably short, but perhaps could be 
expanded to better motivate the study and provide some more insights to the implications of the study 
results.  

Response 1.c. We agree and extended the Introduction from 609 words to 805 words and the 
Discussion from 496 words to 1,064 words (see also responses 1.e and 1.g).  

(Introduction) Interestingly, antibiograms are well-established assays that provide precision 
antibiotherapy to patients. They involve cultivating bacteria infecting a specific organ of a patient and 
subjecting them to a number of tests to characterize the pathogen and its resistance to a number of 
distinct antibiotics.  In contrast, the field of infectious disease has not produce similar assays to test the 
host (human subject) exposed to viruses. Therefore, there is an opportunity to improve precision 
medicine by establishing the personal response to viruses that may impact one’s disease treatment 
(e.g. Chronic Obstructive Lung Disease). We conceived the following ex vivo assays and expression 
analysis methods in order to provide tools that would allow systematic non-invasive investigations of the 
dynamic transcriptome response to viruses. As viruses infect cells, the viral transformation of these cells 
caused by the introduction of viral DNA or RNA is associated with substantial regulatory changes 
leading to favoring virus replication over normal cell functions. We thus use the dynamics transcriptomic 
response as a proxy for the sum of all upstream regulatory disruption caused by the viral infection, an 
assessment of the viral regulome specific to a personal genome – or simply said: “virogram”. 

(Discussion) “Overall, this study shows that the biology is concordant between ex vivo and in vivo 
assays, showing a significantly high similarity of biologically relevant functions to viral infection. Indeed, 
Figures 2&3 show that conventional cohort-level methods (GSEA and enrichment of DEG) obtain very 
concordant results both within each study and across ex vivo and in vivo studies. Concerning the 
biological meaning of the results, Figure 4 probably synthetizes best their range.” 
(Discussion) “In the context of precision medicine, Table 4 recapitulates the main biological 
processes dysregulated between the virus-exposed and control samples. Unsurprisingly, every patient 
harbors dysregulated pathways such as “response to virus” or “innate immune response”. The 
motivating part is that N-of-1-pathways is able to uncover this dysregulation at the single subject level. 
Moreover, Figure 5 shows that the patient-level results obtained by the N-of-1-pathways framework are 
concordant with conventional cohort-level methods. On the methodological aspect, we have shown 
again that the Wilcoxon model of the N-of-1-pathways framework was more accurate than the 
ssGSEAFC model when the individual results are compared to a proxy gold standard.” 

Comment 1.d.  On a related note, the Conclusion section seems to be a bit long and does not really 
present the major take home points (instead, it seems to be more material that might have been better 
put into the Discussion section).  

Response 1.d. We agree and made the Conclusion more concise. It was reduced from 399 words to 
259 words as shown below. 

(Conclusion) “In conventional comparative study analyses, many samples of different human subjects 
are required for achieving sufficient statistical power to draw conclusions at the level of the studied 
population. The N-of-1-pathways framework does not require a cohort for reaching sufficient statistical 
power. The transcriptomic dysregulation induced by a virus is more subtle than the one induced by 
cancer. Therefore these results underline the scalability of N-of-1-pathways to many clinical conditions 
such as “before vs after treatment”, “paired single cell studies”, etc. It also provides a way of analyzing 
studies previously considered underpowered due to the scarcity of patients, as well as a strong 
framework for patient-centered precision medicine. 

This paper is the first of its kind to report a personal ex vivo dynamic transcriptome assay that 
recapitulates an in vivo infection –a foundational work for developing virograms for clinical practice. 
This is a step forward for precision medicine since such ex vivo assays can be extended to interpret 
individualized response to infections or putative therapies in high throughput. In other words, these 
analyses are required to multiplex systematically alternate dynamic transcriptome responses of the host 
conditions in a way analogous as those conventionally conducted on pathogens in microbiology (e.g. 
antibiogram). The unveiled pathways are biologically meaningful and can be recapitulated by several 



well-established, cohort-level methods. Moreover, this concordance can be found at a lower level, since 
we also found a strong overlap of differentially dysregulated genes between the two conditions. 
Therefore, this raises the question of considering ex vivo studies when in vivo studies are either 
unethical and/or clinically unadvisable.” 

Comment 1.e.  Notably missing from either the Introduction or the Discussion is the similarity or 
difference from the previous study done by the authors-- i.e., what are the implications of N-of-1 
frameworks in context that are not cancer based, especially in light of the significant 
pathophysiological differences between rhinovirus and other conditions? 

Response 1.e. We agree, improved the title and added a clarifying paragraph in the Discussion. 

 
(Title) Towards a PBMC "virogram assay" for precision medicine:  
concordance between ex vivo and in vivo viral infection transcriptomes.   
(Old title) Concordance between ex vivo PBMC and in vivo human infections  
confirmed by N-of-1-pathways analysis of single-subject transcriptome  

 (Discussion) “This new application of the N-of-1-pathways framework differs in many ways with our 
previous applications in cancer. The obvious first difference is the biology: cancer transcriptome is a 
consequence of inherited and acquired human gene mutations as well as epigenetic changes between 
the normal and cancer tissues, while a viral infection consists of the introduction of an foreign regulatory 
apparatus comprising non-human nucleotides (RNA or DNA) and proteins without mutations to human 
genes (at least initially). Previously we showed that the dynamic transcriptome analysis of uninvolved vs 
solid tumoral tissue could be predictive of survival at the single patient level. Here we show that the 
same framework could be used to unveil relevant individual pathway deregulation in white bloods cells 
of the PBMC samples. Since the concept can be extended to different tissues and conditions, it shifts 
the clinical implications of the results. In follow-up studies, we are translating this process to clinical 
practice: a single blood sample followed by a transcriptomic analysis of the ex vivo assay is enough to 
predict future outcome (predictive virogram). Moreover, in our previous studies, the N-of-1-pathways 
framework was validated using straightforward discovery techniques such as hierarchical clustering and 
principal component analysis, as well as survival curves. In this study, we extended the analysis of the 
results thanks to a more elaborated Similarity Venn Diagram framework (which could also be used 
independently). The similarity metrics and visualization tools provide a more comprehensive set of 
results as well as a straightforward visualization in order to rapidly grasp the results and their meaning. 
Finally, the present study could be considered as a preliminary step towards the future development of 
ex vivo assays for precision medicine. And here this term is unequivocal since we can unveil 
deregulated pathways at the single patient level.” 

Comment 1.f. The study might benefit from a more explicitly stated study hypothesis or goal of the 
study and the have the results be discussed in the context of this overarching hypothesis or goal. In 
particular, how does this study build on the previously published work in a different disease context 
(again, is there a difference in Infectious Disease versus Cancer that might be important to 
emphasize?)  

Response 1.f. We agree and significantly developed the Introduction and Discussion to address this 
point (addressed in previous responses to questions 1c and 1e).  

(Introduction) In this study, we aimed at analyzing the transcriptomic response of ex vivo virus-exposed 
Peripheral Blood Mononuclear Cells (PBMC) human cells, and compare it to the in vivo response in the same 
conditions. We hypothesized that ex vivo analyses can recapitulate in vivo dysregulation in this experimental 
context 

Comment 1.g. To many readers it may seem obvious that Asymptomatics will cluster apart from 
Symptomatics. This needs to be more directly addressed in the manuscript. 

Response 1.g. We clarified this issue as requested.  

(Discussion) “Further, Zaas et al. established the separation of the asymptomatic from symptomatic 
phenotype of a rhinovirus infection through supervised studies [5], suggesting that the feasibility is not 
trivial. Here, we show that integrating both the uninfected and virus-exposed PBMC transcriptome 
states into a single dynamic transcriptome interpretation probably increases the sensitivity since an 
unsupervised PCA can identify this phenotype on its two first components (Figure 6).” 



Comment 1.h. There are a number of typographical errors that should also be corrected, e.g.: 
p3: Homo Sapiens >> /Homo sapiens/ 
p4: "a statistics" >> "a statistic" 
p11: "Odds ration" >> "Odds ratio" 
p11: "in the infectious context" >> "in the infectious disease context" 

Response 1.h. Thank you, we rectified the errors. 

----- Reviewer #2 -----  
Comment 2.a. The manuscript described the utility of N-of-1 pathway methodology (previously 
established by the same group) in the context of viral infection.  The background and the motivation 
for developing such a method are described lucidly in the manuscript. The authors also described the 
details of the methods used in the analysis very clearly. 
The results of the analysis are presented well with novel venn diagrams termed as the "similarity venn 
diagrams". The N-of-1 pathway analysis using the wilcoxon model seems to be effective approach 
compared to the ssGSEA. This method can be used to perform functional (ongtological/pathway) 
analysis using just two paired samples. So, it can be a very handy downstream analysis tool for 
transcriptome datasets generated from high-throughput omic platforms. 

Response 2.a. Thank you for your endorsement. 

Comment 2.b. The language of the manuscript is generally good. It would be nice, if the authors can 
make the source code used to perform the ontology analysis publicly available for the community. 

Response 2.b. We agree. The sources are publicly available from the following URLs. We created a 
specific page for the Venn Diagram ontology analysis and referenced it in the manuscript as follows. 

(Methods) “The source code and GO-GO similarity matrix used for computing the Similarity Venn 
Diagrams in this manuscript are available at http://lussierlab.org/publications/SimilarityVenn.” 
(Abstract)  Software: http://Lussierlab.org/publications/N-of-1-pathways 
Supplement data and files: http://Lussierlab.org/publications/Ex-vivo-ViralAssay 

----- Reviewer #3 -----  
Thank you for the opportunity to review this work. I understand that the goal of this research is to gain 
insights into the individual dynamic responses to viral infection using both in-vivo and ex-vivo studies 
within the authors' N-of-1-Pathways analysis framework. 

Comment 3.a. Editorial Policy: I believe that the manuscript has been previously published; this has 
not been acknowledged by the authors. See:* http://gardeux-vincent.eu/Nof1Pathways.php 
[3] Concordance between ex vivo PBMC and in vivo human infections confirmed by N-of-1-pathways 
analysis of single-subject transcriptome, Translational Bioinformatics Conference (TBC), Qingdao, 
China, October 24-27,  

Response 3.a. We agree with the reviewer and apologize for the lack of acknowledgement of this 
presentation (though there were neither associated abstract nor paper). We were invited by Dr. Ted 
Shortliffe to publish the presentation in JBI, and added the following disclosure in the 
acknowledgment.  

(Acknowledgements) “This manuscript is an original publication that extends a peer-reviewed 
presentation held at the 4th Translational Bioinformatics Conference (ISB/TBC 2014), organized by the 
Chinese Academy of Sciences and Qingdao University held in Qingdao, China, October 24-27, 2014. 
We thank the leadership of the conference for selecting and recommending this work for publication.” 

Comment 3.b. Scientific/Technical: I find this research to be an excellent adaptation of a method first 
developed for cancer research. The writing is clear (except for minor issues below) and the 
illustrations support the results. 

Response 3.b. Thank you for your endorsement. 

Comment 3.c. Minor: Throughout the manuscript, there are minor errors in the English language that 
can be corrected by the editor. Here are a few examples: 

• Deregulated /deregulation … dysregulated / dysregulation is more commonly used in the 
medical area, in this reviewer's opinion. (throughout the manuscript) However, this term has 



been used in the authors' previous works. 
• Essays … assays  (abstract) 

Response 3.c. Thank you, we rectified these errors as suggested and revised the whole manuscript 
for other English mistakes. 
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Towards a PBMC "virogram assay" for precision medicine:  
concordance between ex vivo and in vivo viral infection  transcriptomes  

Vincent Gardeux1, Anthony Bosco2, Jianrong Li1, Marilyn J. Halonen3, CARE Network4, Daniel J. Jackson5 
Fernando D. Martinez6,7,*, Yves A. Lussier1,7,8* 

1 Department of Medicine, University of Arizona, Tucson, AZ, USA. 
2 Telethon Institute for Child Health Research, Perth, Australia. 
3 Department of Pharmacology, University of Arizona, Tucson, AZ, USA.  
4 The Childhood Asthma Research and Education Network (CARE) 
5 Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.   
6 Department of Pediatrics, University of Arizona, Tucson, AZ, USA. 
7 BIO5 Institute, University of Arizona, Tucson, AZ, USA. 
8 UA Cancer Center, University of Arizona, Tucson, AZ, USA. 
*Corresponding authors: 
Dr. Yves A. Lussier, BIO5 Institute, University of Arizona, 1657 E Helen Street, 251 (P.O. Box 210240), Tucson, 

AZ, 85721, USA. yves@email.arizona.edu 
Dr. Fernando D. Martinez, BIO5 Institute, University of Arizona, 1657 E Helen Street, 251 (P.O. Box 210240), 

Tucson, AZ, 85721, USA fdmartin@email.arizona.edu 
Keywords: personal transcriptome, rhinovirus, PBMC, genomic response, in vivo, ex vivo, viral response, virogram. 

Abstract 

Background. Understanding individual patient host-response to viruses is key to designing optimal personalized 
therapy. Unsurprisingly, in vivo human experimentation to understand individualized dynamic response of the 
transcriptome to viruses are rarely studied because of the obviously limitations stemming from ethical 
considerations of the clinical risk.  
Objective. In this rhinovirus study, we first hypothesize that ex vivo human cells response to virus can serve as 
proxy for otherwise controversial in vivo human experimentation. We further hypothesized that the N-of-1-pathways 
framework, previously validated in cancer, can be effective in understanding the more subtle individual 
transcriptomic response to viral infection. 
Method. N-of-1-pathways computes a significance score for a given list of gene sets at the patient level, using 
merely the ‘omics profiles of two paired samples as input. We extracted the peripheral blood mononuclear cells 
(PBMC) of four human subjects, aliquoted in two paired samples, one subjected to ex vivo rhinovirus infection. 
Their dysregulated genes and pathways were then compared to those of 9 human subjects prior and after intranasal 
inoculation in vivo with rhinovirus. Additionally, we developed the Similarity Venn Diagram, a novel visualization 
method that goes beyond conventional overlap to show the similarity between two sets of qualitative measures. 
Results. We evaluated the individual N-of-1-pathways results using two established cohort-based methods: GSEA 
and enrichment of differentially expressed genes. Similarity Venn Diagrams and individual patient ROC curves 
illustrate and quantify that the in vivo dysregulation is recapitulated ex vivo both at the gene and pathway level (p-
values≤0.004). 
Conclusion. We established the first evidence that an interpretable dynamic transcriptome metric, conducted as an 
ex vivo assays for a single subject, has the potential to predict individualized response to infectious disease without 
the clinical risks otherwise associated to in vivo challenges. These results serve as foundational work for 
personalized “virograms”. 
Software: http://Lussierlab.org/publications/N-of-1-pathways 
Supplement data and files: http://Lussierlab.org/publications/Ex-vivo-ViralAssay 

Introduction 

Transcriptomic analysis of the response to a virus can be used for various purposes, involving the understanding of 
its relation to disease progression, or severity. In the context of respiratory diseases such as Influenza, Human 
rhinovirus (HRV), or Respiratory syncytial virus (RSV), many studies involve finding the viral response of infected 
hosts. However, in many cases, the course of a virus infection may be relatively short. This implies high difficulties 
for obtaining genetic data in a timely manner. Probably for ethical reasons, most of those studies rely on animal 
models [1-3] infected with virus to assess the within-host evolution of the virus. Other studies overlook the 
progression of already infected patients [4]. Less than five studies go as far as inoculating healthy human patients 

*Revised Manuscript (unmarked)
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with those viruses to study in vivo the progression of the disease [5] and procuring transcriptomes. Although ex vivo 
experiments are often undertaken before and after virus infection, they are usually performed for the analysis of a 
handful single-locus gene expression. Few human cell transcriptome derived from ex vivo with paired samples 
before and after virus infection were available and deposited [6] in the Gene Expression Omnibus database. 

Interestingly, antibiograms are well-established assays that provide precision antibiotherapy to patients. They 
involve cultivating bacteria infecting a specific organ of a patient and subjecting them to a number of tests to 
characterize the pathogen and its resistance to a number of distinct antibiotics.  In contrast, the field of infectious 
disease has not produce similar assays to test the host (human subject) exposed to viruses. Therefore, there is an 
opportunity to improve precision medicine by establishing the personal response to viruses that may impact one’s 
disease treatment (e.g. Chronic Obstructive Lung Disease). We conceived the following ex vivo assays and 
expression analysis methods in order to provide tools that would allow systematic non-invasive investigations of the 
dynamic transcriptome response to viruses. As viruses infect cells, the viral transformation of these cells caused by 
the introduction of viral DNA or RNA is associated with substantial regulatory changes leading to favoring virus 
replication over normal cell functions. We thus use the dynamics transcriptomic response as a proxy for the sum of 
all upstream regulatory disruption caused by the viral infection, an assessment of the viral regulome specific to a 
personal genome – or simply said: “virogram” .  

In this study, we aimed at analyzing the transcriptomic response of ex vivo virus-exposed Peripheral Blood 
Mononuclear Cells (PBMC) human cells, and compare it to the in vivo response in the same conditions. We 
hypothesized that ex vivo analyses can recapitulate in vivo dysregulation in this experimental context. To this end, 
we used well-established enrichment methodologies such as GSEA to assess the pathways at play in presence of a 
virus. However, those methods of analysis use cohort-based models, which create predictive models based on 
average/commonly found features across patients, thus overlooking individualized transcriptomic response to 
stressors that may reveal the summative effect of common as well as private (i) genetic polymorphisms and 
(ii) epigenetic modifications. 

N-of-1-pathways is a framework dedicated to the personalized medicine field that we initially proposed in the 
context of cancer analyses [7, 8]. It was successfully applied to lung adenocarcinoma visualization of single patient 
survival and proved to unveil biologically significant dysregulated pathways by using only one pair of samples taken 
from the same patient in two different conditions [7] (such as before and after treatment or uninvolved vs tumoral 
cells). It was also applied in ovarian and breast cancer cell lines to confirm the unsupervised identification of 
dysregulated pathways after a knockdown of PTBP1 and PTBP2 genes that control alternative splicing [8]. In the 
current study, we aimed at showing that the same N-of-1-pathways framework can be used in very different 
conditions than cancer such as the transcriptomic response of virus stress. 

One component of N-of-1-pathways design relies on the calculation of the semantic similarity of pathways. 
Therefore, we focused our analyses on the Gene Ontology (GO) database, which regroups genes into biologically 
meaningful gene sets, connected through an ontology tree. Several tools were developed for analyzing those “GO 
Terms”, involving measures of similarity based on the topology of the ontology. In this paper, we propose a novel 
Similarity Venn Diagram representation for helping readers to understand not only the overlap between two lists of 
GO Terms, but also their similarity, based on an information-theory equation measuring the semantic similarity 
between two GO Terms. Further, we demonstrate that this representation can also be used in a more general 
comparison of two lists where a measure of similarity exists for comparing its elements. 

Therefore, the major goals of this study are i) to characterize the mechanistic response to rhinovirus, ii) to validate 
our patient-centered framework, N-of-1-pathways, in alternative conditions, and iii) to extend the representation of 
classic Venn diagrams from simple overlap to more complex similarity comparisons. 

Methods 

PBMCs incubated with viruses that generated the “Human ex vivo infected” dataset. The live PBMCs had been 
isolated from blood samples collected from four human subjects under a protocol approved by The University of 
Arizona Internal Review Board. Whole blood was obtained from donors and placed in Becton Dickenson’s CPT 
tubes that were centrifuged according to standard protocols to obtain PBMCs, then each aliquoted in two paired 
samples. Each sample of the pair was subsequently exposed to and incubated with either (i) Human Rhinovirus 
serotype 16 (ex vivo infected sample) or to (ii) sterile medium (control ex vivo non-infected sample) and incubated at 
37°C in 5% CO2 for 18 hours. This protocol resulted in 4 ex vivo infected + 4 ex vivo controls = 8 paired samples. 
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RNA was extracted from these samples, amplified, tagged, and hybridized on Affymetrix Human Gene 1.0 ST 
microarrays according to standard operating procedures. Gene expression data were submitted to Gene Expression 
Omnibus (GEO; GSE60153, http://www.ncbi.nlm.nih.gov/geo/) and thus generated the “Human ex vivo infected” 
dataset (Table 1). 

Table 1. Gene expression dataset description.  

Dataset  Human ex vivo infected dataset Human in vivo infected dataset 

References 
Authors Gardeux V, Bosco  A, et al. (present paper) Zaas A. K. et al. Cell Press 2009 [5] 
Source (GEO) Novel dataset (GSE60153)  GSE17156 

Platform Affymetrix GeneChip® Human Gene 1.0ST Affymetrix Human Gene U133A 2.0 
Probes measured  33297 22277 
Genes mapped to probes 19915 14288 
Human 
Subjects 
(paired 
samples) 

Total subjects 4  9  
- Control samples 4P  PBMCs incubated with control medium  9P PBMCs collected 24hrs prior to infection 
- Infected with 
rhinovirus 

4P PBMCs incubated ex vivo with virus 
9P PBMCs collected at peak symptoms post 
intranasal virus inoculation (6hrs – 3days). 

Viral infection experiment 
Live human PBMC cells infected ex vivo & 
incubated with Human Rhinovirus serotype 
16 (ATCC® VR-283) 

Human subjects inoculated in vivo 
intra-nasally with Human Rhinovirus 
serotype 39 (Charles River Lab; Malvern, 
PA) 

P Indicates paired samples derived from the same individual for rhinovirus-exposed with matched non-exposed PBMCs samples. 
 

Dataset and preprocessing. Robust Multiple-array Average (RMA) normalization [9] was applied on each patient 
data independently (2 paired samples at a time, to avoid bias in the single-patient experiments) using Affymetrix 
Power Tools (APT) [10]. We also used an external dataset downloaded from the GEO repository on 07/14/2014 
comprising a cohort of 20 healthy patients who were inoculated with the rhinovirus. Blood samples were taken 
before inoculation and during the peak of symptoms on the disease. Among those 20 patients, 10 were defined as 
symptomatic and the other 10 as asymptomatic. We used the 9 microarrays available paired data from the 
symptomatic patients and normalized them using the same RMA normalization technique. Table 1 recapitulates the 
content of each of those two datasets. 

Gene sets. We aggregated genes into pathway-level mechanisms using the org.Hs.eg.db package [11] (Homo 
Sapiens) of Bioconductor [12], available for R statistical software [13]. We used two different gene sets databases:  
1) Gene Ontology (GO) Biological Processes (GO-BP) [14, 15]. Hierarchical GO terms were retrieved using the 

org.Hs.egGO2ALLEGS database (downloaded on 05/15/2013), which contains a list of genes annotated to each 
GO term (gene set) along with all of its child nodes according to the hierarchical ontology structure.  

2) KEGG pathways [16, 17] were retrieved using the org.Hs.egPATH database (download 05/15/2013). 

Gene sets included in the study comprised between 15 and 500 genes (among the genes measured by the microarray). 
This led to a total of 3234 GO-BP gene sets and 205 KEGG pathway gene sets. This filtering protocol follows the 
default one used in GSEA and a protocol we have previously identified as optimal for these studies [7, 8, 18-21]. 

Gene Sets Enrichment Analysis (GSEA). Gene set enrichment analysis was conducted on both datasets. The GSEA 
v2.0.10 software [22] was used with the default parameters except for the permutation parameter selection, which 
was set to “gene set” instead of “phenotype”. Gene set permutation was chosen to achieve enough statistical power 
for permutation resampling due to the small number of samples. Only dysregulated GO-BP terms and KEGG 
pathways reaching the False Discovery Rate (FDR)≤5% significance threshold were retained for further analysis. It 
resulted in a list of 399 dysregulated GO-BP terms between the non-exposed and rhinovirus-exposed samples for the 
ex vivo dataset, and 194 GO-BP terms and 11 KEGG pathways for the in vivo dataset. The complete lists of results 
from GSEA are available as Supplement File 1 - GSEA. 

Differentially Expressed Genes (DEG) Calculation. Differentially expressed genes (DEG) between non-exposed 
and rhinovirus-exposed samples were calculated using the SAMR package in R statistical software [23]. Genes 
reaching the FDR≤5% threshold were considered significantly dysregulated between the two conditions. Those 
protocols resulted in a list of 458 differentially expressed genes (DEG) found significantly dysregulated in the ex 
vivo dataset and 709 DEG in the in vivo dataset. The complete lists of DEG are available as Supplement File 2 – 
DEG+Enrichment. 
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DEG enriched into GO-BP terms (DEG+Enrichment). Differentially expressed genes (DEG) were enriched into 
GO-BP terms using DAVID website [24, 25]. GO-BP terms reaching the FDR≤5% threshold were considered 
significantly enriched. It resulted in a list of 111 dysregulated GO-BP terms between the non-exposed and 
rhinovirus-exposed samples for the ex vivo dataset, and 20 GO-BP terms for the in vivo dataset. The complete lists 
of enriched pathways from DEG are available as Supplement File 2 – DEG+Enrichment. 

Information Theoretic Similarity (GO-ITS). We calculated the similarity between GO-BP terms using Jiang’s 
information theoretic similarity [26] that ranges from 0 (no similarity) to 1 (perfect match). We have previously 
shown that a GO-ITS score ≥ 0.7 robustly corresponds to highly similar GO terms using different computational 
biological validations: protein interaction [27, 28], human genetics [29], and Genome-Wide Association Studies 
[30]. GO-ITS was calculated on each distinct pair among the 3234 GO terms of size ≥15 and ≤500, leading to 
10,458,756 pairs of which 59,577 have a GO-ITS ≥ 0.7 (≈5.6 out of 1,000). 

Novel Similarity Venn Diagram. In order to compare the different list of dysregulated GO-BP terms, we computed 
uncommon Venn Diagrams. Since every two GO-BP terms possess a measurable degree of similarity (see GO-ITS 
definition), it is possible to compare the two sets not only by direct overlap but also by degree of similarity. For each 
Similarity Venn Diagram, we calculated the number of GO-BP terms similar to each of the two sets using a strong 
similarity GO-ITS threshold ≥ 0.7 (≈0.0056 pairs of all GO terms pairs meet this stringent criteria). This leads, for 
each Similarity Venn Diagram, to two additional values: the number of pathways (i) belonging to the set A and 
similar to the set B and (ii) vice-versa. If we take only the intersection of those two sets, we obtain the traditional 
Venn Diagram overlap. Of note, this technique may be extended to as many sets as needed, and different 
representations can be used. Figure 1 shows three possible representations of those Novel Similarity Venn Diagrams, 
the first one (Panel A) being the one we chose for this paper, because of its practicality for two sets studies. The 
source code and GO-GO similarity matrix used for computing the Similarity Venn Diagrams in this manuscript are 
available at http://lussierlab.org/publications/SimilarityVenn. 

 

Figure 1. Similarity Venn Diagrams. This Figure shows three possible representations of Similarity Venn Diagrams. 
Panels A and B are an extension of the traditional Venn Diagram representation. They contain the same overlapping 
number of entities in the middle and also two extra numbers describing the similarity of each set to the other. This 
similarity depends on a threshold chose for assessing to entities to be significantly similar (in the following paper, we 
chose GO-ITS ≥ 0.7). While Panel A is the most ergonomic representation with 2 sets, Panels B and C are easier to 
represent and apprehend in higher dimensions (see Supp. Figure S1 for a few possible extensions with 3 sets). Panel C 
is the simplest representation overall, but merges the overlap with the similarity, which displays less information. 

Similarity Contingency Table. Further, we can calculate the statistical significance of the similarity for the 
Similarity Venn Diagrams between two sets (here called A and B). We propose a statistic based on the following two 
steps: 1) among all elements in set A and all elements in set B, taken from the statistical universe Ω, identify similar 
pairs among “every possible pair combinations from set A and set B”  (denoted “A×B” ), and 2) compare this value 
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against all the pairs that are similar in Ω × Ω. To this end, we propose a Similarity Contingency Table in which 
conventional calculations of Odds Ratio and enrichment can be calculated (such as Fisher’s Exact Test). Table 2 
shows this Similarity Contingency Table in detail, with a numeric example taken from Figure 2. 

Table 2. Similarity Contingency Table for computing significance of the similarity in a Similarity Venn Diagram.  
This table shows a numeric example from Figure 2, where we have two sets of GO-Terms A (|A| = 399) and B (|B| = 111). 
There are 399×111 possible pairs between sets A and B (|A×B| = 44,289) among which we found 1,730 pairs that have an 
ITS≥0.7. Moreover, the statistical universe Ω contains 3,234 GO-Terms which leads to a total number of possible pairs of 
|Ω × Ω| = 10,458,756, among which we found 58,577 pairs that have a GO-ITS≥0.7. A Fisher’s Exact Test gives an Odds 
Ratio of 7.28 and a very significant p-value < 1.0E-100, which implies that the similarity between the two sets is high. 

 
Pair with similar 

elements 
Pair with NOT similar 

elements 
Pair in Venn (∈ A×B) 1,730 42,559 
Pair NOT in Venn (∉ A×B) 57,847 10,356,620 
LEGEND: ∈ “is an element of”; ∉ “is not an element of”;  
Background = total number of possible pairs (|Ω × Ω|) 

GO-Modules. We previously developed GO-Module [31] to synthesize and visualize enriched GO terms as a 
network. GO-Module reduces the complexity of nominal lists of GO results into compact modules organized in two 
distinct ways: by (i) constructing modules from significant GO terms based on hierarchical knowledge, and (ii) 
refining the GO terms in each module to distinguish the most significant terms (key terms of the module), subsumed 
terms to the Key term and terms of lesser importance (grey in Figure 3). 

N-of-1-pathways framework. N-of-1-pathways [7, 8] is a methodology unveiling dysregulated pathways from only 
two paired samples. In this study, it was applied independently for each patient, on the paired non-exposed and 
rhinovirus-exposed samples in both in vivo and ex vivo datasets. The N-of-1-pathways framework and software 
identifying the dysregulated pathways (the scoring method) are modular and several different models can be 
substituted for the “pathway identification module”:  

Wilcoxon model. The “Wilcoxon” model was already validated on a retrospective lung adenocarcinoma 
survival prediction study [7] and in vitro using both ovarian and breast cancer cell lines to identify an 
experimentally knocked down pathway [8]. This model starts by restricting the gene expression data to the 
genes belonging to the considered gene set. Then it applies a Wilcoxon signed-rank test of the two 
restricted vectors of gene expressions to assess the dysregulation of this gene set. Basically, this model 
recognizes gene sets having an over-representation of up-regulated genes compared to down-regulated 
genes, or vice versa. Two different methods were used to adjust p-values for multiple comparisons: 
Bonferroni (for a more stringent set of results) and Benjamini and Hochberg (False Discovery Rate; FDR) 
[32]. In each paired sample, only dysregulated pathways with adjusted p-values following FDR≤5% or 
Bonf.≤5% were retained for further analysis. The complete lists of dysregulated pathways unveiled from 
the Wilcoxon model for each patient are available as Supplement File 3 – Wilcoxon. 
Single-Sample GSEA or ssGSEAFC model. The ssGSEA software is available from the GSEA portal 
(http://www.broadinstitute.org/gsea/index.jsp) and does not have a publication describing how its single 
sample method differs from the described cross-sample GSEA v2.0.10 software [22]. Although without 
published evaluation (simulation or experimental) by the method’s developers, ssGSEA was utilized on 
single-samples [33]. We have previously extended the use of ssGSEA in the context of paired-samples 
within the N-of-1-pathways framework as an alternative to the Wilcoxon model. In our implementation, we 
use the “ssGSEAPreranked” version that is applied on a pre-ranked list of genes and computes a 
permutation-based p-value for each gene set. In the context of our paired samples framework we pre-
ranked the genes according to their Fold Change (FC) between non-exposed and rhinovirus-exposed 
samples calculated separately for every patient. This usage of ssGSEA was never formally described, so we 
called this model ssGSEAFC in order to show its specific application to Fold Change (FC) in paired data. 
The complete lists of dysregulated pathways obtained from this ssGSEAFC model for each patient are 
available as Supplement File 4 – ssGSEA. 

Principal Component Analysis (PCA). The PCA was computed using the “FactoMineR” package in R (with default 
parameters). We first computed the matrix of p-values computed for every pathway assessed for each patient. Then, 
these p-values were transformed into Z-scores using an inverse standard Normal distribution (Z-score = 
abs(qnorm(p-value/2) ) in R. The PCA was finally applied on this matrix of Z-scores. 
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Results 

Comparison of cohort-based results within the ex vivo and in vivo studies. We compared the concordance of the 
results unveiled from cohort-based methods (conventional) across four patients. We applied two well-established, 
cohort-level methods: GSEA (Methods: GSEA) and DEG+Enrichment (Methods: DEG+Enrichment) in the two 
datasets by comparing the virus-exposed to the non-exposed samples. In order to visualize their concordance, we 
plotted Similarity Venn Diagrams (Methods: Similarity Venn Diagram) between the results unveiled by GSEA 
and DEG+Enrichment (at FDR≤5%), separately within the ex vivo and the in vivo datasets. Figure 2 shows the 
overlap as well as the similarity between the two techniques. Supplement Tables S1&S2 recapitulate the pathways 
found dysregulated by both techniques.  

 

Figure 2. Robustness of pathways enriched separately in the two datasets is confirmed by consistency of GSEA 
and DEG+Enrichment. Those specifically-designed Similarity Venn Diagrams were obtained by two different 
enrichment techniques tested subsequently in two distinct datasets: human in vivo infection and human ex vivo infection. 
Their particularity is to show both overlap and similarity across two lists of enriched GO-BP terms (Methods: Similarity 
Venn Diagrams). Hence, by taking each list as reference reciprocally, this leads to two different numbers of similarities 
(one from the perspective of each list, visible in the additional dotted-delimited space). For example, in Panel A, 61 GO-
BP terms are found overlapping between the two methods, and an additional 211 (among the 399 dysregulated GO-BP 
terms unveiled by GSEA) are similar to the list of pathways unveiled by the DEG+Enrichment method in the ex vivo 
dataset (GO-ITS cutoff ≥ 0.7). The complete lists of overlapping and similar pathways from the two diagrams are 
available as Supplement File 5 – Figure 2. Of note, only ~5.6 out of 1000 pairs of GO terms are found with GO-
ITS≥0.7 among all possible pairs of GO-BP terms (Methods: GO-ITS), thus the “observed” similarity of the above 
Venn Diagrams far surpasses the “expected” one and is very significant (Panel A: Similarity Odds Ratio≈7.28, p<10-100; 
Panel B: Similarity Odds Ratio≈2.33, p=9.73 x 10-8).  

Comparison of the individual results to cohort-based results across the ex vivo and in vivo studies. After 
having established the concordance of results of the two cohort-level methods within each study, we aimed at 
comparing the two studies together. Figure 3, Panel A shows a standard Venn Diagram comparing the differentially 
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expressed genes unveiled in each study (Methods: DEG calculation). It reveals a very strong overlap between the 
in vivo and ex vivo studies. The full list of overlapping DEG can be found in Supplement Table S3. Figure 3, 
Panel B contains two Similarity Venn Diagrams, the green one representing the overlap and similarity between the 
GO-BP terms unveiled by GSEA across the two studies, and the purple one representing the same information, but 
when applying the DEG+Enrichment method. The intersections of the two dysregulated lists -whether differentially 
expressed genes or dysregulated pathways- are very significant (Panel A: Odds Ratio≈5.226, p=3.41 x 10-25; Panel 
B-Green Diagram: Similarity Odds Ratio≈1.95, p=3.69 x 10-68; Panel B-Purple Diagram: Similarity Odds 
Ratio≈3.04, p=5.85 x 10-9).  

 
 

Figure 3. Concordance of ex vivo and in vivo human studies. These Venn Diagrams show the overlap and similarity of 
results unveiled across the two studies. Panel A shows the overlap between the two lists of dysregulated genes found 
using SAMR method (Methods: DEG calculation). Since the two studies used two different microarray chips, we 
showed in parenthesis the number of dysregulated genes that can be found in the common background of both chips 
(common background = 12819 genes). The overlap is very significant (Fisher’s Exact Test p=3.41E-25; Odds 
Ratio=5.226). Panel B shows the GO-BP terms that are overlapping or similar across both datasets by two different 
techniques: GSEA and DEG+Enrichment. The complete lists of overlapping and similar pathways/DEG from the three 
diagrams are available as Supplement File 6 – Figure 3. 

In order to understand the biological relevancy of the GO-BP terms unveiled across the two studies (in vivo and ex 
vivo), we displayed the 56 GO-BP Terms found dysregulated by the GSEA method as a network (Figure 4). The 
connections between the GO-BP Terms are inferred from the ontology topology, which helps to see the groups of 
terms interconnected. Table 3 also recapitulates the seven GO-BP terms concordantly found dysregulated by the 
DEG+Enrichment method. 

Table 3. Overlapping GO-BP Terms between ex vivo and in vivo studies when DEG+Enrichment is applied. These 
terms correspond to the overlap in the rightmost (Purple, right of Panel B) Similarity Venn Diagram of Figure 3. 

GO Term Description 
GO:0009615 response to virus 
GO:0006955 immune response 
GO:0007267 cell-cell signaling 
GO:0008285 negative regulation of cell proliferation 
GO:0009719 response to endogenous stimulus 
GO:0009725 response to hormone stimulus 
GO:0010033 response to organic substance 
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Concordant dysregulated pathways unveiled between infected and uninfected samples. We applied the 
Wilcoxon model of the N-of-1-pathways framework for each patient’s paired data between the control sample and 
the one subject to rhinovirus (Methods: N-of-1-pathways). The aim of this particular comparison was to identify the 
pathways dysregulated ex vivo in presence of a virus for each patient independently. Then, we aggregated the 
dysregulated pathways obtained for each patient to identify the pathways commonly dysregulated. Table 4 shows 
the whole list of GO-BP Terms and KEGG pathways (Methods: Gene sets) found significantly dysregulated across 
the four patients (Bonf.≤5%). The results are structured according to the ontology structure for a better clarity. We 
can see pathways such as “response to virus” or “Cytosolic DNA-sensing pathway”, which are obviously 
biologically relevant regarding the studied phenotype. Taken together, those results show that: 1) the experimental 
protocol used is viable, and 2) the N-of-1-pathways methodology is able to uncover relevant pathways in this 
context. Moreover, we can see a certain “concordance” in the direction of dysregulation unveiled in all those 
pathways. For example, the “response to virus” pathway is found up-regulated in the rhinovirus (RV) sample, i.e., 
the majority of the genes included in the pathway are up-regulated in the RV sample. In comparison, the KEGG 
pathways, “Oxidative phosphorylation” and “Huntington's disease,” are found down-regulated, and “Olfactory 
transduction” is the only pathway showing different “directions” between the four patients. 

Table 4. GO-BP terms and KEGG pathways found dysregulated in all four patients’ PBMC cells infected ex vivo, using 
N-of-1-pathways analysis of the dynamic transcriptome (Wilcoxon model; Bonf.≤5%; RMA Normalization). The “Size” 
column corresponds to the number of genes in the gene set/pathway.  

Identifier Description Size Dysregulation 

GO:0009615 response to virus 247 ↑ 
GO:0019221 cytokine-mediated signaling pathway 341 ↑ 
GO:0045087 innate immune response 527 ↑ 
GO:0034340 response to type I interferon 73 ↑ 

├ GO:0071357 cellular response to type I interferon 72 ↑ 

└ GO:0060337 type I interferon-mediated signaling pathway 72 ↑ 

hsa04623 Cytosolic DNA-sensing pathway 56 ↑ 
hsa00190 Oxidative phosphorylation 132 ↓ 
hsa04740 Olfactory transduction  388 2↓ 2↑ 
hsa05016 Huntington's disease 183 ↓ 

A proxy gold standard based on the in vivo data for comparison at the patient-level. Verifying experimentally 
all predicted pathways is rate-limiting and extremely expansive. Therefore, identifying a gold standard for studies 
generating dozens of GO terms and KEGG pathways is unrealistic. On the other hand, similarity to previously 
obtained results in comparable context allows for generating proxy gold standards. Since we aimed at finding if the 
N-of-1-pathways single-patient framework was able to uncover pathways significant in individual patients, we 
created a “proxy gold standard” using the list of dysregulated pathways unveiled by GSEA in the in vivo dataset in 
order to obtain a global picture of the pathways we should find dysregulated. We used FDR ≤ 5% as a cutoff to fix 
the list of dysregulated gene sets, which lead to 194 GO-BP terms and 11 KEGG pathways found significantly 
dysregulated in the in vivo dataset. Then, we ran the N-of-1-pathways framework on each patient of the ex vivo 
dataset and compared the results with this proxy Gold Standard. This comparison allow us to see the individual 
transcriptomic response similarity between the ex vivo and in vivo protocols. As a matter of comparison, we used 
both the Wilcoxon and the ssGSEAFC models (Methods: N-of-1-pathways). Figure 5 shows the ROC curves 
corresponding to this comparison. 

N-of-1-pathways scores naturally split the in vivo patients by phenotype. In order to demonstrate the scalability 
of the method to other viruses and to show the individualized pathway scores could predict the clinical outcome 
(symptomatic vs asymptomatic infections), we performed an additional study. We used more samples from the in 
vivo dataset [5] than the 9 symptomatic patients. Indeed, the dataset also contains 10 patients that were exposed to 
the rhinovirus but remained asymptomatic. We ran the N-of-1-pathways Wilcoxon model on those extra 10 patients 
and looked for differences in the individual representation of the dysregulated pathways between the two groups. Of 
note, for those asymptomatic patients, the “exposed sample” was extracted after 72 hours of exposure, which 
corresponds to the median time for peak symptoms from symptomatic patient post inoculation. Figure 6 shows a 
Principal Component Analysis that clearly clusters the two groups of patients without any supervision or pre-
treatment of the N-of-1-pathways scores. This protocol was applied for the Rhinovirus as well as Influenza, which 
were both studied in the in vivo dataset [5]. Of note, the ssGSEAFC model also clusters the data but the clusters are 
less visible (data not shown).  
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Figure 5. ROC curves showing robustness of the N-of-1-pathways predictions in each ex vivo infected PBMC 
confirmed by in vivo human infection study. ROC curves are calculated with different nominal p-value cutoffs for each 
patient. As measured by the Area Under the Curves (AUC), N-of-1-pathways’ Wilcoxon model outperforms the 
ssGSEAFC model in every instance (one-tailed Wilcoxon matched paired signed rank test p=0.0039). As the theoretical 
random AUC is 0.5, we tested the significance of each models of N-of-1- pathways by pooling GO-BP and KEGG results: 
Wilcoxon Model p=0.004; ssGSEAFC Model p=ns  (using the one-tailed Wilcoxon signed rank test).   

 
Figure 6. Principal Component Analysis of N-of-1-Pathways Scores discriminates asymptotic patients from 
symptomatic infected patients in vivo (PBMC expression). The PCA analysis was conducted on the Z-scores matrix 
(Patients × GO-BP) produced by the Wilcoxon model within the N-of-1-pathways framework (Methods: PCA) in the 
context of two different virus exposures (Rhino=rhinovirus; Flu=Influenza). Each data point is a distinct patient for 
which all GO-BP Z-scores were presented to the PCA. In both PCA plots, we can see that the two first components 
cluster the symptomatic patients together. Of note, the PCA method is totally unsupervised, which suggests that N-of-1-
pathways produces relevant p-values for each GO-BP term. 
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Discussion 

Overall, this study shows that the biology is concordant between ex vivo and in vivo assays, showing a significantly 
high similarity of biologically relevant functions to viral infection. Indeed, Figures 2&3 show that conventional 
cohort-level methods (GSEA and enrichment of DEG) obtain very concordant results both within each study and 
across ex vivo and in vivo studies. Concerning the biological meaning of the results, Figure 4 probably synthetizes 
best their range. Cytokines are broad categories of small proteins that are important in cell signaling. Among them, 
interferons are released by host cells in response of pathogens. Here, the ex vivo and in vivo studies corroborate in 
viral response specificity. Specifically, Figure 4 shows that the cytokine regulation leads to only interferons Type I 
and Gamma (γ) to be dysregulated. Type I interferons are well-studied molecules that play an essential role in viral 
functions, such as inducing direct anti-viral effects, as well as regulating innate and adaptive autoimmune systems 
[34]. Interferon γ is crucial for immunity against viral infections and is produced rapidly by natural killer cells in 
viral infection and at a later stage by differentiation of T cells [35]. Additionally, to the rightmost part of Figure 4, 
the network shows a strong cellular innate immune response of leukocyte migration in response to chemotaxis signal, 
leucocyte mediated cytotoxicity. Among leukocytes, multiple GO terms specify T cell lymphocytes mediated 
immunity. Rhinoviruses infections being the most frequent cause of the common cold, it is not surprising that the in 
vivo study shows a response of T cells in the PBMCs as memory T cells from previously stimulated in previous 
rhinovirus infections may be re-activated by this infection and proliferate.  

In the context of precision medicine, Table 4 recapitulates the main biological processes dysregulated between the 
virus-exposed and control samples. Unsurprisingly, every patient harbors dysregulated pathways such as “response 
to virus” or “innate immune response”. The motivating part is that N-of-1-pathways is able to uncover this 
dysregulation at the single subject level. Moreover, Figure 5 shows that the patient-level results obtained by the N-
of-1-pathways framework are concordant with conventional cohort-level methods. On the methodological aspect, 
we have shown again that the Wilcoxon model of the N-of-1-pathways framework was more accurate than the 
ssGSEAFC model when the individual results are compared to a proxy gold standard. Further, Zaas et al. established 
the separation of the asymptomatic from symptomatic phenotype of a rhinovirus infection through supervised 
studies [5], suggesting that the feasibility is not trivial. Here, we show that integrating both the uninfected and virus-
exposed PBMC transcriptome states into a single dynamic transcriptome interpretation probably increases the 
sensitivity since an unsupervised PCA can identify this phenotype on its two first components (Figure 6). Future 
studies are required to develop and test improved models even though the lack of similarity of pathways 
dysregulated on an individual level with a “consensus” proxy gold standard can be explained by individual variation. 
Since we pioneered single subjects transcriptome analyses, very few studies report individual pathway variations. In 
our previous study in cancer, individual similarity to a gold standard varied considerably and a higher dissimilarity 
was significantly associated with poor patient survival [7]. We had initially hypothesized this outcome as clonal 
cancer cell selection in response to therapy would likely favor cancer cell having more therapeutic escape 
mechanisms (in other words more dysregulated). Additional studies comprising infected hosts symptoms would 
provide evidence to the reliability of the N-of-1-pathways framework to unveil individual subject mechanisms of 
resistance or sensitivity to infections.  

This new application of the N-of-1-pathways framework differs in many ways with our previous applications in 
cancer. The obvious first difference is the biology: cancer transcriptome is a consequence of inherited and acquired 
human gene mutations as well as epigenetic changes between the normal and cancer tissues, while a viral infection 
consists of the introduction of an foreign regulatory apparatus comprising non-human nucleotides (RNA or DNA) 
and proteins without mutations to human genes (at least initially). Previously, we showed that the dynamic 
transcriptome analysis of uninvolved vs solid tumoral tissue could be predictive of survival at the single patient level. 
Here, we show that the same framework could be used to unveil relevant individual pathway deregulation in white 
bloods cells of the PBMC samples. Since the concept can be extended to different tissues and conditions, it shifts the 
clinical implications of the results. In follow-up studies, we are translating this process to clinical practice: a single 
blood sample followed by a transcriptomic analysis of the ex vivo assay is enough to predict future outcome 
(predictive virogram). Moreover, in our previous studies, the N-of-1-pathways framework was validated using 
straightforward discovery techniques such as hierarchical clustering and principal component analysis, as well as 
survival curves. In this study, we extended the analysis of the results thanks to a more elaborated Similarity Venn 
Diagram framework (which could also be used independently). The similarity metrics and visualization tools 
provide a more comprehensive set of results as well as a straightforward visualization in order to rapidly grasp the 
results and their meaning. Finally, the present study could be considered as a preliminary step towards the future 
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development of ex vivo assays for precision medicine. And here this term is unequivocal since we can unveil 
deregulated pathways at the single patient level. 

We are aware that the current Wilcoxon model of the N-of-1-pathways framework may not be accurate in certain 
conditions. For example, if a batch effect is present between the two paired samples, we hypothesized that the 
Wilcoxon test may produce False Positives results (FPs), due to the shift of the mean. While conventional batch 
effect correction models could adjust FPs across several samples, the analytical innovation required is challenging 
when dealing with only two samples. Further studies involve designing new models for producing statistical 
significance of dysregulated pathways with a mere two samples may circumvent this issue. 

We also presented in this study an extended representation of classic Venn Diagrams. We showed that those 
Similarity Venn Diagrams could display the simple overlap between two lists of terms, as well as their similarity. 
We believe that this kind of representation is scalable to any field comprising sets of terms from which a similarity 
metric can be obtained, such as BIG DATA results, Google™ queries, etc. Of particular interest are the suites of 
analytical packages applicable to the associated Similarity Contingency Tables we propose (e.g. Odds Ratio, 
enrichment studies, etc). 

Conclusion 

In conventional comparative study analyses, many samples of different human subjects are required for achieving 
sufficient statistical power to draw conclusions at the level of the studied population. The N-of-1-pathways 
framework does not require a cohort for reaching sufficient statistical power. The transcriptomic dysregulation 
induced by a virus is more subtle than the one induced by cancer. Therefore these results underline the scalability of 
N-of-1-pathways to many clinical conditions such as “before vs after treatment”, “paired single cell studies”, etc. It 
also provides a way of analyzing studies previously considered underpowered due to the scarcity of patients, as well 
as a strong framework for patient-centered precision medicine. 

This paper is the first of its kind to report a personal ex vivo dynamic transcriptome assay that recapitulates an in 
vivo infection –a foundational work for developing virograms for clinical practice. This is a step forward for 
precision medicine since such ex vivo assays can be extended to interpret individualized response to infections or 
putative therapies in high throughput. In other words, these analyses are required to multiplex systematically 
alternate dynamic transcriptome responses of the host conditions in a way analogous as those conventionally 
conducted on pathogens in microbiology (e.g. antibiogram). The unveiled pathways are biologically meaningful and 
can be recapitulated by several well-established, cohort-level methods. Moreover, this concordance can be found at 
a lower level, since we also found a strong overlap of differentially dysregulated genes between the two conditions. 
Therefore, this raises the question of considering ex vivo studies when in vivo studies are either unethical and/or 
clinically unadvisable. 
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Supplements 

Supplement Table S1. Overlapping GO-Terms in ex vivo study between two cohort-level methods. 

GO Term Description 
GO:0009615 response to virus 
GO:0001816 cytokine production 
GO:0007259 JAK -STAT cascade 
GO:0019221 cytokine-mediated signaling pathway 
GO:0034097 response to cytokine stimulus 
GO:0031349 positive regulation of defense response 
GO:0002252 immune effector process 
└ GO:0002697 regulation of immune effector process 
GO:0001817 regulation of cytokine production 
├ GO:0001819 positive regulation of cytokine production 
│ └ GO:0032760 positive regulation of tumor necrosis factor production 
├ GO:0032652 regulation of interleukin-1 production 
│ ├ GO:0032732 positive regulation of interleukin-1 production 
│ └ GO:0032651 regulation of interleukin-1 beta production 
│     └ GO:0032731 positive regulation of interleukin-1 beta production 
├ GO:0032655 regulation of interleukin-12 production 
│ └ GO:0032735 positive regulation of interleukin-12 production 
├ GO:0032675 regulation of interleukin-6 production 
│ └ GO:0032755 positive regulation of interleukin-6 production 
└ GO:0042035 regulation of cytokine biosynthetic process 
    └ GO:0042108 positive regulation of cytokine biosynthetic process 
GO:0051240 positive regulation of multicellular organismal process 
GO:0050865 regulation of cell activation 
├ GO:0050867 positive regulation of cell activation 
└ GO:0002694 regulation of leukocyte activation 
    └ GO:0051249 regulation of lymphocyte activation 
        ├ GO:0050864 regulation of B cell activation 
        │ └ GO:0050871 positive regulation of B cell activation 
        └ GO:0050863 regulation of T cell activation 
            └ GO:0042129 regulation of T cell proliferation 
GO:0070663 regulation of leukocyte proliferation 
├ GO:0070665 positive regulation of leukocyte proliferation 
└ GO:0032944 regulation of mononuclear cell proliferation 
    ├ GO:0032946 positive regulation of mononuclear cell proliferation 
    └ GO:0050670 regulation of lymphocyte proliferation 
        └ GO:0050671 positive regulation of lymphocyte proliferation 
GO:0045321 leukocyte activation 
└ GO:0046649 lymphocyte activation 
    └ GO:0042110 T cell activation 
GO:0002819 regulation of adaptive immune response 
└ GO:0002822 regulation of adaptive immune response based on somatic recombination of immune receptors built from 

immunoglobulin superfamily domains GO:0002683 negative regulation of immune system process 
GO:0002684 positive regulation of immune system process 
└ GO:0050778 positive regulation of immune response 
GO:0043122 regulation of I-kappaB kinase/NF-kappaB cascade 
└ GO:0043123 positive regulation of I-kappaB kinase/NF-kappaB cascade 
GO:0050691 regulation of defense response to virus by host 
GO:0051241 negative regulation of multicellular organismal process 
GO:0006919 activation of cysteine-type endopeptidase activity involved in apoptotic process 
GO:0002237 response to molecule of bacterial origin 
└ GO:0032496 response to lipopolysaccharide 
GO:0012502 induction of programmed cell death 
└ GO:0006917 induction of apoptosis 
GO:0009617 response to bacterium 
GO:0001776 leukocyte homeostasis 
GO:0006954 inflammatory response 
GO:0043330 response to exogenous dsRNA 
GO:0043900 regulation of multi-organism process 
GO:0045087 innate immune response 
GO:0045088 regulation of innate immune response 
GO:0002706 regulation of lymphocyte mediated immunity 
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Supplement Table S2. Overlapping GO-Terms in in vivo study between two cohort-level methods. 

GO Term Description 
GO:0009615 response to virus 
GO:0003013 circulatory system process 
└ GO:0008015 blood circulation 
GO:0008015 blood circulation 
GO:0007156 homophilic cell adhesion 

Supplement Table S3. Overlapping DEG between ex vivo and in vivo studies. 

Differentially Expressed Genes (DEG) 
ANKFY1 DHX58 IFI6 JUP OAS1 SDC3 TAP2 WARS 

ATF5 EIF2AK2 IFIT1 LAMP3 OAS2 SERPING1 TCN2 XAF1 
BLVRA EPHB2 IFIT2 LGALS3BP OAS3 SIGLEC1 TNFAIP6 ZBP 1 

C2 GBP1 IFIT3 LILRA6 OASL SOCS1 TNK2  
CASP5 GTPBP1 IFIT5 LILRB4 PARP12 SORT1 TOR1B  
CCL7 HERC5 IFITM1 LY6E PLSCR1 SP110 TRAFD1  

CMKLR1 IFI27 IFITM2 MREG PML SPATS2L TRIM22  
CNP IFI35 IL4I1 MX1 RSAD2 SPTLC2 UBE2L6  

DDX58 IFI44 IRF7 MX2 RTP4 STAT1 UNC93B1  
DDX60 IFI44L ISG15 NRP2 SAMD4A STAT2 USP18  
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Supp. Figure S1. Similarity Venn Diagrams with 3 sets. This Figure extends the three possible representations of 
Similarity Venn Diagrams presented in Figure 1. Each panel is the extension of its corresponding panel in Figure 1. 
While Panel A is the most ergonomic representation with 2 sets, Panels B and C are easier to represent and apprehend in 
higher dimensions. Panel C is the simplest representation overall, but merge the overlap with the similarity, thus 
displaying less information. The X∩Y subsets represent the intersection between sets X and Y, but not the other set Z. 
The central ∩ subset represents the intersection between the three sets X∩Y∩Z. 
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Abstract 

Background. Understanding individual patient host-response to viruses is key to designing optimal personalized 
therapy. Unsurprisingly, in vivo human experimentation to understand individualized dynamic response of the 
transcriptome to viruses are rarely studied because of the obviously limitations stemming from ethical 
considerations of the clinical risk.  
Objective. In this rhinovirus study, we first hypothesize that ex vivo human cells response to virus can serve as 
proxy for otherwise controversial in vivo human experimentation. We further hypothesized that the N-of-1-pathways 
framework, previously validated in cancer, can be effective in understanding the more subtle individual 
transcriptomic response to viral infection. 
Method. N-of-1-pathways computes a significance score for a given list of gene sets at the patient level, using 
merely the ‘omics profiles of two paired samples as input. We extracted the peripheral blood mononuclear cells 
(PBMC) of four human subjects, aliquoted in two paired samples, one subjected to ex vivo rhinovirus infection. 
Their dysregulated genes and pathways were then compared to those of 9 human subjects prior and after intranasal 
inoculation in vivo with rhinovirus. Additionally, we developed the Similarity Venn Diagram, a novel visualization 
method that goes beyond conventional overlap to show the similarity between two sets of qualitative measures. 
Results. We evaluated the individual N-of-1-pathways results using two established cohort-based methods: GSEA 
and enrichment of differentially expressed genes. Similarity Venn Diagrams and individual patient ROC curves 
illustrate and quantify that the in vivo dysregulation is recapitulated ex vivo both at the gene and pathway level (p-
values≤0.004). 
Conclusion. We established the first evidence that an interpretable dynamic transcriptome metric, conducted as an 
ex vivo assays for a single subject, has the potential to predict individualized response to infectious disease without 
the clinical risks otherwise associated to in vivo challenges. These results serve as foundational work for 
personalized “virograms”. 
Software: http://Lussierlab.org/publications/N-of-1-pathways 
Supplement data and files: http://Lussierlab.org/publications/Ex-vivo-ViralAssay 

Introduction 

Transcriptomic analysis of the response to a virus can be used for various purposes, involving the understanding of 
its relation to disease progression, or severity. In the context of respiratory diseases such as Influenza, Human 
rhinovirus (HRV), or Respiratory syncytial virus (RSV), many studies involve finding the viral response of infected 
hosts. However, in many cases, the course of a virus infection may be relatively short. This implies high difficulties 
for obtaining genetic data in a timely manner. Probably for ethical reasons, most of those studies rely on animal 
models [1-3] infected with virus to assess the within-host evolution of the virus. Other studies overlook the 
progression of already infected patients [4]. Less than five studies go as far as inoculating healthy human patients 
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with those viruses to study in vivo the progression of the disease [5] and procuring transcriptomes. Although ex vivo 
experiments are often undertaken before and after virus infection, they are usually performed for the analysis of a 
handful single-locus gene expression. Few human cell transcriptome derived from ex vivo with paired samples 
before and after virus infection were available and deposited [6] in the Gene Expression Omnibus database. 

Interestingly, antibiograms are well-established assays that provide precision antibiotherapy to patients. They 
involve cultivating bacteria infecting a specific organ of a patient and subjecting them to a number of tests to 
characterize the pathogen and its resistance to a number of distinct antibiotics.  In contrast, the field of infectious 
disease has not produce similar assays to test the host (human subject) exposed to viruses. Therefore, there is an 
opportunity to improve precision medicine by establishing the personal response to viruses that may impact one’s 
disease treatment (e.g. Chronic Obstructive Lung Disease). We conceived the following ex vivo assays and 
expression analysis methods in order to provide tools that would allow systematic non-invasive investigations of the 
dynamic transcriptome response to viruses. As viruses infect cells, the viral transformation of these cells caused by 
the introduction of viral DNA or RNA is associated with substantial regulatory changes leading to favoring virus 
replication over normal cell functions. We thus use the dynamics transcriptomic response as a proxy for the sum of 
all upstream regulatory disruption caused by the viral infection, an assessment of the viral regulome specific to a 
personal genome – or simply said: “virogram” .  

In this study, we aimed at analyzing the transcriptomic response of ex vivo virus-exposed Peripheral Blood 
Mononuclear Cells (PBMC) human cells, and compare it to the in vivo response in the same conditions. We 
hypothesized that ex vivo analyses can recapitulate in vivo dysregulation in this experimental context. To this end, 
we used well-established enrichment methodologies such as GSEA to assess the pathways at play in presence of a 
virus. However, those methods of analysis use cohort-based models, which create predictive models based on 
average/commonly found features across patients, thus overlooking individualized transcriptomic response to 
stressors that may reveal the summative effect of common as well as private (i) genetic polymorphisms and 
(ii) epigenetic modifications. 

N-of-1-pathways is a framework dedicated to the personalized medicine field that we initially proposed in the 
context of cancer analyses [7, 8]. It was successfully applied to lung adenocarcinoma visualization of single patient 
survival and proved to unveil biologically significant dysregulated pathways by using only one pair of samples taken 
from the same patient in two different conditions [7] (such as before and after treatment or uninvolved vs tumoral 
cells). It was also applied in ovarian and breast cancer cell lines to confirm the unsupervised identification of 
dysregulated pathways after a knockdown of PTBP1 and PTBP2 genes that control alternative splicing [8]. In the 
current study, we aimed at showing that the same N-of-1-pathways framework can be used in very different 
conditions than cancer such as the transcriptomic response of virus stress. 

One component of N-of-1-pathways design relies on the calculation of the semantic similarity of pathways. 
Therefore, we focused our analyses on the Gene Ontology (GO) database, which regroups genes into biologically 
meaningful gene sets, connected through an ontology tree. Several tools were developed for analyzing those “GO 
Terms”, involving measures of similarity based on the topology of the ontology. In this paper, we propose a novel 
Similarity Venn Diagram representation for helping readers to understand not only the overlap between two lists of 
GO Terms, but also their similarity, based on an information-theory equation measuring the semantic similarity 
between two GO Terms. Further, we demonstrate that this representation can also be used in a more general 
comparison of two lists where a measure of similarity exists for comparing its elements. 

Therefore, the major goals of this study are i) to characterize the mechanistic response to rhinovirus, ii) to validate 
our patient-centered framework, N-of-1-pathways, in alternative conditions, and iii) to extend the representation of 
classic Venn diagrams from simple overlap to more complex similarity comparisons. 

Methods 

PBMCs incubated with viruses that generated the “Human ex vivo infected” dataset. The live PBMCs had been 
isolated from blood samples collected from four human subjects under a protocol approved by The University of 
Arizona Internal Review Board. Whole blood was obtained from donors and placed in Becton Dickenson’s CPT 
tubes that were centrifuged according to standard protocols to obtain PBMCs, then each aliquoted in two paired 
samples. Each sample of the pair was subsequently exposed to and incubated with either (i) Human Rhinovirus 
serotype 16 (ex vivo infected sample) or to (ii) sterile medium (control ex vivo non-infected sample) and incubated at 
37°C in 5% CO2 for 18 hours. This protocol resulted in 4 ex vivo infected + 4 ex vivo controls = 8 paired samples. 
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RNA was extracted from these samples, amplified, tagged, and hybridized on Affymetrix Human Gene 1.0 ST 
microarrays according to standard operating procedures. Gene expression data were submitted to Gene Expression 
Omnibus (GEO; GSE60153, http://www.ncbi.nlm.nih.gov/geo/) and thus generated the “Human ex vivo infected” 
dataset (Table 1). 

Table 1. Gene expression dataset description.  

Dataset  Human ex vivo infected dataset Human in vivo infected dataset 

References 
Authors Gardeux V, Bosco  A, et al. (present paper) Zaas A. K. et al. Cell Press 2009 [5] 
Source (GEO) Novel dataset (GSE60153)  GSE17156 

Platform Affymetrix GeneChip® Human Gene 1.0ST Affymetrix Human Gene U133A 2.0 
Probes measured  33297 22277 
Genes mapped to probes 19915 14288 
Human 
Subjects 
(paired 
samples) 

Total subjects 4  9  
- Control samples 4P  PBMCs incubated with control medium  9P PBMCs collected 24hrs prior to infection 
- Infected with 
rhinovirus 

4P PBMCs incubated ex vivo with virus 
9P PBMCs collected at peak symptoms post 
intranasal virus inoculation (6hrs – 3days). 

Viral infection experiment 
Live human PBMC cells infected ex vivo & 
incubated with Human Rhinovirus serotype 
16 (ATCC® VR-283) 

Human subjects inoculated in vivo 
intra-nasally with Human Rhinovirus 
serotype 39 (Charles River Lab; Malvern, 
PA) 

P Indicates paired samples derived from the same individual for rhinovirus-exposed with matched non-exposed PBMCs samples. 
 

Dataset and preprocessing. Robust Multiple-array Average (RMA) normalization [9] was applied on each patient 
data independently (2 paired samples at a time, to avoid bias in the single-patient experiments) using Affymetrix 
Power Tools (APT) [10]. We also used an external dataset downloaded from the GEO repository on 07/14/2014 
comprising a cohort of 20 healthy patients who were inoculated with the rhinovirus. Blood samples were taken 
before inoculation and during the peak of symptoms on the disease. Among those 20 patients, 10 were defined as 
symptomatic and the other 10 as asymptomatic. We used the 9 microarrays available paired data from the 
symptomatic patients and normalized them using the same RMA normalization technique. Table 1 recapitulates the 
content of each of those two datasets. 

Gene sets. We aggregated genes into pathway-level mechanisms using the org.Hs.eg.db package [11] (Homo 
Sapiens) of Bioconductor [12], available for R statistical software [13]. We used two different gene sets databases:  
1) Gene Ontology (GO) Biological Processes (GO-BP) [14, 15]. Hierarchical GO terms were retrieved using the 

org.Hs.egGO2ALLEGS database (downloaded on 05/15/2013), which contains a list of genes annotated to each 
GO term (gene set) along with all of its child nodes according to the hierarchical ontology structure.  

2) KEGG pathways [16, 17] were retrieved using the org.Hs.egPATH database (download 05/15/2013). 

Gene sets included in the study comprised between 15 and 500 genes (among the genes measured by the microarray). 
This led to a total of 3234 GO-BP gene sets and 205 KEGG pathway gene sets. This filtering protocol follows the 
default one used in GSEA and a protocol we have previously identified as optimal for these studies [7, 8, 18-21]. 

Gene Sets Enrichment Analysis (GSEA). Gene set enrichment analysis was conducted on both datasets. The GSEA 
v2.0.10 software [22] was used with the default parameters except for the permutation parameter selection, which 
was set to “gene set” instead of “phenotype”. Gene set permutation was chosen to achieve enough statistical power 
for permutation resampling due to the small number of samples. Only dysregulated GO-BP terms and KEGG 
pathways reaching the False Discovery Rate (FDR)≤5% significance threshold were retained for further analysis. It 
resulted in a list of 399 dysregulated GO-BP terms between the non-exposed and rhinovirus-exposed samples for the 
ex vivo dataset, and 194 GO-BP terms and 11 KEGG pathways for the in vivo dataset. The complete lists of results 
from GSEA are available as Supplement File 1 - GSEA. 

Differentially Expressed Genes (DEG) Calculation. Differentially expressed genes (DEG) between non-exposed 
and rhinovirus-exposed samples were calculated using the SAMR package in R statistical software [23]. Genes 
reaching the FDR≤5% threshold were considered significantly dysregulated between the two conditions. Those 
protocols resulted in a list of 458 differentially expressed genes (DEG) found significantly dysregulated in the ex 
vivo dataset and 709 DEG in the in vivo dataset. The complete lists of DEG are available as Supplement File 2 – 
DEG+Enrichment. 
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DEG enriched into GO-BP terms (DEG+Enrichment). Differentially expressed genes (DEG) were enriched into 
GO-BP terms using DAVID website [24, 25]. GO-BP terms reaching the FDR≤5% threshold were considered 
significantly enriched. It resulted in a list of 111 dysregulated GO-BP terms between the non-exposed and 
rhinovirus-exposed samples for the ex vivo dataset, and 20 GO-BP terms for the in vivo dataset. The complete lists 
of enriched pathways from DEG are available as Supplement File 2 – DEG+Enrichment. 

Information Theoretic Similarity (GO-ITS). We calculated the similarity between GO-BP terms using Jiang’s 
information theoretic similarity [26] that ranges from 0 (no similarity) to 1 (perfect match). We have previously 
shown that a GO-ITS score ≥ 0.7 robustly corresponds to highly similar GO terms using different computational 
biological validations: protein interaction [27, 28], human genetics [29], and Genome-Wide Association Studies 
[30]. GO-ITS was calculated on each distinct pair among the 3234 GO terms of size ≥15 and ≤500, leading to 
10,458,756 pairs of which 59,577 have a GO-ITS ≥ 0.7 (≈5.6 out of 1,000). 

Novel Similarity Venn Diagram. In order to compare the different list of dysregulated GO-BP terms, we computed 
uncommon Venn Diagrams. Since every two GO-BP terms possess a measurable degree of similarity (see GO-ITS 
definition), it is possible to compare the two sets not only by direct overlap but also by degree of similarity. For each 
Similarity Venn Diagram, we calculated the number of GO-BP terms similar to each of the two sets using a strong 
similarity GO-ITS threshold ≥ 0.7 (≈0.0056 pairs of all GO terms pairs meet this stringent criteria). This leads, for 
each Similarity Venn Diagram, to two additional values: the number of pathways (i) belonging to the set A and 
similar to the set B and (ii) vice-versa. If we take only the intersection of those two sets, we obtain the traditional 
Venn Diagram overlap. Of note, this technique may be extended to as many sets as needed, and different 
representations can be used. Figure 1 shows three possible representations of those Novel Similarity Venn Diagrams, 
the first one (Panel A) being the one we chose for this paper, because of its practicality for two sets studies. The 
source code and GO-GO similarity matrix used for computing the Similarity Venn Diagrams in this manuscript are 
available at http://lussierlab.org/publications/SimilarityVenn. 

 

Figure 1. Similarity Venn Diagrams. This Figure shows three possible representations of Similarity Venn Diagrams. 
Panels A and B are an extension of the traditional Venn Diagram representation. They contain the same overlapping 
number of entities in the middle and also two extra numbers describing the similarity of each set to the other. This 
similarity depends on a threshold chose for assessing to entities to be significantly similar (in the following paper, we 
chose GO-ITS ≥ 0.7). While Panel A is the most ergonomic representation with 2 sets, Panels B and C are easier to 
represent and apprehend in higher dimensions (see Supp. Figure S1 for a few possible extensions with 3 sets). Panel C 
is the simplest representation overall, but merges the overlap with the similarity, which displays less information. 

Similarity Contingency Table. Further, we can calculate the statistical significance of the similarity for the 
Similarity Venn Diagrams between two sets (here called A and B). We propose a statistic based on the following two 
steps: 1) among all elements in set A and all elements in set B, taken from the statistical universe Ω, identify similar 
pairs among “every possible pair combinations from set A and set B”  (denoted “A×B” ), and 2) compare this value 
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against all the pairs that are similar in Ω × Ω. To this end, we propose a Similarity Contingency Table in which 
conventional calculations of Odds Ratio and enrichment can be calculated (such as Fisher’s Exact Test). Table 2 
shows this Similarity Contingency Table in detail, with a numeric example taken from Figure 2. 

Table 2. Similarity Contingency Table for computing significance of the similarity in a Similarity Venn Diagram.  
This table shows a numeric example from Figure 2, where we have two sets of GO-Terms A (|A| = 399) and B (|B| = 111). 
There are 399×111 possible pairs between sets A and B (|A×B| = 44,289) among which we found 1,730 pairs that have an 
ITS≥0.7. Moreover, the statistical universe Ω contains 3,234 GO-Terms which leads to a total number of possible pairs of 
|Ω × Ω| = 10,458,756, among which we found 58,577 pairs that have a GO-ITS≥0.7. A Fisher’s Exact Test gives an Odds 
Ratio of 7.28 and a very significant p-value < 1.0E-100, which implies that the similarity between the two sets is high. 

 
Pair with similar 

elements 
Pair with NOT similar 

elements 
Pair in Venn (∈ A×B) 1,730 42,559 
Pair NOT in Venn (∉ A×B) 57,847 10,356,620 
LEGEND: ∈ “is an element of”; ∉ “is not an element of”;  
Background = total number of possible pairs (|Ω × Ω|) 

GO-Modules. We previously developed GO-Module [31] to synthesize and visualize enriched GO terms as a 
network. GO-Module reduces the complexity of nominal lists of GO results into compact modules organized in two 
distinct ways: by (i) constructing modules from significant GO terms based on hierarchical knowledge, and (ii) 
refining the GO terms in each module to distinguish the most significant terms (key terms of the module), subsumed 
terms to the Key term and terms of lesser importance (grey in Figure 3). 

N-of-1-pathways framework. N-of-1-pathways [7, 8] is a methodology unveiling dysregulated pathways from only 
two paired samples. In this study, it was applied independently for each patient, on the paired non-exposed and 
rhinovirus-exposed samples in both in vivo and ex vivo datasets. The N-of-1-pathways framework and software 
identifying the dysregulated pathways (the scoring method) are modular and several different models can be 
substituted for the “pathway identification module”:  

Wilcoxon model. The “Wilcoxon” model was already validated on a retrospective lung adenocarcinoma 
survival prediction study [7] and in vitro using both ovarian and breast cancer cell lines to identify an 
experimentally knocked down pathway [8]. This model starts by restricting the gene expression data to the 
genes belonging to the considered gene set. Then it applies a Wilcoxon signed-rank test of the two 
restricted vectors of gene expressions to assess the dysregulation of this gene set. Basically, this model 
recognizes gene sets having an over-representation of up-regulated genes compared to down-regulated 
genes, or vice versa. Two different methods were used to adjust p-values for multiple comparisons: 
Bonferroni (for a more stringent set of results) and Benjamini and Hochberg (False Discovery Rate; FDR) 
[32]. In each paired sample, only dysregulated pathways with adjusted p-values following FDR≤5% or 
Bonf.≤5% were retained for further analysis. The complete lists of dysregulated pathways unveiled from 
the Wilcoxon model for each patient are available as Supplement File 3 – Wilcoxon. 
Single-Sample GSEA or ssGSEAFC model. The ssGSEA software is available from the GSEA portal 
(http://www.broadinstitute.org/gsea/index.jsp) and does not have a publication describing how its single 
sample method differs from the described cross-sample GSEA v2.0.10 software [22]. Although without 
published evaluation (simulation or experimental) by the method’s developers, ssGSEA was utilized on 
single-samples [33]. We have previously extended the use of ssGSEA in the context of paired-samples 
within the N-of-1-pathways framework as an alternative to the Wilcoxon model. In our implementation, we 
use the “ssGSEAPreranked” version that is applied on a pre-ranked list of genes and computes a 
permutation-based p-value for each gene set. In the context of our paired samples framework we pre-
ranked the genes according to their Fold Change (FC) between non-exposed and rhinovirus-exposed 
samples calculated separately for every patient. This usage of ssGSEA was never formally described, so we 
called this model ssGSEAFC in order to show its specific application to Fold Change (FC) in paired data. 
The complete lists of dysregulated pathways obtained from this ssGSEAFC model for each patient are 
available as Supplement File 4 – ssGSEA. 

Principal Component Analysis (PCA). The PCA was computed using the “FactoMineR” package in R (with default 
parameters). We first computed the matrix of p-values computed for every pathway assessed for each patient. Then, 
these p-values were transformed into Z-scores using an inverse standard Normal distribution (Z-score = 
abs(qnorm(p-value/2) ) in R. The PCA was finally applied on this matrix of Z-scores. 
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Results 

Comparison of cohort-based results within the ex vivo and in vivo studies. We compared the concordance of the 
results unveiled from cohort-based methods (conventional) across four patients. We applied two well-established, 
cohort-level methods: GSEA (Methods: GSEA) and DEG+Enrichment (Methods: DEG+Enrichment) in the two 
datasets by comparing the virus-exposed to the non-exposed samples. In order to visualize their concordance, we 
plotted Similarity Venn Diagrams (Methods: Similarity Venn Diagram) between the results unveiled by GSEA 
and DEG+Enrichment (at FDR≤5%), separately within the ex vivo and the in vivo datasets. Figure 2 shows the 
overlap as well as the similarity between the two techniques. Supplement Tables S1&S2 recapitulate the pathways 
found dysregulated by both techniques.  

 

Figure 2. Robustness of pathways enriched separately in the two datasets is confirmed by consistency of GSEA 
and DEG+Enrichment. Those specifically-designed Similarity Venn Diagrams were obtained by two different 
enrichment techniques tested subsequently in two distinct datasets: human in vivo infection and human ex vivo infection. 
Their particularity is to show both overlap and similarity across two lists of enriched GO-BP terms (Methods: Similarity 
Venn Diagrams). Hence, by taking each list as reference reciprocally, this leads to two different numbers of similarities 
(one from the perspective of each list, visible in the additional dotted-delimited space). For example, in Panel A, 61 GO-
BP terms are found overlapping between the two methods, and an additional 211 (among the 399 dysregulated GO-BP 
terms unveiled by GSEA) are similar to the list of pathways unveiled by the DEG+Enrichment method in the ex vivo 
dataset (GO-ITS cutoff ≥ 0.7). The complete lists of overlapping and similar pathways from the two diagrams are 
available as Supplement File 5 – Figure 2. Of note, only ~5.6 out of 1000 pairs of GO terms are found with GO-
ITS≥0.7 among all possible pairs of GO-BP terms (Methods: GO-ITS), thus the “observed” similarity of the above 
Venn Diagrams far surpasses the “expected” one and is very significant (Panel A: Similarity Odds Ratio≈7.28, p<10-100; 
Panel B: Similarity Odds Ratio≈2.33, p=9.73 x 10-8).  

Comparison of the individual results to cohort-based results across the ex vivo and in vivo studies. After 
having established the concordance of results of the two cohort-level methods within each study, we aimed at 
comparing the two studies together. Figure 3, Panel A shows a standard Venn Diagram comparing the differentially 
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expressed genes unveiled in each study (Methods: DEG calculation). It reveals a very strong overlap between the 
in vivo and ex vivo studies. The full list of overlapping DEG can be found in Supplement Table S3. Figure 3, 
Panel B contains two Similarity Venn Diagrams, the green one representing the overlap and similarity between the 
GO-BP terms unveiled by GSEA across the two studies, and the purple one representing the same information, but 
when applying the DEG+Enrichment method. The intersections of the two dysregulated lists -whether differentially 
expressed genes or dysregulated pathways- are very significant (Panel A: Odds Ratio≈5.226, p=3.41 x 10-25; Panel 
B-Green Diagram: Similarity Odds Ratio≈1.95, p=3.69 x 10-68; Panel B-Purple Diagram: Similarity Odds 
Ratio≈3.04, p=5.85 x 10-9).  

 
 

Figure 3. Concordance of ex vivo and in vivo human studies. These Venn Diagrams show the overlap and similarity of 
results unveiled across the two studies. Panel A shows the overlap between the two lists of dysregulated genes found 
using SAMR method (Methods: DEG calculation). Since the two studies used two different microarray chips, we 
showed in parenthesis the number of dysregulated genes that can be found in the common background of both chips 
(common background = 12819 genes). The overlap is very significant (Fisher’s Exact Test p=3.41E-25; Odds 
Ratio=5.226). Panel B shows the GO-BP terms that are overlapping or similar across both datasets by two different 
techniques: GSEA and DEG+Enrichment. The complete lists of overlapping and similar pathways/DEG from the three 
diagrams are available as Supplement File 6 – Figure 3. 

In order to understand the biological relevancy of the GO-BP terms unveiled across the two studies (in vivo and ex 
vivo), we displayed the 56 GO-BP Terms found dysregulated by the GSEA method as a network (Figure 4). The 
connections between the GO-BP Terms are inferred from the ontology topology, which helps to see the groups of 
terms interconnected. Table 3 also recapitulates the seven GO-BP terms concordantly found dysregulated by the 
DEG+Enrichment method. 

Table 3. Overlapping GO-BP Terms between ex vivo and in vivo studies when DEG+Enrichment is applied. These 
terms correspond to the overlap in the rightmost (Purple, right of Panel B) Similarity Venn Diagram of Figure 3. 

GO Term Description 
GO:0009615 response to virus 
GO:0006955 immune response 
GO:0007267 cell-cell signaling 
GO:0008285 negative regulation of cell proliferation 
GO:0009719 response to endogenous stimulus 
GO:0009725 response to hormone stimulus 
GO:0010033 response to organic substance 



8
 

 

F
ig

ur
e 

4.
 O

ve
rla

pp
in

g 
G

O
-B

P
 T

er
m

s 
be

tw
ee

n e
x 

vi
vo

 a
nd

 in
 v

iv
o 

st
ud

ie
s 

by
 G

S
E

A
 m

et
ho

d. 
T

h
is

 n
et

w
o

rk
 r

ep
re

se
n

ts
 t

h
e 

G
O

-B
P

 t
er

m
s 

fo
u

n
d

 c
o

m
m

o
n

ly
 d

ys
re

gu
la

te
d 

b
et

w
ee

n
 t

h
e e

x 
vi

vo
 a

n
d

 in
 v

iv
o 

st
u

d
ie

s 
b

y 
G

S
E

A
 (F

ig
ur

e 
2,

 l
ef

t 
o

f 
P

an
el

 B
). 

F
o

r 
b

et
te

r 
re

ad
ab

ili
ty

, 
w

e 
fir

st
 r

ed
u

ce
d

 t
h

e 
si

ze
 o

f 
th

e 
n

et
w

o
rk

 u
si

n
g 

th
e 

G
O

-M
o

d
ul

e
 

(M
et

ho
ds

: 
G

O
-M

od
ul

e)
 m

et
h

o
d

. T
h

e 
m

aj
o

rit
y 

o
f 

th
e 

n
et

w
o

rk
 s

h
o

w
s 

a 
co

m
p

et
en

t 
h

o
st

 
in

n
at

e 
im

m
u

n
e 

re
sp

o
n

se
, 

w
ith

 t
h

e 
su

b
se

t 
o

f 
in

te
rf

er
o

n
s 

I 
an

d
 G

a
m

m
a 

a
m

o
n

g 
cy

to
ki

n
es

 (
ce

n
te

r)
 a

n
d

 t
h

e 
ce

llu
la

r 
re

sp
o

n
se

 o
f 

T
-c

el
ls

 ly
m

p
h

o
cy

te
s 

a
m

o
n

g 
le

u
co

cy
te

s 
(r

ig
h

t)
. 

T
h

e 
h

o
st

-r
es

p
on

se
 t

o
 v

iru
s 

is
 s

h
o

w
n

 in
 t

h
e 

h
ie

ra
rc

h
ie

s 
o

f 
t

h
e 

le
ftm

o
st

 p
ar

t 
o

f 
th

e 
n

et
w

o
rk

, 
an

d
 a

 fe
w

 d
is

so
ci

at
e

d
 t

er
m

s 
ar

e 
le

ft 
i

n
 t

h
e 

bo
tto

m
 r

ig
h

t 
p

ar
t.

  



9 

Concordant dysregulated pathways unveiled between infected and uninfected samples. We applied the 
Wilcoxon model of the N-of-1-pathways framework for each patient’s paired data between the control sample and 
the one subject to rhinovirus (Methods: N-of-1-pathways). The aim of this particular comparison was to identify the 
pathways dysregulated ex vivo in presence of a virus for each patient independently. Then, we aggregated the 
dysregulated pathways obtained for each patient to identify the pathways commonly dysregulated. Table 4 shows 
the whole list of GO-BP Terms and KEGG pathways (Methods: Gene sets) found significantly dysregulated across 
the four patients (Bonf.≤5%). The results are structured according to the ontology structure for a better clarity. We 
can see pathways such as “response to virus” or “Cytosolic DNA-sensing pathway”, which are obviously 
biologically relevant regarding the studied phenotype. Taken together, those results show that: 1) the experimental 
protocol used is viable, and 2) the N-of-1-pathways methodology is able to uncover relevant pathways in this 
context. Moreover, we can see a certain “concordance” in the direction of dysregulation unveiled in all those 
pathways. For example, the “response to virus” pathway is found up-regulated in the rhinovirus (RV) sample, i.e., 
the majority of the genes included in the pathway are up-regulated in the RV sample. In comparison, the KEGG 
pathways, “Oxidative phosphorylation” and “Huntington's disease,” are found down-regulated, and “Olfactory 
transduction” is the only pathway showing different “directions” between the four patients. 

Table 4. GO-BP terms and KEGG pathways found dysregulated in all four patients’ PBMC cells infected ex vivo, using 
N-of-1-pathways analysis of the dynamic transcriptome (Wilcoxon model; Bonf.≤5%; RMA Normalization). The “Size” 
column corresponds to the number of genes in the gene set/pathway.  

Identifier Description Size Dysregulation 

GO:0009615 response to virus 247 ↑ 
GO:0019221 cytokine-mediated signaling pathway 341 ↑ 
GO:0045087 innate immune response 527 ↑ 
GO:0034340 response to type I interferon 73 ↑ 

├ GO:0071357 cellular response to type I interferon 72 ↑ 

└ GO:0060337 type I interferon-mediated signaling pathway 72 ↑ 

hsa04623 Cytosolic DNA-sensing pathway 56 ↑ 
hsa00190 Oxidative phosphorylation 132 ↓ 
hsa04740 Olfactory transduction  388 2↓ 2↑ 
hsa05016 Huntington's disease 183 ↓ 

A proxy gold standard based on the in vivo data for comparison at the patient-level. Verifying experimentally 
all predicted pathways is rate-limiting and extremely expansive. Therefore, identifying a gold standard for studies 
generating dozens of GO terms and KEGG pathways is unrealistic. On the other hand, similarity to previously 
obtained results in comparable context allows for generating proxy gold standards. Since we aimed at finding if the 
N-of-1-pathways single-patient framework was able to uncover pathways significant in individual patients, we 
created a “proxy gold standard” using the list of dysregulated pathways unveiled by GSEA in the in vivo dataset in 
order to obtain a global picture of the pathways we should find dysregulated. We used FDR ≤ 5% as a cutoff to fix 
the list of dysregulated gene sets, which lead to 194 GO-BP terms and 11 KEGG pathways found significantly 
dysregulated in the in vivo dataset. Then, we ran the N-of-1-pathways framework on each patient of the ex vivo 
dataset and compared the results with this proxy Gold Standard. This comparison allow us to see the individual 
transcriptomic response similarity between the ex vivo and in vivo protocols. As a matter of comparison, we used 
both the Wilcoxon and the ssGSEAFC models (Methods: N-of-1-pathways). Figure 5 shows the ROC curves 
corresponding to this comparison. 

N-of-1-pathways scores naturally split the in vivo patients by phenotype. In order to demonstrate the scalability 
of the method to other viruses and to show the individualized pathway scores could predict the clinical outcome 
(symptomatic vs asymptomatic infections), we performed an additional study. We used more samples from the in 
vivo dataset [5] than the 9 symptomatic patients. Indeed, the dataset also contains 10 patients that were exposed to 
the rhinovirus but remained asymptomatic. We ran the N-of-1-pathways Wilcoxon model on those extra 10 patients 
and looked for differences in the individual representation of the dysregulated pathways between the two groups. Of 
note, for those asymptomatic patients, the “exposed sample” was extracted after 72 hours of exposure, which 
corresponds to the median time for peak symptoms from symptomatic patient post inoculation. Figure 6 shows a 
Principal Component Analysis that clearly clusters the two groups of patients without any supervision or pre-
treatment of the N-of-1-pathways scores. This protocol was applied for the Rhinovirus as well as Influenza, which 
were both studied in the in vivo dataset [5]. Of note, the ssGSEAFC model also clusters the data but the clusters are 
less visible (data not shown).  
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Figure 5. ROC curves showing robustness of the N-of-1-pathways predictions in each ex vivo infected PBMC 
confirmed by in vivo human infection study. ROC curves are calculated with different nominal p-value cutoffs for each 
patient. As measured by the Area Under the Curves (AUC), N-of-1-pathways’ Wilcoxon model outperforms the 
ssGSEAFC model in every instance (one-tailed Wilcoxon matched paired signed rank test p=0.0039). As the theoretical 
random AUC is 0.5, we tested the significance of each models of N-of-1- pathways by pooling GO-BP and KEGG results: 
Wilcoxon Model p=0.004; ssGSEAFC Model p=ns  (using the one-tailed Wilcoxon signed rank test).   

 
Figure 6. Principal Component Analysis of N-of-1-Pathways Scores discriminates asymptotic patients from 
symptomatic infected patients in vivo (PBMC expression). The PCA analysis was conducted on the Z-scores matrix 
(Patients × GO-BP) produced by the Wilcoxon model within the N-of-1-pathways framework (Methods: PCA) in the 
context of two different virus exposures (Rhino=rhinovirus; Flu=Influenza). Each data point is a distinct patient for 
which all GO-BP Z-scores were presented to the PCA. In both PCA plots, we can see that the two first components 
cluster the symptomatic patients together. Of note, the PCA method is totally unsupervised, which suggests that N-of-1-
pathways produces relevant p-values for each GO-BP term. 
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Discussion 

Overall, this study shows that the biology is concordant between ex vivo and in vivo assays, showing a significantly 
high similarity of biologically relevant functions to viral infection. Indeed, Figures 2&3 show that conventional 
cohort-level methods (GSEA and enrichment of DEG) obtain very concordant results both within each study and 
across ex vivo and in vivo studies. Concerning the biological meaning of the results, Figure 4 probably synthetizes 
best their range. Cytokines are broad categories of small proteins that are important in cell signaling. Among them, 
interferons are released by host cells in response of pathogens. Here, the ex vivo and in vivo studies corroborate in 
viral response specificity. Specifically, Figure 4 shows that the cytokine regulation leads to only interferons Type I 
and Gamma (γ) to be dysregulated. Type I interferons are well-studied molecules that play an essential role in viral 
functions, such as inducing direct anti-viral effects, as well as regulating innate and adaptive autoimmune systems 
[34]. Interferon γ is crucial for immunity against viral infections and is produced rapidly by natural killer cells in 
viral infection and at a later stage by differentiation of T cells [35]. Additionally, to the rightmost part of Figure 4, 
the network shows a strong cellular innate immune response of leukocyte migration in response to chemotaxis signal, 
leucocyte mediated cytotoxicity. Among leukocytes, multiple GO terms specify T cell lymphocytes mediated 
immunity. Rhinoviruses infections being the most frequent cause of the common cold, it is not surprising that the in 
vivo study shows a response of T cells in the PBMCs as memory T cells from previously stimulated in previous 
rhinovirus infections may be re-activated by this infection and proliferate.  

In the context of precision medicine, Table 4 recapitulates the main biological processes dysregulated between the 
virus-exposed and control samples. Unsurprisingly, every patient harbors dysregulated pathways such as “response 
to virus” or “innate immune response”. The motivating part is that N-of-1-pathways is able to uncover this 
dysregulation at the single subject level. Moreover, Figure 5 shows that the patient-level results obtained by the N-
of-1-pathways framework are concordant with conventional cohort-level methods. On the methodological aspect, 
we have shown again that the Wilcoxon model of the N-of-1-pathways framework was more accurate than the 
ssGSEAFC model when the individual results are compared to a proxy gold standard. Further, Zaas et al. established 
the separation of the asymptomatic from symptomatic phenotype of a rhinovirus infection through supervised 
studies [5], suggesting that the feasibility is not trivial. Here, we show that integrating both the uninfected and virus-
exposed PBMC transcriptome states into a single dynamic transcriptome interpretation probably increases the 
sensitivity since an unsupervised PCA can identify this phenotype on its two first components (Figure 6). Future 
studies are required to develop and test improved models even though the lack of similarity of pathways 
dysregulated on an individual level with a “consensus” proxy gold standard can be explained by individual variation. 
Since we pioneered single subjects transcriptome analyses, very few studies report individual pathway variations. In 
our previous study in cancer, individual similarity to a gold standard varied considerably and a higher dissimilarity 
was significantly associated with poor patient survival [7]. We had initially hypothesized this outcome as clonal 
cancer cell selection in response to therapy would likely favor cancer cell having more therapeutic escape 
mechanisms (in other words more dysregulated). Additional studies comprising infected hosts symptoms would 
provide evidence to the reliability of the N-of-1-pathways framework to unveil individual subject mechanisms of 
resistance or sensitivity to infections.  

This new application of the N-of-1-pathways framework differs in many ways with our previous applications in 
cancer. The obvious first difference is the biology: cancer transcriptome is a consequence of inherited and acquired 
human gene mutations as well as epigenetic changes between the normal and cancer tissues, while a viral infection 
consists of the introduction of an foreign regulatory apparatus comprising non-human nucleotides (RNA or DNA) 
and proteins without mutations to human genes (at least initially). Previously, we showed that the dynamic 
transcriptome analysis of uninvolved vs solid tumoral tissue could be predictive of survival at the single patient level. 
Here, we show that the same framework could be used to unveil relevant individual pathway deregulation in white 
bloods cells of the PBMC samples. Since the concept can be extended to different tissues and conditions, it shifts the 
clinical implications of the results. In follow-up studies, we are translating this process to clinical practice: a single 
blood sample followed by a transcriptomic analysis of the ex vivo assay is enough to predict future outcome 
(predictive virogram). Moreover, in our previous studies, the N-of-1-pathways framework was validated using 
straightforward discovery techniques such as hierarchical clustering and principal component analysis, as well as 
survival curves. In this study, we extended the analysis of the results thanks to a more elaborated Similarity Venn 
Diagram framework (which could also be used independently). The similarity metrics and visualization tools 
provide a more comprehensive set of results as well as a straightforward visualization in order to rapidly grasp the 
results and their meaning. Finally, the present study could be considered as a preliminary step towards the future 



12 

development of ex vivo assays for precision medicine. And here this term is unequivocal since we can unveil 
deregulated pathways at the single patient level. 

We are aware that the current Wilcoxon model of the N-of-1-pathways framework may not be accurate in certain 
conditions. For example, if a batch effect is present between the two paired samples, we hypothesized that the 
Wilcoxon test may produce False Positives results (FPs), due to the shift of the mean. While conventional batch 
effect correction models could adjust FPs across several samples, the analytical innovation required is challenging 
when dealing with only two samples. Further studies involve designing new models for producing statistical 
significance of dysregulated pathways with a mere two samples may circumvent this issue. 

We also presented in this study an extended representation of classic Venn Diagrams. We showed that those 
Similarity Venn Diagrams could display the simple overlap between two lists of terms, as well as their similarity. 
We believe that this kind of representation is scalable to any field comprising sets of terms from which a similarity 
metric can be obtained, such as BIG DATA results, Google™ queries, etc. Of particular interest are the suites of 
analytical packages applicable to the associated Similarity Contingency Tables we propose (e.g. Odds Ratio, 
enrichment studies, etc). 

Conclusion 

In conventional comparative study analyses, many samples of different human subjects are required for achieving 
sufficient statistical power to draw conclusions at the level of the studied population. The N-of-1-pathways 
framework does not require a cohort for reaching sufficient statistical power. The transcriptomic dysregulation 
induced by a virus is more subtle than the one induced by cancer. Therefore these results underline the scalability of 
N-of-1-pathways to many clinical conditions such as “before vs after treatment”, “paired single cell studies”, etc. It 
also provides a way of analyzing studies previously considered underpowered due to the scarcity of patients, as well 
as a strong framework for patient-centered precision medicine. 

This paper is the first of its kind to report a personal ex vivo dynamic transcriptome assay that recapitulates an in 
vivo infection –a foundational work for developing virograms for clinical practice. This is a step forward for 
precision medicine since such ex vivo assays can be extended to interpret individualized response to infections or 
putative therapies in high throughput. In other words, these analyses are required to multiplex systematically 
alternate dynamic transcriptome responses of the host conditions in a way analogous as those conventionally 
conducted on pathogens in microbiology (e.g. antibiogram). The unveiled pathways are biologically meaningful and 
can be recapitulated by several well-established, cohort-level methods. Moreover, this concordance can be found at 
a lower level, since we also found a strong overlap of differentially dysregulated genes between the two conditions. 
Therefore, this raises the question of considering ex vivo studies when in vivo studies are either unethical and/or 
clinically unadvisable. 
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Supplements 

Supplement Table S1. Overlapping GO-Terms in ex vivo study between two cohort-level methods. 

GO Term Description 
GO:0009615 response to virus 
GO:0001816 cytokine production 
GO:0007259 JAK-STAT cascade 
GO:0019221 cytokine-mediated signaling pathway 
GO:0034097 response to cytokine stimulus 
GO:0031349 positive regulation of defense response 
GO:0002252 immune effector process 
└ GO:0002697 regulation of immune effector process 
GO:0001817 regulation of cytokine production 
├ GO:0001819 positive regulation of cytokine production 
│ └ GO:0032760 positive regulation of tumor necrosis factor production 
├ GO:0032652 regulation of interleukin-1 production 
│ ├ GO:0032732 positive regulation of interleukin-1 production 
│ └ GO:0032651 regulation of interleukin-1 beta production 
│     └ GO:0032731 positive regulation of interleukin-1 beta production 
├ GO:0032655 regulation of interleukin-12 production 
│ └ GO:0032735 positive regulation of interleukin-12 production 
├ GO:0032675 regulation of interleukin-6 production 
│ └ GO:0032755 positive regulation of interleukin-6 production 
└ GO:0042035 regulation of cytokine biosynthetic process 
    └ GO:0042108 positive regulation of cytokine biosynthetic process 
GO:0051240 positive regulation of multicellular organismal process 
GO:0050865 regulation of cell activation 
├ GO:0050867 positive regulation of cell activation 
└ GO:0002694 regulation of leukocyte activation 
    └ GO:0051249 regulation of lymphocyte activation 
        ├ GO:0050864 regulation of B cell activation 
        │ └ GO:0050871 positive regulation of B cell activation 
        └ GO:0050863 regulation of T cell activation 
            └ GO:0042129 regulation of T cell proliferation 
GO:0070663 regulation of leukocyte proliferation 
├ GO:0070665 positive regulation of leukocyte proliferation 
└ GO:0032944 regulation of mononuclear cell proliferation 
    ├ GO:0032946 positive regulation of mononuclear cell proliferation 
    └ GO:0050670 regulation of lymphocyte proliferation 
        └ GO:0050671 positive regulation of lymphocyte proliferation 
GO:0045321 leukocyte activation 
└ GO:0046649 lymphocyte activation 
    └ GO:0042110 T cell activation 
GO:0002819 regulation of adaptive immune response 
└ GO:0002822 regulation of adaptive immune response based on somatic recombination of immune receptors built from 

immunoglobulin superfamily domains GO:0002683 negative regulation of immune system process 
GO:0002684 positive regulation of immune system process 
└ GO:0050778 positive regulation of immune response 
GO:0043122 regulation of I-kappaB kinase/NF-kappaB cascade 
└ GO:0043123 positive regulation of I-kappaB kinase/NF-kappaB cascade 
GO:0050691 regulation of defense response to virus by host 
GO:0051241 negative regulation of multicellular organismal process 
GO:0006919 activation of cysteine-type endopeptidase activity involved in apoptotic process 
GO:0002237 response to molecule of bacterial origin 
└ GO:0032496 response to lipopolysaccharide 
GO:0012502 induction of programmed cell death 
└ GO:0006917 induction of apoptosis 
GO:0009617 response to bacterium 
GO:0001776 leukocyte homeostasis 
GO:0006954 inflammatory response 
GO:0043330 response to exogenous dsRNA 
GO:0043900 regulation of multi-organism process 
GO:0045087 innate immune response 
GO:0045088 regulation of innate immune response 
GO:0002706 regulation of lymphocyte mediated immunity 



16 

Supplement Table S2. Overlapping GO-Terms in in vivo study between two cohort-level methods. 

GO Term Description 
GO:0009615 response to virus 
GO:0003013 circulatory system process 
└ GO:0008015 blood circulation 
GO:0008015 blood circulation 
GO:0007156 homophilic cell adhesion 

Supplement Table S3. Overlapping DEG between ex vivo and in vivo studies. 

Differentially Expressed Genes (DEG) 
ANKFY1 DHX58 IFI6 JUP OAS1 SDC3 TAP2 WARS 

ATF5 EIF2AK2 IFIT1 LAMP3 OAS2 SERPING1 TCN2 XAF1 
BLVRA EPHB2 IFIT2 LGALS3BP OAS3 SIGLEC1 TNFAIP6 ZBP 1 

C2 GBP1 IFIT3 LILRA6 OASL SOCS1 TNK2  
CASP5 GTPBP1 IFIT5 LILRB4 PARP12 SORT1 TOR1B  
CCL7 HERC5 IFITM1 LY6E PLSCR1 SP110 TRAFD1  

CMKLR1 IFI27 IFITM2 MREG PML SPATS2L TRIM22  
CNP IFI35 IL4I1 MX1 RSAD2 SPTLC2 UBE2L6  

DDX58 IFI44 IRF7 MX2 RTP4 STAT1 UNC93B1  
DDX60 IFI44L ISG15 NRP2 SAMD4A STAT2 USP18  
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Supp. Figure S1. Similarity Venn Diagrams with 3 sets. This Figure extends the three possible representations of 
Similarity Venn Diagrams presented in Figure 1. Each panel is the extension of its corresponding panel in Figure 1. 
While Panel A is the most ergonomic representation with 2 sets, Panels B and C are easier to represent and apprehend in 
higher dimensions. Panel C is the simplest representation overall, but merge the overlap with the similarity, thus 
displaying less information. The X∩Y subsets represent the intersection between sets X and Y, but not the other set Z. 
The central ∩ subset represents the intersection between the three sets X∩Y∩Z. 


