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Abstract: Background. Understanding individual patient host-response to viruses is key to designing
optimal personalized therapy. Unsurprisingly, in vivo human experimentation to understand
individualized dynamic response of the transcriptome to viruses are rarely studied because of the
obviously limitations stemming from ethical considerations of the clinical risk.

Objective. In this rhinovirus study, we first hypothesize that ex vivo human cells response to virus can
serve as proxy for otherwise controversial in vivo human experimentation. We further hypothesized
that the N-of-1-pathways framework, previously validated in cancer, can be effective in understanding
the more subtle individual transcriptomic response to viral infection.

Method. N-of-1-pathways computes a significance score for a given list of gene sets at the patient level,
using merely the 'omics profiles of two paired samples as input. We extracted the peripheral blood
mononuclear cells (PBMC) of four human subjects, aliquoted in two paired samples, one subjected to
ex vivo rhinovirus infection. Their dysregulated genes and pathways were then compared to those of 9
human subjects prior and after intranasal inoculation in vivo with rhinovirus. Additionally, we
developed the Similarity Venn Diagram, a novel visualization method that goes beyond conventional
overlap to show the similarity between two sets of qualitative measures.

Results. We evaluated the individual N-of-1-pathways results using two established cohort-based
methods: GSEA and enrichment of differentially expressed genes. Similarity Venn Diagrams and
individual patient ROC curves illustrate and quantify that the in vivo dysregulation is recapitulated ex
vivo both at the gene and pathway level (p-values<0.004).

Conclusion. We established the first evidence that an interpretable dynamic transcriptome metric,
conducted as an ex vivo assays for a single subject, has the potential to predict individualized response
to infectious disease without the clinical risks otherwise associated to in vivo challenges. These results
serve as foundational work for personalized "virograms".

Software: http://Lussierlab.org/publications/N-of-1-pathways

Supplement data and files: http://Lussierlab.org/publications/Ex-vivo-ViralAssay
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November 20, 2014

Edward H. Shortliffe
Editor-in-Chief, Journal of Biomedical Informatics

Dear Dr. Shortliffe,

We are submitting a revised version of the manuscript entitled “Towards a PBMC '"virogram
assay'" for precision medicine: concordance between ex vivo and in vivo viral infection
transcriptomes ”. This manuscript was a response to your invitation for submission on Aug 28,
2014 and was referred from the Translational Bioinformatics Conference (TBC) 2014 by Dr. Ju
Han Kim.

Please note that we have agreed with and addressed all the reviews comments.
The manuscript was not submitted elsewhere.

Sincerely,

Yves A. Lussier, MD
Professor of Medicine



*Response to Reviews

Dear JBI Reviewers,

We would like to thank you for considering our paper entitled “Concordance between ex vivo PBMC
and in vivo human infections confirmed by N-of-1-pathways analysis of single-subject
transcriptome”.

We agreed with all reviewers’ comments and have rewritten the manuscript to thoroughly address
them. The revised manuscript is now submitted for your further review and journal submission.

Associate Editor's Comments:

Comment. Please be sure to add a notation that this paper is an expanded and updated version of a
peer-reviewed presentation at the TBC meeting, per Reviewer #3's concern.

Response. We agree with the reviewer and apologize for the lack of acknowledgement of this
presentation (though there were neither associated abstract nor paper). We were invited by Dr. Ted
Shortliffe to publish the presentation in JBI, and added the following disclosure in the
acknowledgment.
(Acknowledgements) “This manuscript is an original publication that extends a peer-reviewed
presentation held at the 4th Translational Bioinformatics Conference (ISB/TBC 2014), organized by the
Chinese Academy of Sciences and Qingdao University held in Qingdao, China, October 24-27, 2014.
We thank the leadership of the conference for selecting and recommending this work for publication.”

Reviewers' comments:

----- Reviewer #1 -----

This is an interesting study by Gardeux, et al. that describes the possible relationship between ex vivo
and in vivo knowledge within the context of an N-of-1 pathway framework. Overall, the work is well
motivated and the results are interesting (although the results do not appear to be unexpected based
on previous work published by the authors; the condition is now different, which does further
demonstrate the generalizability of the method).

= Thank you

Comment 1.a. However, the presentation of the material could be expanded to better convey the
points that the authors are aiming to make.

Response 1.a. We agree and have expanded the paper to better cover the points as shown below in
the other responses.

Comment 1.b. The abstract could be made more concise. Additionally, the Background section in the
Abstract might be broken into Background and Objective sections.

Response 1.b. We agree and reduced it from 460 words to 296 words, as shown below.
(Abstract) Background. Understanding individual patient host-response to viruses is key to designing
optimal personalized therapy. Unsurprisingly, invivo human experimentation to understand
individualized dynamic response of the transcriptome to viruses are rarely studied because of the
obviously limitations stemming from ethical considerations of the clinical risk.
Objective. In this rhinovirus study, we first hypothesize that ex vivo human cells response to virus can
serve as proxy for otherwise controversial in vivo human experimentation. We further hypothesized that
the N-of-1-pathways framework, previously validated in cancer, can be effective in understanding the
more subtle individual transcriptomic response to viral infection.
Method. N-of-1-pathways computes a significance score for a given list of gene sets at the patient level,
using merely the ‘omics profiles of two paired samples as input. We extracted the peripheral blood
mononuclear cells (PBMC) of four human subjects, aliquoted in two paired samples, one subjected to
ex vivo rhinovirus infection. Their dysregulated genes and pathways were then compared to those of 9
human subjects prior and after intranasal inoculation in vivo with rhinovirus. Additionally, we developed
the Similarity Venn Diagram, a novel visualization method that goes beyond conventional overlap to
show the similarity between two sets of qualitative measures.
Results. We evaluated the individual N-of-1-pathways results using two established cohort-based
methods: GSEA and enrichment of differentially expressed genes. Similarity Venn Diagrams and
individual patient ROC curves illustrate and quantify that the in vivo dysregulation is recapitulated ex
vivo both at the gene and pathway level (p-values<0.004).



Conclusion. We established the first evidence that an interpretable dynamic transcriptome metric,
conducted as an ex vivo assays for a single subject, has the potential to predict individualized response
to infectious disease without the clinical risks otherwise associated to in vivo challenges. These results
serve as foundational work for personalized “virograms”.

Comment 1.c. The Introduction and Discussion sections are admirably short, but perhaps could be
expanded to better motivate the study and provide some more insights to the implications of the study
results.

Response 1.c. We agree and extended the Introduction from 609 words to 805 words and the
Discussion from 496 words to 1,064 words (see also responses 1.e and 1.9g).

(Introduction) Interestingly, antibiograms are well-established assays that provide precision
antibiotherapy to patients. They involve cultivating bacteria infecting a specific organ of a patient and
subjecting them to a number of tests to characterize the pathogen and its resistance to a number of
distinct antibiotics. In contrast, the field of infectious disease has not produce similar assays to test the
host (human subject) exposed to viruses. Therefore, there is an opportunity to improve precision
medicine by establishing the personal response to viruses that may impact one’s disease treatment
(e.g. Chronic Obstructive Lung Disease). We conceived the following ex vivo assays and expression
analysis methods in order to provide tools that would allow systematic non-invasive investigations of the
dynamic transcriptome response to viruses. As viruses infect cells, the viral transformation of these cells
caused by the introduction of viral DNA or RNA is associated with substantial regulatory changes
leading to favoring virus replication over normal cell functions. We thus use the dynamics transcriptomic
response as a proxy for the sum of all upstream regulatory disruption caused by the viral infection, an
assessment of the viral requlome specific to a personal genome — or simply said: “virogram”.

(Discussion) “Overall, this study shows that the biology is concordant between ex vivo and in vivo
assays, showing a significantly high similarity of biologically relevant functions to viral infection. Indeed,
Figures 2&3 show that conventional cohort-level methods (GSEA and enrichment of DEG) obtain very
concordant results both within each study and across ex vivo and in vivo studies. Concerning the

biological meaning of the results, Figure 4 probably synthetizes best their range.”

(Discussion) “In the context of precision medicine, Table 4 recapitulates the main biological
processes dysregulated between the virus-exposed and control samples. Unsurprisingly, every patient
harbors dysregulated pathways such as “response to virus” or “innate immune response”. The
motivating part is that N-of-1-pathways is able to uncover this dysregulation at the single subject level.
Moreover, Figure 5 shows that the patient-level results obtained by the N-of-1-pathways framework are
concordant with conventional cohort-level methods. On the methodological aspect, we have shown
again that the Wilcoxon model of the N-of-1-pathways framework was more accurate than the

ssGSEAgc model when the individual results are compared to a proxy gold standard.”

Comment 1.d. On a related note, the Conclusion section seems to be a bit long and does not really
present the major take home points (instead, it seems to be more material that might have been better
put into the Discussion section).

Response 1.d. We agree and made the Conclusion more concise. It was reduced from 399 words to
259 words as shown below.

(Conclusion) “In conventional comparative study analyses, many samples of different human subjects
are required for achieving sufficient statistical power to draw conclusions at the level of the studied
population. The N-of-1-pathways framework does not require a cohort for reaching sufficient statistical
power. The transcriptomic dysregulation induced by a virus is more subtle than the one induced by
cancer. Therefore these results underline the scalability of N-of-1-pathways to many clinical conditions
such as “before vs after treatment”, “paired single cell studies”, etc. It also provides a way of analyzing
studies previously considered underpowered due to the scarcity of patients, as well as a strong

framework for patient-centered precision medicine.

This paper is the first of its kind to report a personal ex vivo dynamic transcriptome assay that
recapitulates an in vivo infection —a foundational work for developing virograms for clinical practice.
This is a step forward for precision medicine since such ex vivo assays can be extended to interpret
individualized response to infections or putative therapies in high throughput. In other words, these
analyses are required to multiplex systematically alternate dynamic transcriptome responses of the host
conditions in a way analogous as those conventionally conducted on pathogens in microbiology (e.g.
antibiogram). The unveiled pathways are biologically meaningful and can be recapitulated by several



well-established, cohort-level methods. Moreover, this concordance can be found at a lower level, since
we also found a strong overlap of differentially dysregulated genes between the two conditions.
Therefore, this raises the question of considering ex vivo studies when in vivo studies are either

unethical and/or clinically unadvisable.”

Comment 1.e. Notably missing from either the Introduction or the Discussion is the similarity or
difference from the previous study done by the authors-- i.e., what are the implications of N-of-1
frameworks in context that are not cancer based, especially in light of the significant
pathophysiological differences between rhinovirus and other conditions?

Response 1.e. We agree, improved the title and added a clarifying paragraph in the Discussion.

(Title) Towards a PBMC "virogram assay" for precision medicine:
concordance between ex vivo and in vivo viral infection transcriptomes.
(Old title) Concordance between ex vzvo PBMC aﬁd—m—wveﬁumaﬁ—mfee&eﬁs

(Discussion) “This new application of the N-of-1-pathways framework differs in many ways with our
previous applications in cancer. The obvious first difference is the biology: cancer transcriptome is a
consequence of inherited and acquired human gene mutations as well as epigenetic changes between
the normal and cancer tissues, while a viral infection consists of the introduction of an foreign regulatory
apparatus comprising non-human nucleotides (RNA or DNA) and proteins without mutations to human
genes (at least initially). Previously we showed that the dynamic transcriptome analysis of uninvolved vs
solid tumoral tissue could be predictive of survival at the single patient level. Here we show that the
same framework could be used to unveil relevant individual pathway deregulation in white bloods cells
of the PBMC samples. Since the concept can be extended to different tissues and conditions, it shifts
the clinical implications of the results. In follow-up studies, we are translating this process to clinical
practice: a single blood sample followed by a transcriptomic analysis of the ex vivo assay is enough to
predict future outcome (predictive virogram). Moreover, in our previous studies, the N-of-1-pathways
framework was validated using straightforward discovery techniques such as hierarchical clustering and
principal component analysis, as well as survival curves. In this study, we extended the analysis of the
results thanks to a more elaborated Similarity Venn Diagram framework (which could also be used
independently). The similarity metrics and visualization tools provide a more comprehensive set of
results as well as a straightforward visualization in order to rapidly grasp the results and their meaning.
Finally, the present study could be considered as a preliminary step towards the future development of
ex vivo assays for precision medicine. And here this term is unequivocal since we can unveil

deregulated pathways at the single patient level.”

Comment 1.f. The study might benefit from a more explicitly stated study hypothesis or goal of the
study and the have the results be discussed in the context of this overarching hypothesis or goal. In
particular, how does this study build on the previously published work in a different disease context
(again, is there a difference in Infectious Disease versus Cancer that might be important to
emphasize?)

Response 1.f. We agree and significantly developed the Introduction and Discussion to address this
point (addressed in previous responses to questions 1c and 1e).

(Introduction) In this study, we aimed at analyzing the transcriptomic response of ex vivo virus-exposed
Peripheral Blood Mononuclear Cells (PBMC) human cells, and compare it to the in vivo response in the same
conditions. We hypothesized that ex vivo analyses can recapitulate in vivo dysregulation in this experimental
context

Comment 1.g. To many readers it may seem obvious that Asymptomatics will cluster apart from
Symptomatics. This needs to be more directly addressed in the manuscript.

Response 1.g. We clarified this issue as requested.

(Discussion) “Further, Zaas et al. established the separation of the asymptomatic from symptomatic
phenotype of a rhinovirus infection through supervised studies [5], suggesting that the feasibility is not
trivial. Here, we show that integrating both the uninfected and virus-exposed PBMC transcriptome
states into a single dynamic transcriptome interpretation probably increases the sensitivity since an

unsupervised PCA can identify this phenotype on its two first components (Figure 6).”



Comment 1.h. There are a number of typographical errors that should also be corrected, e.g.:
p3: Homo Sapiens >> /Homo sapiens/

p4: "a statistics" >> "a statistic"

p11: "Odds ration" >> "Odds ratio"

p11: "in the infectious context" >> "in the infectious disease context"

Response 1.h. Thank you, we rectified the errors.

Comment 2.a. The manuscript described the utility of N-of-1 pathway methodology (previously
established by the same group) in the context of viral infection. The background and the motivation
for developing such a method are described lucidly in the manuscript. The authors also described the
details of the methods used in the analysis very clearly.

The results of the analysis are presented well with novel venn diagrams termed as the "similarity venn
diagrams". The N-of-1 pathway analysis using the wilcoxon model seems to be effective approach
compared to the ssGSEA. This method can be used to perform functional (ongtological/pathway)
analysis using just two paired samples. So, it can be a very handy downstream analysis tool for
transcriptome datasets generated from high-throughput omic platforms.

Response 2.a. Thank you for your endorsement.

Comment 2.b. The language of the manuscript is generally good. It would be nice, if the authors can
make the source code used to perform the ontology analysis publicly available for the community.

Response 2.b. We agree. The sources are publicly available from the following URLs. We created a
specific page for the Venn Diagram ontology analysis and referenced it in the manuscript as follows.
(Methods) “The source code and GO-GO similarity matrix used for computing the Similarity Venn
Diagrams in this manuscript are available at http://lussierlab.org/publications/SimilarityVenn.”
(Abstract) Software: http://Lussierlab.org/publications/N-of-1-pathways
Supplement data and files: http://Lussierlab.org/publications/Ex-vivo-ViralAssay

Thank you for the opportunity to review this work. | understand that the goal of this research is to gain
insights into the individual dynamic responses to viral infection using both in-vivo and ex-vivo studies
within the authors' N-of-1-Pathways analysis framework.

Comment 3.a. Editorial Policy: | believe that the manuscript has been previously published; this has
not been acknowledged by the authors. See:* http://gardeux-vincent.eu/Nof1Pathways.php

[3] Concordance between ex vivo PBMC and in vivo human infections confirmed by N-of-1-pathways
analysis of single-subject transcriptome, Translational Bioinformatics Conference (TBC), Qingdao,
China, October 24-27,

Response 3.a. We agree with the reviewer and apologize for the lack of acknowledgement of this
presentation (though there were neither associated abstract nor paper). We were invited by Dr. Ted
Shortliffe to publish the presentation in JBI, and added the following disclosure in the
acknowledgment.
(Acknowledgements) “This manuscript is an original publication that extends a peer-reviewed
presentation held at the 4th Translational Bioinformatics Conference (ISB/TBC 2014), organized by the
Chinese Academy of Sciences and Qingdao University held in Qingdao, China, October 24-27, 2014.
We thank the leadership of the conference for selecting and recommending this work for publication.”

Comment 3.b. Scientific/Technical: | find this research to be an excellent adaptation of a method first
developed for cancer research. The writing is clear (except for minor issues below) and the
illustrations support the results.

Response 3.b. Thank you for your endorsement.

Comment 3.c. Minor: Throughout the manuscript, there are minor errors in the English language that
can be corrected by the editor. Here are a few examples:

* Deregulated /deregulation ... dysregulated / dysregulation is more commonly used in the

medical area, in this reviewer's opinion. (throughout the manuscript) However, this term has



been used in the authors' previous works.
* Essays ... assays (abstract)

Response 3.c. Thank you, we rectified these errors as suggested and revised the whole manuscript
for other English mistakes.
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Foundation methods for prognosis of immune-modulated diseases: “virograms assays”
Dynamic transcriptome calculated from HRV-infected vs non-infected PBMCs’ mRNAs
PMBC samples are analyzed with N-of-1-pathways single-patient pathway-level scores
Similar ex vivo & in vivo infected PBMC dynamic transcriptomes (genes & pathways)
New Similarity Venn Diagrams for improved visualization: similarity trumps overlap
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Abstract

Background. Understanding individual patient host-responsitoses is key to designing optimal personalized
therapy. Unsurprisinglyin vivo human experimentation to understand individualiggthiamic response of the
transcriptome to viruses are rarely studied becaofethe obviously limitations stemming from ethical
considerations of the clinical risk.

Objective. In this rhinovirus study, we first hypothesize ttlex vivohuman cells response to virus can serve as
proxy for otherwise controversial vivo human experimentation. We further hypothesizedtti@aiN-of-1pathways
framework, previously validated in cancer, can H&aotive in understanding the more subtle individua
transcriptomic response to viral infection.

Method. N-of-1-pathwayscomputes a significance score for a given lisgehe sets at the patient level, using
merely the ‘omics profiles of two paired samplesirgsut. We extracted the peripheral blood monorarctells
(PBMC) of four human subjects, aliquoted in tworpdi samples, one subjectedew vivorhinovirus infection.
Their dysregulated genes and pathways were thepaua to those of 9 human subjects prior and afteanasal
inoculationin vivo with rhinovirus. Additionally, we developed ti&milarity Venn Diagrama novel visualization
method that goes beyond conventional overlap tavghe similarity between two sets of qualitativeaseres.
Results. We evaluated the individual N-of{dathwaysresults using two established cohort-based metlHe8&A
and enrichment of differentially expressed ger&imilarity Venn Diagramsand individual patient ROC curves
illustrate and quantify that tha vivo dysregulation is recapitulatezk vivoboth at the gene and pathway level (p-
values0.004).

Conclusion. We established the first evidence that an intéapte dynamic transcriptome metric, conducted as an
ex vivoassays for a single subject, has the potentiptedict individualized response to infectious dssewithout
the clinical risks otherwise associated ito vivo challenges. These results serve as foundationak viar
personalized “virograms”.

Software: http://Lussierlab.org/publications/N-of-1-pathways

Supplement data and fileshttp:/Lussierlab.org/publications/Ex-vivo-ViralAsg

Introduction

Transcriptomic analysis of the response to a wars be used for various purposes, involving theststdnding of
its relation to disease progression, or severitythle context of respiratory diseases such asdnfia, Human
rhinovirus (HRV), or Respiratory syncytial virus§R), many studies involve finding the viral respemd infected
hosts. However, in many cases, the course of 3 uifection may be relatively short. This impli@gthdifficulties
for obtaining genetic data in a timely manner. R for ethical reasons, most of those studieg oal animal
models [1-3] infected with virus to assess the imifiost evolution of the virus. Other studies oweK the
progression of already infected patients [4]. Liémmn five studies go as far as inoculating healthgnan patients


http://ees.elsevier.com/jbi/viewRCResults.aspx?pdf=1&docID=4560&rev=1&fileID=202397&msid={056405E5-FE1F-470B-9807-48EE099A142B}

with those viruses to study vivo the progression of the disease [5] and procuragstriptomes. Althougéx vivo
experiments are often undertaken before and aiftes infection, they are usually performed for toealysis of a
handful single-locus gene expression. Few humahti@@lscriptome derived fromnex vivowith paired samples
before and after virus infection were available dagosited [6] in the Gene Expression Omnibus @b

Interestingly, antibiograms are well-establishedags that provide precision antibiotherapy to mpétie They
involve cultivating bacteria infecting a specificgan of a patient and subjecting them to a numbbeiests to
characterize the pathogen and its resistance tm#er of distinct antibiotics. In contrast, theldi of infectious
disease has not produce similar assays to tegiasie(human subject) exposed to viruses. Theretheze is an
opportunity to improve precision medicine by edttbhg the personal response to viruses that maadmone’s
disease treatment (e.g. Chronic Obstructive Lunge&se). We conceived the followirgx vivo assays and
expression analysis methods in order to providéstthat would allow systematic non-invasive invgations of the
dynamic transcriptome response to viruses. As ggusfect cells, theiral transformationof these cells caused by
the introduction of viral DNA or RNA is associat@dth substantial regulatory changes leading to fisngpvirus
replication over normal cell functions. We thus tise dynamics transcriptomic response as a proxthiosum of
all upstream regulatory disruption caused by thial vhfection, an assessment of tieal requlomespecific to a
personal genome — or simply sdidirogram” .

In this study, we aimed at analyzing the transoript response o&x vivo virus-exposed Peripheral Blood
Mononuclear CellsRBMC) human cells, and compare it to thevivo response in the same conditions. We
hypothesized thagx vivoanalyses can recapitulate vivo dysregulation in this experimental context. Tastand,
we used well-established enrichment methodologieb as GSEA to assess the pathways at play inress a
virus. However, those methods of analysis use ¢dfased models, which create predictive models hase
average/commonly found features across patientss thverlooking individualized transcriptomic respento
stressors that may reveal the summative effectoofinaon as well as private (i) genetic polymorphisamsl
(ii) epigenetic modifications.

N-of-1-pathwaysis a framework dedicated to the personalized nmeelifield that we initially proposed in the
context of cancer analyses [7, 8]. It was succégsiipplied to lung adenocarcinoma visualizatiorsiofgle patient
survival and proved to unveil biologically signdict dysregulated pathways by using only one pasaaiples taken
from the same patient in two different conditioii$ (such as before and after treatment or uninwblg tumoral
cells). It was also applied in ovarian and breasicer cell lines to confirm the unsupervised idiatiion of
dysregulated pathways after a knockdown of PTBRILRRBP2 genes that control alternative splicing [B]the
current study, we aimed at showing that the samaf-Npathwaysframework can be used in very different
conditions than cancer such as the transcriptoasipanse of virus stress.

One component of N-of-pathwaysdesign relies on the calculation of the semantrilarity of pathways.
Therefore, we focused our analyses on the GeneldytdGO) database, which regroups genes into gicidly
meaningful gene sets, connected through an ontdiegy Several tools were developed for analyzivuge “GO
Terms”, involving measures of similarity based bae topology of the ontology. In this paper, we @®pa novel
Similarity Venn Diagranrepresentation for helping readers to understaemnly the overlap between two lists of
GO Terms, but also their similarity, based on aforimation-theory equation measuring the semantiulaiity
between two GO Terms. Further, we demonstrate ttiiat representation can also be used in a morergene
comparison of two lists where a measure of sintjlakists for comparing its elements.

Therefore, the major goals of this study are igharacterize the mechanistic response to rhingviju® validate
our patient-centered framework, N-ofeathwaysin alternative conditions, and iii) to extend tlepresentation of
classic Venn diagrams from simple overlap to mamm@ex similarity comparisons.

Methods

PBMCs incubated with viruses that generated the “Man ex vivo infected” dataseT he live PBMCs had been
isolated from blood samples collected from four Bunsubjects under a protocol approved by The Usityeof
Arizona Internal Review Board. Whole blood was ated from donors and placed in Becton DickensorT C
tubes that were centrifuged according to standaotbpols to obtain PBMCs, then each aliquoted in paired
samples. Each sample of the pair was subsequexpilysed to and incubated with either (i) Human Rbiings
serotype 16€x vivoinfected sample) or to (ii) sterile medium (cohea vivonon-infected sample) and incubated at
37°C in 5% CQ for 18 hours. This protocol resulted ire® vivoinfected + 4ex vivocontrols = 8 paired samples.

2



RNA was extracted from these samples, amplifiedged, and hybridized oAffymetrix Human Gene 1.0 ST
microarraysaccording to standard operating procedures. Gepeegsion data were submitted to Gene Expression
Omnibus (GEO; GSE60153, http://www.ncbi.nim.nih.fgeo/) and thus generated the “Humanr vivoinfected”
datasetTable 1).

Table 1. Gene expression dataset description.

Dataset Human ex vivoinfected dataset Human in vivo infected dataset
References Authors Gardeux V, Bosco A, et al. (present paper)  Zads./At al. Cell Press 2009 [5]
Source (GEO) Novel dataset (GSE60153) GSE17156
Platform Affymetrix GeneChip® Human Gene 1.0S Affymetrix Human Gene U133A 2.0
Probes measured 33297 22277
Genes mapped to probes 19915 14288
Human Total subjects 4 9
SubjedCtS - Control samples 4P PBMCs incubated with control medium 9" PBMCs collected 24hrs prior tofection
1r i P
e s 4 PeNCsamescontnus 0 PONGS el & peek Smoons pos

Live human PBMG:ells infectedex vivo& Human subjects - inoculated in vivo

S . . . . S intra-nasally with Human Rhinovirus
Viral infection experiment incubated with Human Rhinovirus serotype . X
16 (ATCC® VR-283) serotype 39 (Charles River Lab; Malvern,

PA)
" Indicates paired samples derived from the samieithgl for rhinovirus-exposed with matched non-esed PBMCs samples.

Dataset and preprocessingrobust Multiple-array Average (RMA) normalizatif®] was applied on each patient
data independently (2 paired samples at a timaytad bias in the single-patient experiments) ughfiymetrix
Power Tools (APT) [10]. We also used an externaghsizt downloaded from the GEO repository on 07042
comprising a cohort of 20 healthy patients who wiakeculated with the rhinovirus. Blood samples weaken
before inoculation and during the peak of symptemghe disease. Among those 20 patients, 10 wdneedeas
symptomatic and the other 10 as asymptomatic. Weel uke 9 microarrays available paired data from the
symptomatic patients and normalized them usings#tmee RMA normalization techniqu€able 1 recapitulates the
content of each of those two datasets.

Gene setsWe aggregated genes into pathway-level mechanissitgg theorg.Hs.eg.dbpackage [11] Homo

Sapien} of Bioconductol{12], available for R statistical software [13]. We u$ed different gene sets databases:

1) Gene Ontology@O) Biological Processes50O-BP) [14, 15]. Hierarchical GO terms were retrievethgshe
org.Hs.egGO2ALLEGS8atabase (downloaded on 05/15/2013), which comtailist of genes annotated to each
GO term ¢ene sgtalong with all of its child nodes according te thierarchical ontology structure.

2) KEGG pathways [16, 17] were retrieved usingahg.Hs.egPATHlatabase (download 05/15/2013).

Gene sets included in the study comprised betwBeandl 500 genes (among the genes measured bydteamay).
This led to a total of 3234 GO-BP gene sets andKB&G pathway gene sets. This filtering protocdlofas the
default one used in GSEA and a protocol we haveiqusly identified as optimal for these studies§718-21].

Gene Sets Enrichment Analysis (GSEAJene set enrichment analysis was conducted ondaddsets. The GSEA
v2.0.10 software [22] was used with the defauliapzeters except for the permutation parameter ssteathich
was set to “gene set” instead of “phenotype”. Gsgtepermutation was chosen to achieve enoughtitatipower

for permutation resampling due to the small numblesamples. Only dysregulated GO-BP terms and KEGG
pathways reaching the False Discovery Rate (EB®) significance threshold were retained for furtaealysis. It
resulted in a list of 399 dysregulated GO-BP tebeisveen the non-exposed and rhinovirus-exposedlsarfgr the

ex vivodataset, and 194 GO-BP terms and 11 KEGG pathveaythéin vivo dataset. The complete lists of results
from GSEA are available &upplement File 1 - GSEA

Differentially Expressed Genes (DEG) CalculatioRifferentially expressed genes (DEG) between ngueszd
and rhinovirus-exposed samples were calculatedguia SAMR package in R statistical software [23knes
reaching the FDR5% threshold were considered significantly dysratpd between the two conditions. Those
protocols resulted in a list of 458 differentiatxpressed genes (DEG) found significantly dysregdlan theex
vivo dataset and 709 DEG in tirevivo dataset. The complete lists of DEG are availabl8upplement File 2 —
DEG+Enrichment.



DEG enriched into GO-BP terms (DEG+Enrichmentpifferentially expressed genes (DEG) were enricimd
GO-BP terms using DAVID website [24, 25]. GO-BPnterreaching the FD&E% threshold were considered
significantly enriched. It resulted in a list of Lidysregulated GO-BP terms between the non-expased
rhinovirus-exposed samples for tbe vivodataset, and 20 GO-BP terms for thevivo dataset. The complete lists
of enriched pathways from DEG are availabl&applement File 2 — DEG+Enrichment

Information Theoretic Similarity (GO-ITS).We calculated the similarity between GO-BP termmaisliang’s

information theoretic similarity [26] that range® 0 (no similarity) to 1 (perfect match). We hgweviously

shown that a GO-ITS score0.7 robustly corresponds to highly similar GO terosing different computational
biological validations: protein interaction [27,]28iuman genetics [29], and Genome-Wide AssociaStudies

[30]. GO-ITS was calculated on each distinct paimoag the 3234 GO terms of sizd5 and<500, leading to

10,458,756 pairs of which 59,577 have a GO-FI&7 (5.6 out of 1,000).

Novel Similarity Venn DiagramIn order to compare the different list of dysrege¢thGO-BP termsve computed
uncommon Venn Diagrams. Since every two GO-BP tgrossess a measurable degree of similarity (se¢TSO-
definition), it is possible to compare the two s&t$ only by direct overlap but also by degreeiwfilarity. For each
Similarity Venn Diagramwe calculated the number of GO-BP terms simitaedach of the two sets using a strong
similarity GO-ITS threshol@ 0.7 ¢0.0056 pairs of all GO terms pairs meet this seimgriteria). This leads, for
eachSimilarity Venn Diagramto two additional values: the number of pathwéydelonging to the set A and
similar to thesetB and (ii) vice-versa. If we take only the intersec of those two sets, we obtain the traditional
Venn Diagram overlap. Of note, this technique may dxtended to as many sets as needed, and different
representations can be usedjure 1 shows three possible representations of those INBinelarity Venn Diagrams
the first one RPanel A) being the one we chose for this paper, becau#ts pfacticality for two sets studies. The
source code and GO-GO similarity matrix used fanpating the Similarity Venn Diagrams in this mamijsicare
available ahttp://lussierlab.org/publications/SimilarityVenn

Figure 1. Similarity Venn Diagrams. This Figure shows three possible representatior&oflarity Venn Diagrams.
Panels AandB are an extension of the traditional Venn Diagrapresentation. They contain the same overlapping
number of entities in the middle and also two exttembers describing the similarity of each sethe other. This
similarity depends on a threshold chose for assgdsi entities to be significantly similar (in tfigllowing paper, we
chose GO-ITS> 0.7). WhilePanel A is the most ergonomic representation with 2 detsiels Band C are easier to
represent and apprehend in higher dimensionsS8pp. Figure Sifor a few possible extensions with 3 seBanel C

is the simplest representation overall, but metigeverlap with the similarity, which displaysddaformation.

Similarity Contingency Table.Further, we can calculate the statistical sigaifiie of the similarity for the
Similarity Venn Diagrambetween two sets (here callacgindB). We propose a statistic based on the following tw
steps: 1) among all elements in 8ednd all elements in s& taken from the statistical univereg identify similar
pairs among “every possible pair combinations fisetA and seB” (denoted AxB”), and 2) compare this value
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against all the pairs that are similar¢nx Q. To this end, we propose Gimilarity Contingency Tablen which
conventional calculations of Odds Ratio and enriehtrtan be calculated (such as Fisher's Exact .TEasble 2
shows thisSimilarity Contingency Table detail, with a numeric example taken fréigure 2.

Table 2. Similarity Contingency Tabldor computing significance of the similarity in a Similarity Venn Diagram
This table shows a numeric example frBigure 2, where we have two sets of GO-Ter&fA| = 399) and (|B| = 111).
There are 399%x111 possible pairs betweenAsetsdB (JAxB| = 44,289) among which we found 1,730 pairs that fsave
ITS>0.7. Moreover, the statistical univeiQecontains 3,234 GO-Terms which leads to a totalbbemof possible pairs of
|Q x Q] = 10,458,756, among which we found 58,577 phas have a GO-ITS).7. A Fisher’s Exact Test gives an Odds
Ratio of 7.28 and a very significant p-value < :T0, which implies that the similarity between the sets is high.

Pair with similar Pair with NOT similat
elements elements
Pairin Venn € AxB) 1,730 42,559
PairNOT in Venn ¢ AxB) 57,847 10,356,620

LEGEND: € “is an element of"g “is not an element of”;
Background = total number of possible pai€s X|Q|)

GO-Modules.We previously developed GO-Module [31] to synthesand visualize enriched GO terms as a
network. GO-Module reduces the complexity of norhiists of GO results into compact modules orgathiretwo
distinct ways: by (i) constructing modules fromrsfggant GO terms based on hierarchical knowledwe] (ii)
refining the GO terms in each module to distingdfsh most significant terms (key terms of the mejiuidubsumed
terms to the Key term and terms of lesser impoadgeey inFigure 3).

N-of-1-pathwaysramework. N-of-1-pathwayg7, 8] is a methodology unveiling dysregulated pathwagsifonly

two paired samples. In this study, it was appliedependently for each patient, on the paired ngosad and

rhinovirus-exposed samples in bdthvivo and ex vivodatasets. The N-of-fiathwaysframework and software

identifying the dysregulated pathways (the scormgthod) are modular and several different models loa

substituted for the “pathway identification module”
Wilcoxon model The “Wilcoxon” model was already validated onedrospective lung adenocarcinoma
survival prediction study [7] anth vitro using both ovarian and breast cancer cell linegleéntify an
experimentally knocked down pathway [8]. This mostalrts by restricting the gene expression datheo
genes belonging to the considered gene set. Thapplies a Wilcoxon signed-rank test of the two
restricted vectors of gene expressions to assessdytsregulation of this gene set. Basically, thisded
recognizes gene sets having an over-representafiap-regulated genes compared to down-regulated
genes, or vice versa. Two different methods weredu® adjust p-values for multiple comparisons:
Bonferroni (for a more stringent set of resultsjl @enjamini and Hochberg (False Discovery Rate; FDR
[32]. In each paired sample, only dysregulated waits with adjusted p-values following FBB% or
Bonf<5% were retained for further analysis. The complists of dysregulated pathways unveiled from
the Wilcoxon model for each patient are availalsi8 @pplement File 3 — Wilcoxon
Single-Sample GSEA or ssGSEA model. The ssGSEA software is available from the GSEA glort
(http://www.broadinstitute.org/gseal/index.jsp) atmkes not have a publication describing how itslsing
sample method differs from the described cross-afGSEA v2.0.10 software [22]. Although without
published evaluation (simulation or experimental)the method’s developers, sSGSEA was utilized on
single-samples [33]. We have previously extended ube of SSGSEA in the context of paired-samples
within the N-of-1pathwaysramework as an alternative to the Wilcoxon mottebur implementation, we
use the “ssGSEAPreranked” version that is appliedaopre-ranked list of genes and computes a
permutation-based p-value for each gene set. Inctimext of our paired samples framework we pre-
ranked the genes according to their Fold Change (&fween non-exposed and rhinovirus-exposed
samples calculated separately for every patieris I$ange of sSGSEA was never formally describeayeso
called this model ssGSEAin order to show its specific application to F@tange (FC) in paired data.
The complete lists of dysregulated pathways obthiflem this ssGSEA model for each patient are
available asSupplement File 4 — ssGSEA

Principal Component Analysis (PCA)'he PCA was computed using tHeattoMineR package in R (with default
parameters). We first computed the matrix of p-galaomputed for every pathway assessed for eaignpdihen,
these p-values were transformed into Z-scores usinginverse standard Normal distributiod-qcore =
abs(gnorm(p-value/2)ih R. The PCA was finally applied on this matrixtEcores.



Results

Comparison of cohort-based results within thex vivoand in vivo studies.We compared the concordance of the
results unveiled from cohort-based methods (conweal) across four patients. We applied two wetkbBshed,
cohort-level methods: GSE@ethods: GSEA) and DEG+EnrichmenfMethods: DEG+Enrichment) in the two
datasets by comparing the virus-exposed to theemposed samplesn order to visualize their concordance, we
plotted Similarity Venn DiagramgMethods: Similarity Venn Diagram) between the results unveiled by GSEA
and DEG+Enrichment (at FB#%), separately within thex vivoand thein vivo datasetsFigure 2 shows the
overlap as well as the similarity between the tachhiquesSupplement Tables S1&S2ecapitulate the pathways
found dysregulated by both techniques.

A Human ex-vivo dataset B Human infected in-vivo dataset

DEG+Enrichment DEG-+Enrichment
(111 deregulated GO-BP Terms) (20 deregulated GO-BP Terms)

Figure 2. Robustness of pathways enriched separagein the two datasets is confirmed by consistencyf GSEA
and DEG+Enrichment. Those specifically-designe&imilarity Venn Diagramswere obtained by two different
enrichment techniques tested subsequently in tatindt datasets: human vivo infection and humaex vivoinfection.
Their particularity is to show both overlap and itamity across two lists of enriched GO-BP terrfvethods: Similarity
Venn Diagrams). Hence, by taking each list as reference recalhpcthis leads to two different numbers of simitias
(one from the perspective of each list, visibléhia additional dotted-delimited space). For examipl®anel A 61 GO-
BP terms are found overlapping between the two ousthand an additional 211 (among the 399 dysregl@O-BP
terms unveiled by GSEA) are similty the list of pathways unveiled by the DEG+Enm&mt method in thex vivo
dataset (GO-ITS cutoff 0.7). The complete lists of overlapping and simp@thways from the two diagrams are
available asSupplement File 5 — Figure 2 Of note, only ~5.6 out of 1000 pairs of GO terare found with GO-
ITS>0.7 among all possible pairs of GO-BP terrvtethods: GO-ITS), thus the “observed” similarity of the above
Venn Diagrams far surpasses the “expected” ondsavery significant Panel A Similarity Odds Ratie7.28, p<10®®
Panel B Similarity Odds Ratis2.33, p=9.73 x 18).

GO-BP Terms similar cross-techniques (ITS=0.7)

Comparison of the individual results to cohort-basd results across theex vivo and in vivo studies. After
having established the concordance of results efttvo cohort-level methods within each study, weea at
comparing the two studies togethEigure 3, Panel Ashows a standard Venn Diagram comparing the difiially



expressed genes unveiled in each siiMigthods: DEG calculation). It reveals a very strong overlap between the
in vivo and ex vivostudies. The full list of overlapping DEG can lwairfd in Supplement Table S3Figure 3,
Panel B contains twoSimilarity Venn Diagramsthe green one representing the overlap and sityilaetween the
GO-BP terms unveiled by GSEA across the two studied the purple one representing the same infasmabut
when applying the DEG+Enrichment method. The ietiens of the two dysregulated lists -whetheredéhtially
expressed genes or dysregulated pathways- aresiggnificant Panel A Odds Ratie5.226, p=3.41 x 1&; Panel
B-Green Diagram Similarity Odds Ratie1.95, p=3.69 x 18, Panel B-Purple Diagram Similarity Odds
Ratio~3.04, p=5.85 x 19).

A DEG overlap across-studies B GO-BP Terms similar across-studies (GO-1TS=>0.7)

= 458 Differentially DEG+Enrichment
v Expressed Genes (DEG) (111 deregulated GO-BP Terms)
5
N 220
>
5 MRTTE
IS / \\
- / \
[
1] ! /}
G \ /
© \ 34 ,
(m) h N s
2 ~_ -
>
£ 104
c
£
= 709 Differentially DEG+Enrichment
Expressed Genes (DEG) (20 deregulated GO-BP Terms)

Figure 3. Concordance ofx vivoand in vivo human studies.These Venn Diagrams show toeerlap and similarity of
results unveiled across the two studieanel A shows the overlap between the two lists of dysedgdl genes found
using SAMR methodMethods: DEG calculation). Since the two studies used two different mia@ayarchips, we
showed in parenthesis the number of dysregulateésgthat can be found in the common backgroundotif bhips
(common background = 12819 genes). The overlapeiy wsignificant (Fisher's Exact Test p=3.41E-25;ded
Ratio=5.226).Panel B shows the GO-BP terms that are overlapping or amatross both datasets by two different
techniques: GSEA and DEG+Enrichment. The complets 6f overlapping and similar pathways/DEG frdme three
diagrams are available 8sipplement File 6 — Figure 3

In order to understand the biological relevancyhef GO-BP terms unveiled across the two studiesiyo andex
vivo), we displayed the 56 GO-BP Terms found dysregdldty the GSEA method as a netwoFkg(re 4). The
connections between the GO-BP Terms are inferram the ontology topology, which helps to see thaupgs of
terms interconnected:able 3 also recapitulates the seven GO-BP terms conctlydimund dysregulated by the
DEG+Enrichment method.

Table 3. Overlapping GO-BP Terms betweemx vivoand in vivo studies when DEG+Enrichment is appliedThese
terms correspond to the overlap in the rightmostgl, right ofPanel B) Similarity Venn Diagram oFigure 3.

GO Term Description
G0:000961 | response to virt
G0:000695 | immune respon:
G0:000726 | cell-cell signaing
G0:000828 | negative regulation of cell proliferati
G0:000971 | response to endogenous stim
G0:000972 | response to hormone stimu
G0:001003 | response to organic substa




1ed 1ybu wonoq dypUaIe SWI) PaleIdoSSIP M3} e pue ‘YI0M1au ay)
10 ued 1sowyapeisalyarelaly ayl ul UMoys si sniia 01 asuodselr ayl “(ybu) sa1h000na| Buowe sajkooydwApsygo asuodsal Jejnjjad ayl pue (I191usd) Sau01Ad
Bfuowre ewwes pue psEu—IUI JO 19SYNS Byl YIm

asuodsal sunwiwi a1gson Jusledwod e SMoYs MyJomiau ay Jo Alofew ayl poylsw (3INPON-OD :SPOYISIN)

9INPON-0S a8yl Buisn Mlomiau aypzes ayl paonpal 1sil) am ‘Aljiqepeal Jenaqg o4 (g |aued 1o U9| ‘2 m;:m_w_,qm_wm.u \E SaIpNIS OAIA UIPUBOAIA X&BYl Usamiaqg
pare|nbalsApuAiuoo punoj swidl 4g9-09 ayl sluasaldal J}Iomiau Ssiylpoylaw YISO AQ SaIpnis OAIA Ul PUROAIA XalaaMiag SWial 49-09 buiddeano i ainbi4

sissusfoydiow wnio

S1SB]508 WOY U0l WNvjed

uoljezilewel3s) uelold

UOIIEIJIUI [BUOIIE|SUEB]

s58004d oljRjS08WOY
Jo uole|nbeal aalehsu

SIXBJO WS YD 814003 N8|
Jo uolenbai saljisod

uoljeaBiul e1fa0xN8|
Jo uonejnfisl ganisod

I01ABY 48d 4o udienbau

asuodsel sunwIW| 81EUU|

150U Ulim UoljoBlaiul

peleipaul 8}ho0oxns|

sixejowsyo
ayfooynsfijo uolie|nbel

Ajunwwl pajeipsul |89
1 Jo uonenbal salysod

Alunwwl pejeipsw
1180 | jo wole|nbal

Ajunuwg v!m_umE 1180 1

1
AU EﬁE
pejeipew BIATOLdWA|

3
Y
LY
L}

-
-

A1101X01034A0

]
1
L]
i
1
]
1
¥
]
1
1
1
\
1
I
1
1
\
1
i
st
1
1
1
\
1

550004d 10Ky suNLIL

F&.{

asuodsal aunuiul
Jo uolienbad salebau

uolonpold
uolsyiaiul | adAy
Jo uonenbal saljehsu

uoljonpodd uod

| 8dAj 4o uolein
@

uoljonpodd
uodsyiaiul | adAy

Aemyied Buyeubis

Aemuyied Buleubis
paleipauw-ewwWeh-uolsiaiul

npoid suix034o

J0 c.o_ nbal sajebau
pajeipsw-uolajiaiul Ny
| adAy @
Aemuyied B

uieu uolieol|dad swoushb |BalA
uBm_umE-@X%MM euweb-tols)ejul

Jo uone|nbal salebau
g 0} esuodgal ugin|eo
uodspaiul | i

adA] 0] ssugdsal Jen||eo

B wweb-go.ajieul Jo UonBINBel sAEbaU
Som&ogmﬁ uoljonpolded eaia -~

W
ufweb-uolsjisiul o

asuodsal jo uoljenbial
& Aemyied Bujeubls

[ \ |
.- 1
pejeipsw-Uolajlaiul
ul paajoaul uoponpold Y
,‘ :0dA3.40 UonenBal 8UI403142 Jo uoljeinbsal
3

\ M
r d 6 o
uoljeairdal awoush (e
SIS m.,c:EE_ : . ] _,., & | m\§ SN 0 omcogwﬁ
—~— susjap jo uolje|nbal
o uone|nBal ®>:@¢@®c . - sduodsal sunuu Qu A
5 - _ afeuu Jo boneinbes sseooud WSluebio-13nw
, 2 ~L jo _.:ﬂ_ jeinbal
\\\. 4 ! asuodses asusjep
i owﬁa 10jo9le - ) 0 :o:m_sz anljebau
f, . sunul oco:mS@\m._ mw J
§
i
]

snJia 0} psuodsad
ap Ja uole|nbal

o / ,, :

\\\uwbk%ou ssuodsael asusjep
sninwis suR| oA 03

asuodsal Lu onenbal

'

SnuiA 0] 9suodsal

U0I30BI8]Ul 1S0U-SMNIA

@



Concordant dysregulated pathways unveiled betweennfected and uninfected samplesWe applied the
Wilcoxon model of the N-of-Jathwaysframework for each patient’s paired data betwéencontrol sample and
the one subject to rhinovirydethods: N-of-1pathway$. The aim of this particular comparison was to idgrhe
pathways dysregulateelx vivoin presence of a virus for each patient indepettglehen, we aggregated the
dysregulated pathways obtained for each patieidentify the pathways commonly dysregulat&dble 4 shows
the whole list of GO-BP Terms and KEGG pathwéyethods: Gene setsjound significantly dysregulated across
the four patients (Borf5%). The results are structured according to thelogy structure for a better clarity. We
can see pathways such as “response to virus” orto%dlic DNA-sensing pathway”, which are obviously
biologically relevant regarding the studied phepetyTaken together, those results show that: 1gtperimental
protocol used is viable, and 2) the N-opathwaysmethodology is able to uncover relevant pathwayshis
context. Moreover, we can see a certain “concorelant the direction of dysregulation unveiled irl #iose
pathways. For example, the “response to virus” wathis found up-regulated in the rhinovirus (RVjgde, i.e.,
the majority of the genes included in the pathweg @p-regulated in the RV sample. In comparisor, KEGG
pathways, “Oxidative phosphorylation” and “Huntiogts disease,” are found down-regulated, and “@ifsc
transduction” is the only pathway showing differé&titections” between the four patients.

Table 4. GO-BP terms and KEGG pathways found dysragated in all four patients’ PBMC cells infectedex vivq using
N-of-1-pathways analysis of the dynamic transcriptome(Wilcoxon model; Bonk5%; RMA Normalization). The “Size”
column corresponds to the number of genes in the get/pathway.

Identifier Description Size  Dysregulation
G0:0009615 response to virus 247 1
G0:0019221 cytokine-mediated signaling pathway 341 i
G0:0045087 innate immune response 527 1
G0:0034340 response to type | interferon 73 1
|-GO:0071357 cellular response to type | interferon 72 i

L G0:0060337 type | interferon-mediated signalinthpay 72 1
hsa04623 Cytosolic DNA-sensing pathway 56 1
hsa00190 Oxidative phosphorylation 132 1
hsa04740 Olfactory transduction 388 2] 21
hsa05016 Huntington's disease 183 l

A proxy gold standard based on thean vivo data for comparison at the patient-levelVerifying experimentally
all predicted pathways is rate-limiting and extrgmexpansive. Therefore, identifying a gold standfor studies
generating dozens of GO terms and KEGG pathwaysiisalistic. On the other hand, similarity to poasly
obtained results in comparable context allows fmegatingoroxy gold standardsSince we aimed at finding if the
N-of-1-pathwayssingle-patient framework was able to uncover pagswvsignificant in individual patients, we
created a “proxy gold standard” using the list pérégulated pathways unveiled by GSEA initheivo dataset in
order to obtain a global picture of the pathwayssheuld find dysregulated. We used FBR% as a cutoff to fix
the list of dysregulated gene sets, which lead% GO-BP terms and 11 KEGG pathways found signifiga
dysregulated in thén vivo dataset. Then, we ran the N-opathwaysframework on each patient of tlex vivo
dataset and compared the results with this proxi Gtandard. This comparison allow us to see_tlvidual
transcriptomic response similarity between #xevivoandin vivo protocols. As a matter of comparison, we used
both the Wilcoxon and the ssGSEAmModels Methods: N-of-1pathway$. Figure 5 shows the ROC curves
corresponding to this comparison.

N-of-1-pathways scores naturally split then vivo patients by phenotypeln order to demonstrate the scalability
of the method to other viruses and to show theviddalized pathway scores could predict the clinmatcome
(symptomatic vs asymptomatic infections), we perfed an additional study. We used more samples fhein
vivo dataset [5] than the 9 symptomatic patients. ldd#ee dataset also contains 10 patients that exquesed to
the rhinovirus but remained asymptomatic. We ranNkof-1pathwaysWilcoxon model on those extra 10 patients
and looked for differences in the individual renetation of the dysregulated pathways betweemibegtoups. Of
note, for those asymptomatic patients, the “exposmuiple” was extracted after 72 hours of exposwtach
corresponds to the median time for peak symptooms fsymptomatic patient post inoculatidfigure 6 shows a
Principal Component Analysis that clearly clustéte two groups of patients without any supervis@npre-
treatment of the N-of-pathwaysscores. This protocol was applied for the Rhingvias well as Influenza, which
were both studied in thie vivo dataset [5]. Of note, the ssGSkAnodel also clusters the data but the clusters are
less visible (data not shown).
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Figure 5. ROC curves showing robustness of the N-dfpathwayspredictions in eachex vivo infected PBMC
confirmed by in vivo human infection study.ROC curves are calculated with different nominabjue cutoffs for each
patient. As measured by th&rea Under the Curves (AUC), N-ofgathways’ Wilcoxon model outperforms the
sSGSEAc: model in every instance (one-tailed Wilcoxon mattipaired signed rank test p=0.0039). As the thieate
random AUC is 0.5, we tested the significance aheaodels of N-of-1pathwayshy pooling GO-BP and KEGG results:
Wilcoxon Model p=0.004; ssGSEAModel p=ns (using the one-tailed Wilcoxon signaak test).
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Figure 6. Principal Component Analysis of N-of-1Pathways Scores discriminates asymptotic patients from
symptomatic infected patientsin vivo (PBMC expression).The PCA analysis was conducted on the Z-scoresxmatr
(Patientsx GO-BP) produced by the Wilcoxon model within theoMt-pathwaysframework(Methods: PCA) in the
context of two different virus exposures (Rhinonadvirus; Flu=Influenza). Each data point is a distipatient for
which all GO-BP Z-scores were presented to the Pi@Aoth PCA plots, we can see that the two fimihponents
cluster the symptomatic patients together. Of nibiie, PCA method is totally unsupervised, which ssggthat N-of-1-
pathwaysproduces relevant p-values for each GO-BP term.
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Discussion

Overall, this study shows that the biology is cademt betweemx vivoandin vivo assays, showing a significantly
high similarity of biologically relevant function® viral infection. IndeedFigures 2&3 show that conventional
cohort-level methods (GSEA and enrichment of DEG{am very concordant results both within each gtadd
acrossex vivoandin vivo studies. Concerning the biological meaning of #sults,Figure 4 probably synthetizes
best their range. Cytokines are broad categoriessnalll proteins that are important in cell signglidkmong them,
interferons are released by host cells in respohgathogens. Here, thex vivoandin vivo studies corroborate in
viral response specificity. Specificalllfigure 4 shows that the cytokine regulation leads to ontgriferons Type |
and Gammayj to be dysregulated. Type | interferons are wiellied molecules that play an essential role ialvir
functions, such as inducing direct anti-viral effe@s well as regulating innate and adaptive auteine systems
[34]. Interferony is crucial for immunity against viral infectionsiéis produced rapidly by natural killer cells in
viral infection and at a later stage by differetitia of T cells [35]. Additionally, to the rightmbgart of Figure 4,
the network shows a strong cellular innate immwesponse of leukocyte migration in response to clexissignal,
leucocyte mediated cytotoxicity. Among leukocytesyltiple GO terms specify T cell lymphocytes meelght
immunity. Rhinoviruses infections being the mosginent cause of the common cold, it is not surighat than
vivo study shows a response of T cells in the PBMCmeasiory T cells from previously stimulated in prawgo
rhinovirus infections may be re-activated by timfection and proliferate.

In the context of precision medicin€able 4 recapitulates the main biological processes dysated between the
virus-exposed and control samples. Unsurprisinghgry patient harbors dysregulated pathways su¢reaponse

to virus” or “innate immune response”. The motingtipart is that N-of-Jathwaysis able to uncover this
dysregulation at the single subject level. Moreptggure 5 shows thathe patient-level results obtained by the N-
of-1-pathwaysframework are concordant with conventional cohevel methods. On the methodological aspect,
we have shown again that the Wilcoxon model of fhef-1-pathwaysframework was more accurate than the
ssGSEA¢ model when the individual results are compared pwoxy gold standard. Further, Zaas et al. estadi
the separation of the asymptomatic from symptomplienotype of a rhinovirus infection through sujsss
studies [5], suggesting that the feasibility is tiatial. Here, we show that integrating both thenfected and virus-
exposed PBMC transcriptome states into a singleaaym transcriptome interpretation probably increatiee
sensitivity since an unsupervised PCA can ideritifg phenotype on its two first componenEig(re 6). Future
studies are required to develop and test improvediets even though the lack of similarity of pathaay
dysregulated on an individual level with a “conaesigoroxy gold standard can be explained by indigidvariation.
Since we pioneered single subjects transcriptoratys@s, very few studies report individual pathwagiations. In
our previous study in cancer, individual similaritya gold standard varied considerably and a highssimilarity
was significantly associated with poor patient stal[7]. We had initially hypothesized this outcenas clonal
cancer cell selection in response to therapy wdikiely favor cancer cell having more therapeuticagse
mechanisms (in other words more dysregulated). thaddil studies comprising infected hosts symptonosild/
provide evidence to the reliability of the N-ofphathwaysframework to unveil individual subject mechanisnis o
resistance or sensitivity to infections.

This new application of the N-of-fiathwaysframework differs in many ways with our previoysgpécations in
cancer. The obvious first difference is the biologgncer transcriptome is a consequence of inldesitel acquired
human gene mutations as well as epigenetic chargfesen the normal and cancer tissues, while &iniiection
consists of the introduction of an foreign regutgtapparatus comprising hon-human nucleotides (RXNANA)
and proteins without mutations to human genes dastl initially). Previously, we showed that the ayic
transcriptome analysis of uninvolved vs solid tuatdissue could be predictive of survival at thegi patient level.
Here, we show that the same framework could be tesedveil relevant individual pathway deregulatianwhite
bloods cells of the PBMC samples. Since the concapte extended to different tissues and conditibishifts the
clinical implications of the results. In follow-ugiudies, we are translating this process to clirpcactice: a single
blood sample followed by a transcriptomic analysisthe ex vivo assay is enough to predict future outcome
(predictive virogran). Moreover, in our previous studies, the N-opdthwaysframework was validated using
straightforward discovery techniques such as higfeal clustering and principal component analyaiswell as
survival curves. In this study, we extended thelyeim of the results thanks to a more elabor&gdilarity Venn
Diagram framework (which could also be used independenflje similarity metrics and visualization tools
provide a more comprehensive set of results asagedl straightforward visualization in order toidgpgrasp the
results and their meaning. Finally, the presentlysitould be considered as a preliminary step tosvéind future
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development ofex vivo assays for precision medicine. And here this t&nunequivocal since we can unveil
deregulated pathways at the single patient level.

We are aware that the current Wilcoxon model ofNkef-1-pathwaysframework may not be accurate in certain
conditions. For example, if a batch effect is pnedeetween the two paired samples, we hypothedizatithe
Wilcoxon test may produce False Positives res#is], due to the shift of the mean. While convewtidatch
effect correction models could adjust FPs acrogsraé samples, the analytical innovation requiredhallenging
when dealing with only two samples. Further studieslve designing new models for producing statégt
significance of dysregulated pathways with a meix@tamples may circumvent this issue.

We also presented in this study an extended remasmn of classic Venn Diagrams. We showed thasé¢h
Similarity Venn Diagramsould display the simple overlap between two lidtserms, as well as their similarity.
We believe that this kind of representation is &kl to any field comprising sets of terms fromabha similarity
metric can be obtained, such as BIG DATA resultsp@e™ queries, etc. Of particular interest are shiges of
analytical packages applicable to the associ&@guilarity Contingency Tablesve propose (e.g. Odds Ratio,
enrichment studies, etc).

Conclusion

In conventional comparative study analyses, mamyp$es of different human subjects are requiredaftrieving
sufficient statistical power to draw conclusions the level of the studied population. The N-opdthways
framework does not require a cohort for reachinfficent statistical power. The transcriptomic dygulation
induced by a virus is more subtle than the onedadiby cancer. Therefore these results underlmasdhlability of
N-of-1-pathwaysto many clinical conditions such as “before verfteatment”, “paired single cell studies”, etc. |
also provides a way of analyzing studies previogsiysidered underpowered due to the scarcity aémiat as well

as a strong framework for patient-centered precisiedicine.

This paper is the first of its kind to report a gmralex vivodynamic transcriptome assay that recapitulatem an
vivo infection —a foundational work for developingrograms for clinical practice. This is a step forward for
precision medicine since suex vivoassays can be extended to interpret individualiesgonse to infections or
putative therapies in high throughput. In other dgprthese analyses are required to multiplex systeatly
alternate dynamic transcriptome responses of tte bonditions in a way analogous as those conwvesitio
conducted on pathogens in microbiology (e.g. angjiam). The unveiled pathways are biologically niegfiul and
can be recapitulated by several well-establisheldprt-level methods. Moreover, this concordancelsafound at

a lower level, since we also found a strong ovedbgifferentially dysregulated genes between the tonditions.
Therefore, this raises the question of consideexrgivo studies whernn vivo studies are either unethical and/or
clinically unadvisable.
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Supplements

Supplement Table S1. Overlapping GO-Terms irex vivostudy between two cohort-level methods.

GO Term Description
G0O:000961¢ response to viru
G0:000181¢ cvtokine production
G0:000725¢ JAK -STAT cascadt
G0:001922: cvtokine-mediated siagnaling pathwa
G0:003409° response to cvtokine stimulu
G0:003134¢ positive requlation of defense respon
G0:000225: immune effector proces
L G0:0002697 regulation of immune effector process
G0:000181° reaulation of cvtokine production
I GO:0001819 positive regulation of cytokine production
L G0:0032760 positive regulation of tumor necroaistdr production
I GO:0032652 regulation of interleukin-1 production
|: G0:0032732 positive regulation of interleukin-bguction
G0:0032651 regulation of interleukin-1 beta prddc
L G0:0032731 positive regulation of interleukin-Xaproduction
I GO:0032655 regulation of interleukin-12 production
L G0:0032735 positive regulation of interleukin-I®guction
I GO:0032675 regulation of interleukin-6 production
L G0:0032755 positive regulation of interleukin-®guction
- G0O:0042035 regulation of cytokine biosynthetic process
L G0:0042108 positive regulation of cytokine biosynthetic proges
G0:0051241 positive requlation of multicellular organismal proce
G0:005086¢ reaulation of cell activation
tGO:0050867 positive regulation of cell activation
G0:0002694 regulation of leukocyte activation
L G0:0051249 regulation of lymphocyte activation
G0:0050864 regulation of B cell activation
L G0:0050871 positive regulation of B cell activation
G0:0050863 regulation of T cell activation
L G0:0042129 regulation of T cell proliferation
G0O:007066! reaulation of leukocvte proliferation
G0:0070665 positive regulation of leukocyte proliferation
G0:0032944 regulation of mononuclear cell proliferation
|: G0:0032946 positive regulation of mononuclear cell prolifecati
G0:0050670 regulation of lymphocyte proliferation
L G0:0050671 positive regulation of lymphocyte proliferation
G0:004532: leukocvte activatior
L G0O:0046649 lymphocyte activation
L G0:0042110 T cell activation
G0:000281¢ requlation of adaptive immune respons
L G0:0002822 regulation of adaptive immune response based omationecombination of immune receptors built frg
G0:000268. negative requlation of immune system proc
G0:000268: positive requlation of immune svystem proce:
L G0:0050778 positive regulation of immune response
G0:004312: reaulation of I-kappaB kinase/NF-kappaB cascad
L G0:0043123 positive regulation of I-kappaB kinABekappaB cascade
G0:005069. reaqulation of defense response to virus bv t
G0:005124. neaativerequlation of multicellular oraanismal proce:
G0:000691! activation of cvstein-tvpe endopeptidase activity involved in apoptoticaes:
G0:000223° response to molecule of bacterial oriai
L G0:0032496 response to lipopolysaccharide
G0:001250: induction of proarammed cell deatt
L G0:0006917 induction of apoptosis
G0O:000961° response to bacteriu
G0:0001771 leukocyte homeostas
G0:000695. inflammatory respons
G0:004333! response to exogenous dsR
G0:0043901 regulation of mult-organism proces
G0:004508 innate immune respons
G0:004508:! requlation of innate immune respon
G0:0002701 requlation of lvmphocvte mediated immun
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Supplement Table S2. Overlapping GO-Terms itin vivo study between two cohort-level methods.

GO Term Description
G0:000961¢ | response to viru:
GO0:000301: | circulatory system proces
L G0:0008015| blood circulation
G0:000801¢ | blood circulation
G0:000715¢ | homophilic cell adhesiol

Supplement Table S3. Overlapping DEG betweeex vivoand in vivo studies.

Differentially Expressed Genes (DEC

ANKFY1 DHX58 IFI6 JUP OAS1 SDC3 TAP2 WARS
ATF5 EIF2AK2 IFIT1 LAMP3 OAS2 SERPING1 TCN2 XAF1
BLVRA EPHB2 IFIT2 LGALS3BP OAS3 SIGLEC1 TNFAIP6 ZBP 1

Cc2 GBP1 IFIT3 LILRAG OASL SOCS1 TNK2
CASP5 GTPBP1 IFITS LILRB4 PARP12 SORT1 TOR1B
CCL7 HERC5 IFITM1 LYGE PLSCR1 SP110 TRAFD1

CMKLR1 IFI127 IFITM2 MREG PML SPATS2L TRIM22
CNP IFI35 IL411 MX1 RSAD2 SPTLC2 UBE2L6
DDX58 IF144 IRF7 MX2 RTP4 STAT1 UNC93B1
DDX60 IFI144L ISG15 NRP2 SAMD4A STAT2 USP18
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Supp. Figure S1. Similarity Venn Diagrams with 3 sis. This Figure extends the three possible representanf
Similarity Venn Diagrampresented irFigure 1. Each panel is the extension of its correspondimepa Figure 1.
While Panel Ais the most ergonomic representation with 2 $&sels BandC are easier to represent and apprehend in
higher dimensionsPanel Cis the simplest representation overall, but mettge overlap with the similarity, thus
displaying less information. ThelX subsets represent the intersection between setisdXY, but not the other set Z.
The centrahn subset represents the intersection between the fats XY NZ.
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Abstract

Background. Understanding individual patient host-responseitoses is key to designing optimal personalized
therapy. Unsurprisinglyin vivo human experimentation to understand individualiziggiamic response of the
transcriptome to viruses are rarely studied becaofethe obviously limitations stemming from ethical
considerations of the clinical risk.

Objective. In this rhinovirus study, we first hypothesize ttlex vivohuman cells response to virus can serve as
proxy for otherwise controversial vivo human experimentation. We further hypothesizedtti@aiN-of-1pathways
framework, previously validated in cancer, can Hdéctive in understanding the more subtle individua
transcriptomic response to viral infection.

Method. N-of-1-pathwayscomputes a significance score for a given lisgehe sets at the patient level, using
merely the ‘omics profiles of two paired samplesirgsut. We extracted the peripheral blood monorarckells
(PBMC) of four human subjects, aliquoted in tworpdi samples, one subjectedew vivorhinovirus infection.
Their dysregulated genes and pathways were thepa@u to those of 9 human subjects prior and afteanasal
inoculationin vivo with rhinovirus. Additionally, we developed ti&milarity Venn Diagrama novel visualization
method that goes beyond conventional overlap tavghe similarity between two sets of qualitativeaseres.
Results. We evaluated the individual N-offdathwaysresults using two established cohort-based metlHe8&A
and enrichment of differentially expressed ger&imilarity Venn Diagramsand individual patient ROC curves
illustrate and quantify that tha vivo dysregulation is recapitulatezk vivoboth at the gene and pathway level (p-
values0.004).

Conclusion. We established the first evidence that an intéapte dynamic transcriptome metric, conducted as an
ex vivoassays for a single subject, has the potentiptedict individualized response to infectious dssewithout
the clinical risks otherwise associated ito vivo challenges. These results serve as foundationak viar
personalized “virograms”.

Software: http://Lussierlab.org/publications/N-of-1-pathways

Supplement data and fileshttp:/Lussierlab.org/publications/Ex-vivo-ViralAsg

Introduction

Transcriptomic analysis of the response to a wars be used for various purposes, involving theststdnding of
its relation to disease progression, or severitythle context of respiratory diseases such asdnfia, Human
rhinovirus (HRV), or Respiratory syncytial virus§R), many studies involve finding the viral respems infected
hosts. However, in many cases, the course of 3 uifection may be relatively short. This impli@gthdifficulties
for obtaining genetic data in a timely manner. R for ethical reasons, most of those studieg oal animal
models [1-3] infected with virus to assess the imifiost evolution of the virus. Other studies oweK the
progression of already infected patients [4]. Liémmn five studies go as far as inoculating healthgnan patients



with those viruses to study vivo the progression of the disease [5] and procuragstriptomes. Althougéx vivo
experiments are often undertaken before and aiftes infection, they are usually performed for tealysis of a
handful single-locus gene expression. Few humahti@@lscriptome derived fromnex vivo with paired samples
before and after virus infection were available dagosited [6] in the Gene Expression Omnibus @b

Interestingly, antibiograms are well-establishedags that provide precision antibiotherapy to métie They
involve cultivating bacteria infecting a specificgan of a patient and subjecting them to a numbeests to
characterize the pathogen and its resistance tm#er of distinct antibiotics. In contrast, theldi of infectious
disease has not produce similar assays to tesidsie(human subject) exposed to viruses. Therefheze is an
opportunity to improve precision medicine by estthbhg the personal response to viruses that magadmone’s
disease treatment (e.g. Chronic Obstructive Lunge&se). We conceived the followirex vivo assays and
expression analysis methods in order to providéstthat would allow systematic non-invasive invgations of the
dynamic transcriptome response to viruses. As ggusfect cells, theiral transformationof these cells caused by
the introduction of viral DNA or RNA is associat@dth substantial regulatory changes leading to fisngpvirus
replication over normal cell functions. We thus tise dynamics transcriptomic response as a proxthiasum of
all upstream regulatory disruption caused by thial vnfection, an assessment of theal requlomespecific to a
personal genome — or simply sdidirogram” .

In this study, we aimed at analyzing the transoript response o&x vivo virus-exposed Peripheral Blood
Mononuclear CellsRBMC) human cells, and compare it to the vivo response in the same conditions. We
hypothesized thagx vivoanalyses can recapitulate vivo dysregulation in this experimental context. Tatand,
we used well-established enrichment methodologieb as GSEA to assess the pathways at play inrress a
virus. However, those methods of analysis use ¢dfased models, which create predictive models hase
average/commonly found features across patientss thverlooking individualized transcriptomic respento
stressors that may reveal the summative effectoofinaon as well as private (i) genetic polymorphisamsl
(ii) epigenetic modifications.

N-of-1-pathwaysis a framework dedicated to the personalized nmeelifield that we initially proposed in the
context of cancer analyses [7, 8]. It was succégsiipplied to lung adenocarcinoma visualizatiorsiofgle patient
survival and proved to unveil biologically signdict dysregulated pathways by using only one pasaaiples taken
from the same patient in two different conditioid$ (such as before and after treatment or uninwblg tumoral
cells). It was also applied in ovarian and breasicer cell lines to confirm the unsupervised idiatiion of
dysregulated pathways after a knockdown of PTBRILRRBP2 genes that control alternative splicing [B]the
current study, we aimed at showing that the samaf-Npathwaysframework can be used in very different
conditions than cancer such as the transcriptoasipanse of virus stress.

One component of N-of-pathwaysdesign relies on the calculation of the semantmilarity of pathways.
Therefore, we focused our analyses on the GeneldytdGO) database, which regroups genes into gicidly
meaningful gene sets, connected through an ontdiegy Several tools were developed for analyzivuge “GO
Terms”, involving measures of similarity based bae topology of the ontology. In this paper, we @®gpa novel
Similarity Venn Diagranrepresentation for helping readers to understaemnly the overlap between two lists of
GO Terms, but also their similarity, based on aforimation-theory equation measuring the semantiulaiity
between two GO Terms. Further, we demonstrate ttiiat representation can also be used in a morergene
comparison of two lists where a measure of sintjlakists for comparing its elements.

Therefore, the major goals of this study are igharacterize the mechanistic response to rhingviju® validate
our patient-centered framework, N-ofgathwaysin alternative conditions, and iii) to extend tlepresentation of
classic Venn diagrams from simple overlap to mam@ex similarity comparisons.

Methods

PBMCs incubated with viruses that generated the “Man ex vivo infected” dataseThe live PBMCs had been
isolated from blood samples collected from four Bunsubjects under a protocol approved by The Usityeof
Arizona Internal Review Board. Whole blood was ated from donors and placed in Becton DickensorXT C
tubes that were centrifuged according to standaotbpols to obtain PBMCs, then each aliquoted in paired
samples. Each sample of the pair was subsequexpilysed to and incubated with either (i) Human Rbiings
serotype 16€x vivoinfected sample) or to (ii) sterile medium (cohea vivonon-infected sample) and incubated at
37°C in 5% CQ for 18 hours. This protocol resulted ire® vivoinfected + 4ex vivocontrols = 8 paired samples.
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RNA was extracted from these samples, amplifiedged, and hybridized oAffymetrix Human Gene 1.0 ST
microarraysaccording to standard operating procedures. Gepeegsion data were submitted to Gene Expression
Omnibus (GEO; GSE60153, http://www.ncbi.nim.nih.fgwo/) and thus generated the “Humanr vivoinfected”
datasetTable 1).

Table 1. Gene expression dataset description.

Dataset Human ex vivoinfected dataset Human in vivo infected dataset
References Authors Gardeux V, Bosco A, et al. (present paper)  Zads./At al. Cell Press 2009 [5]
Source (GEO) Novel dataset (GSE60153) GSE17156
Platform Affymetrix GeneChip® Human Gene 1.0S Affymetrix Human Gene U133A 2.0
Probes measured 33297 22277
Genes mapped to probes 19915 14288
Human Total subjects 4 9
SubjedCtS - Control samples 4P PBMCs incubated with control medium 9" PBMCs collected 24hrs prior tofection
1r i P
e s 4 PeNCsabmescontnus 0 PONCS el & peek moons pos

Live human PBMG:ells infectedex vivo& Human subjects - inoculated in vivo

S . . . . S intra-nasally with Human Rhinovirus
Viral infection experiment incubated with Human Rhinovirus serotype . X
16 (ATCC® VR-283) serotype 39 (Charles River Lab; Malvern,

PA)
" Indicates paired samples derived from the samieithgl for rhinovirus-exposed with matched non-esed PBMCs samples.

Dataset and preprocessingrobust Multiple-array Average (RMA) normalizatif®] was applied on each patient
data independently (2 paired samples at a timaytad bias in the single-patient experiments) ughfiymetrix
Power Tools (APT) [10]. We also used an externaghsizt downloaded from the GEO repository on 07042
comprising a cohort of 20 healthy patients who wiakeculated with the rhinovirus. Blood samples weaken
before inoculation and during the peak of symptemghe disease. Among those 20 patients, 10 wdneedeas
symptomatic and the other 10 as asymptomatic. Weel uke 9 microarrays available paired data from the
symptomatic patients and normalized them usings#tmee RMA normalization techniqu€able 1 recapitulates the
content of each of those two datasets.

Gene setsWe aggregated genes into pathway-level mechanissitgg theorg.Hs.eg.dbpackage [11] Homo

Sapien} of Bioconductol{12], available for R statistical software [13]. We us$ed different gene sets databases:

1) Gene Ontology@O) Biological Processes50-BP) [14, 15]. Hierarchical GO terms were retrievethgshe
org.Hs.egGO2ALLEGS8atabase (downloaded on 05/15/2013), which comtailist of genes annotated to each
GO term ¢ene sgtalong with all of its child nodes according te thierarchical ontology structure.

2) KEGG pathways [16, 17] were retrieved usingahg.Hs.egPATHlatabase (download 05/15/2013).

Gene sets included in the study comprised betwBeandl 500 genes (among the genes measured bydteamay).
This led to a total of 3234 GO-BP gene sets andKB&G pathway gene sets. This filtering protocdlofas the
default one used in GSEA and a protocol we haveiqusly identified as optimal for these studies§718-21].

Gene Sets Enrichment Analysis (GSEAJene set enrichment analysis was conducted ondaddsets. The GSEA
v2.0.10 software [22] was used with the defauliapzeters except for the permutation parameter saheathich
was set to “gene set” instead of “phenotype”. Gsgtepermutation was chosen to achieve enoughtitatipower

for permutation resampling due to the small numblesamples. Only dysregulated GO-BP terms and KEGG
pathways reaching the False Discovery Rate (EB®) significance threshold were retained for furtaealysis. It
resulted in a list of 399 dysregulated GO-BP tebeisveen the non-exposed and rhinovirus-exposedlsarfgr the

ex vivodataset, and 194 GO-BP terms and 11 KEGG pathveaythéin vivo dataset. The complete lists of results
from GSEA are available &upplement File 1 - GSEA

Differentially Expressed Genes (DEG) CalculatioRifferentially expressed genes (DEG) between nquesgd
and rhinovirus-exposed samples were calculatedguia SAMR package in R statistical software [23knes
reaching the FDR5% threshold were considered significantly dysratpd between the two conditions. Those
protocols resulted in a list of 458 differentiatxpressed genes (DEG) found significantly dysregdlan theex
vivo dataset and 709 DEG in tirevivo dataset. The complete lists of DEG are availabl8upplement File 2 —
DEG+Enrichment.



DEG enriched into GO-BP terms (DEG+Enrichmentpifferentially expressed genes (DEG) were enricimd
GO-BP terms using DAVID website [24, 25]. GO-BPnterreaching the FD&% threshold were considered
significantly enriched. It resulted in a list of L1dysregulated GO-BP terms between the non-expased
rhinovirus-exposed samples for tbe vivodataset, and 20 GO-BP terms for thevivo dataset. The complete lists
of enriched pathways from DEG are availabl&applement File 2 — DEG+Enrichment

Information Theoretic Similarity (GO-ITS).We calculated the similarity between GO-BP termmaisliang’s

information theoretic similarity [26] that range® 0 (no similarity) to 1 (perfect match). We hgweviously

shown that a GO-ITS score0.7 robustly corresponds to highly similar GO terosing different computational
biological validations: protein interaction [27,]28iuman genetics [29], and Genome-Wide AssociaStudies

[30]. GO-ITS was calculated on each distinct paimoag the 3234 GO terms of sizd5 and<500, leading to

10,458,756 pairs of which 59,577 have a GO-FI&7 (5.6 out of 1,000).

Novel Similarity Venn DiagramIn order to compare the different list of dysregethGO-BP termsve computed
uncommon Venn Diagrams. Since every two GO-BP tgrossess a measurable degree of similarity (se¢TSO-
definition), it is possible to compare the two st only by direct overlap but also by degreeiwfilarity. For each
Similarity Venn Diagramwe calculated the number of GO-BP terms simitaedch of the two sets using a strong
similarity GO-ITS threshol@ 0.7 &0.0056 pairs of all GO terms pairs meet this seimgriteria). This leads, for
eachSimilarity Venn Diagramto two additional values: the number of pathwéydelonging to the set A and
similar to thesetB and (ii) vice-versa. If we take only the intersec of those two sets, we obtain the traditional
Venn Diagram overlap. Of note, this technique may dxtended to as many sets as needed, and different
representations can be usedjure 1 shows three possible representations of those INBinelarity Venn Diagrams
the first one RPanel A) being the one we chose for this paper, becau#ts pfacticality for two sets studies. The
source code and GO-GO similarity matrix used fanpating the Similarity Venn Diagrams in this mamijsicare
available ahttp://lussierlab.org/publications/SimilarityVenn

Figure 1. Similarity Venn Diagrams. This Figure shows three possible representatior&oflarity Venn Diagrams.
Panels AandB are an extension of the traditional Venn Diagrapresentation. They contain the same overlapping
number of entities in the middle and also two exttembers describing the similarity of each sethe other. This
similarity depends on a threshold chose for assgdsi entities to be significantly similar (in tfigllowing paper, we
chose GO-ITS> 0.7). WhilePanel A is the most ergonomic representation with 2 detsiels Band C are easier to
represent and apprehend in higher dimensionsS8pp. Figure Sifor a few possible extensions with 3 seBanel C

is the simplest representation overall, but metigeverlap with the similarity, which displaysddaformation.

Similarity Contingency Table.Further, we can calculate the statistical sigaifiie of the similarity for the
Similarity Venn Diagrambetween two sets (here callacgindB). We propose a statistic based on the following tw
steps: 1) among all elements in 8ednd all elements in s& taken from the statistical univereg identify similar
pairs among “every possible pair combinations fisetA and seB” (denoted AxB”), and 2) compare this value

4



against all the pairs that are similar¢nx Q. To this end, we propose Gimilarity Contingency Tablen which
conventional calculations of Odds Ratio and enriehtrtan be calculated (such as Fisher's Exact .TEable 2
shows thisSimilarity Contingency Table detail, with a numeric example taken fréigure 2.

Table 2. Similarity Contingency Tabldor computing significance of the similarity in a Similarity Venn Diagram
This table shows a numeric example frBigure 2, where we have two sets of GO-Ter&fA| = 399) and (|B| = 111).
There are 399%x111 possible pairs betweenAsetsdB (JAxB| = 44,289) among which we found 1,730 pairs that fsave
ITS>0.7. Moreover, the statistical univeiQecontains 3,234 GO-Terms which leads to a totalbbemof possible pairs of
|Q x Q] = 10,458,756, among which we found 58,577 phas have a GO-ITS).7. A Fisher’s Exact Test gives an Odds
Ratio of 7.28 and a very significant p-value < :T0, which implies that the similarity between the sets is high.

Pair with similar Pair with NOT similat
elements elements
Pairin Venn € AxB) 1,730 42,559
PairNOT in Venn ¢ AxB) 57,847 10,356,620

LEGEND: € “is an element of"g “is not an element of”;
Background = total number of possible pai€s X|Q|)

GO-Modules.We previously developed GO-Module [31] to synthesand visualize enriched GO terms as a
network. GO-Module reduces the complexity of noriists of GO results into compact modules orgathiretwo
distinct ways: by (i) constructing modules fromrsfggant GO terms based on hierarchical knowledwe] (ii)
refining the GO terms in each module to distingdfsh most significant terms (key terms of the mejjuidubsumed
terms to the Key term and terms of lesser impoadgeey inFigure 3).

N-of-1-pathwaysramework. N-of-1-pathwayg7, 8] is a methodology unveiling dysregulated pathwagsifonly

two paired samples. In this study, it was appliedependently for each patient, on the paired ngosad and

rhinovirus-exposed samples in bdth vivo and ex vivodatasets. The N-of-fiathwaysframework and software

identifying the dysregulated pathways (the scormgthod) are modular and several different models loa

substituted for the “pathway identification module”
Wilcoxon model The “Wilcoxon” model was already validated onedrospective lung adenocarcinoma
survival prediction study [7] anth vitro using both ovarian and breast cancer cell linegleéntify an
experimentally knocked down pathway [8]. This mostalrts by restricting the gene expression datheo
genes belonging to the considered gene set. Thapplies a Wilcoxon signed-rank test of the two
restricted vectors of gene expressions to assessdytsregulation of this gene set. Basically, thisded
recognizes gene sets having an over-representafiap-regulated genes compared to down-regulated
genes, or vice versa. Two different methods wered u® adjust p-values for multiple comparisons:
Bonferroni (for a more stringent set of resultsjl @enjamini and Hochberg (False Discovery Rate; FDR
[32]. In each paired sample, only dysregulated waits with adjusted p-values following FBB% or
Bonf<5% were retained for further analysis. The complists of dysregulated pathways unveiled from
the Wilcoxon model for each patient are availalsi8 @pplement File 3 — Wilcoxon
Single-Sample GSEA or ssGSEA model. The ssGSEA software is available from the GSEA glort
(http://www.broadinstitute.org/gseal/index.jsp) atmes not have a publication describing how itslsing
sample method differs from the described cross-8afGSEA v2.0.10 software [22]. Although without
published evaluation (simulation or experimental)the method’s developers, ssSGSEA was utilized on
single-samples [33]. We have previously extended ube of SSGSEA in the context of paired-samples
within the N-of-1pathwaysramework as an alternative to the Wilcoxon motebur implementation, we
use the “ssGSEAPreranked” version that is appliedaopre-ranked list of genes and computes a
permutation-based p-value for each gene set. Inctimext of our paired samples framework we pre-
ranked the genes according to their Fold Change (p&fween non-exposed and rhinovirus-exposed
samples calculated separately for every patieris I$ange of sSSGSEA was never formally describeayeso
called this model ssGSEAIn order to show its specific application to F@tange (FC) in paired data.
The complete lists of dysregulated pathways obthiftem this ssGSEA model for each patient are
available asSupplement File 4 — ssGSEA

Principal Component Analysis (PCA)'he PCA was computed using tHeattoMineR package in R (with default
parameters). We first computed the matrix of p-galaomputed for every pathway assessed for eaignpdihen,
these p-values were transformed into Z-scores usinginverse standard Normal distributiod-qcore =
abs(gnorm(p-value/2)ih R. The PCA was finally applied on this matrixtEcores.



Results

Comparison of cohort-based results within thex vivoand in vivo studies.We compared the concordance of the
results unveiled from cohort-based methods (conweal) across four patients. We applied two wetkbBshed,
cohort-level methods: GSE@ethods: GSEA) and DEG+EnrichmenfMethods: DEG+Enrichment) in the two
datasets by comparing the virus-exposed to theemposed samplesn order to visualize their concordance, we
plotted Similarity Venn DiagramgMethods: Similarity Venn Diagram) between the results unveiled by GSEA
and DEG+Enrichment (at FB#&%), separately within thex vivoand thein vivo datasetsFigure 2 shows the
overlap as well as the similarity between the tachhiquesSupplement Tables S1&S2ecapitulate the pathways
found dysregulated by both techniques.

A Human ex-vivo dataset B Human infected in-vivo dataset

DEG+Enrichment DEG-+Enrichment
(111 deregulated GO-BP Terms) (20 deregulated GO-BP Terms)

Figure 2. Robustness of pathways enriched separagein the two datasets is confirmed by consistencyf GSEA
and DEG+Enrichment. Those specifically-designe&imilarity Venn Diagramswere obtained by two different
enrichment techniques tested subsequently in tatindt datasets: human vivo infection and humaex vivoinfection.
Their particularity is to show both overlap and itamity across two lists of enriched GO-BP terrfvethods: Similarity
Venn Diagrams). Hence, by taking each list as reference recalhpcthis leads to two different numbers of simitias
(one from the perspective of each list, visibléhia additional dotted-delimited space). For examipl®anel A 61 GO-
BP terms are found overlapping between the two ousthand an additional 211 (among the 399 dysregiiiaO-BP
terms unveiled by GSEA) are simil&r the list of pathways unveiled by the DEG+Enmgmnt method in thex vivo
dataset (GO-ITS cutoff 0.7). The complete lists of overlapping and simp@thways from the two diagrams are
available asSupplement File 5 — Figure 2 Of note, only ~5.6 out of 1000 pairs of GO terare found with GO-
ITS>0.7 among all possible pairs of GO-BP terrvtethods: GO-ITS), thus the “observed” similarity of the above
Venn Diagrams far surpasses the “expected” ondsavery significant Panel A Similarity Odds Ratie7.28, p<10®®
Panel B Similarity Odds Ratis2.33, p=9.73 x 18).

GO-BP Terms similar cross-techniques (ITS=0.7)

Comparison of the individual results to cohort-basd results across theex vivo and in vivo studies. After
having established the concordance of results efttvo cohort-level methods within each study, weea at
comparing the two studies togethEigure 3, Panel Ashows a standard Venn Diagram comparing the difially



expressed genes unveiled in each siiMigthods: DEG calculation). It reveals a very strong overlap between the
in vivo and ex vivostudies. The full list of overlapping DEG can lwairfd in Supplement Table S3Figure 3,
Panel B contains twoSimilarity Venn Diagramsthe green one representing the overlap and sityilaetween the
GO-BP terms unveiled by GSEA across the two studied the purple one representing the same infasmabut
when applying the DEG+Enrichment method. The itetiens of the two dysregulated lists -whetheredéhtially
expressed genes or dysregulated pathways- aresiggnificant Panel A Odds Ratie5.226, p=3.41 x 1&; Panel
B-Green Diagram Similarity Odds Ratie1.95, p=3.69 x 18, Panel B-Purple Diagram Similarity Odds
Ratio~3.04, p=5.85 x 19).

A DEG overlap across-studies B GO-BP Terms similar across-studies (GO-1TS=>0.7)

= 458 Differentially DEG+Enrichment
v Expressed Genes (DEG) (111 deregulated GO-BP Terms)
5
N 220
>
5 MRTTE
IS / \\
- / \
[
1] ! /}
G \ /
© \ 34 ,
(m) h N s
2 ~_ -
>
£ 104
c
£
= 709 Differentially DEG+Enrichment
Expressed Genes (DEG) (20 deregulated GO-BP Terms)

Figure 3. Concordance ofx vivoand in vivo human studies.These Venn Diagrams show toeerlap and similarity of
results unveiled across the two studieanel A shows the overlap between the two lists of dysedgdl genes found
using SAMR methodMethods: DEG calculation). Since the two studies used two different mia@yarchips, we
showed in parenthesis the number of dysregulateésgthat can be found in the common backgroundotif bhips
(common background = 12819 genes). The overlapeiy significant (Fisher's Exact Test p=3.41E-25;ded
Ratio=5.226).Panel B shows the GO-BP terms that are overlapping or amatross both datasets by two different
techniques: GSEA and DEG+Enrichment. The complets 6f overlapping and similar pathways/DEG frdme three
diagrams are available 8sipplement File 6 — Figure 3

In order to understand the biological relevancyhef GO-BP terms unveiled across the two studiesiyo andex
vivo), we displayed the 56 GO-BP Terms found dysregdldity the GSEA method as a netwolFig(re 4). The
connections between the GO-BP Terms are inferram the ontology topology, which helps to see thaupgs of
terms interconnected:able 3 also recapitulates the seven GO-BP terms conctlydimund dysregulated by the
DEG+Enrichment method.

Table 3. Overlapping GO-BP Terms betweemx vivoand in vivo studies when DEG+Enrichment is appliedThese
terms correspond to the overlap in the rightmostgl, right ofPanel B) Similarity Venn Diagram oFigure 3.

GO Term Description
G0:000961 | response to virt
G0:000695 | immune respon:
G0:000726 | cell-cell signaing
G0:000828 | negative regulation of cell proliferati
G0:000971 | response to endogenous stim
G0:000972 | response to hormone stimu
G0:001003 | response to organic substa
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Concordant dysregulated pathways unveiled betweennfected and uninfected samplesWe applied the
Wilcoxon model of the N-of-Jathwaysframework for each patient’s paired data betwéencontrol sample and
the one subject to rhinovirdethods: N-of-1pathway$. The aim of this particular comparison was to idgrhe
pathways dysregulateelx vivoin presence of a virus for each patient indepettglehen, we aggregated the
dysregulated pathways obtained for each patieidentify the pathways commonly dysregulat&dble 4 shows
the whole list of GO-BP Terms and KEGG pathwéyethods: Gene setsjound significantly dysregulated across
the four patients (Borf5%). The results are structured according to thelogy structure for a better clarity. We
can see pathways such as “response to virus” orto4%dlic DNA-sensing pathway”, which are obviously
biologically relevant regarding the studied phepetyTaken together, those results show that: 1gtperimental
protocol used is viable, and 2) the N-opathwaysmethodology is able to uncover relevant pathwayshis
context. Moreover, we can see a certain “concorelant the direction of dysregulation unveiled irl #iose
pathways. For example, the “response to virus” wathis found up-regulated in the rhinovirus (RVjrgde, i.e.,
the majority of the genes included in the pathweg @p-regulated in the RV sample. In comparisos, KEGG
pathways, “Oxidative phosphorylation” and “Huntiogts disease,” are found down-regulated, and “@ifsc
transduction” is the only pathway showing differé&titections” between the four patients.

Table 4. GO-BP terms and KEGG pathways found dysragated in all four patients’ PBMC cells infectedex vivq using
N-of-1-pathways analysis of the dynamic transcriptome(Wilcoxon model; Bonk5%; RMA Normalization). The “Size”
column corresponds to the number of genes in the get/pathway.

Identifier Description Size  Dysregulation
G0:0009615 response to virus 247 1
G0:0019221 cytokine-mediated signaling pathway 341 i
G0:0045087 innate immune response 527 1
G0:0034340 response to type | interferon 73 1
|-GO:0071357 cellular response to type | interferon 72 i

L G0:0060337 type | interferon-mediated signalinthpay 72 1
hsa04623 Cytosolic DNA-sensing pathway 56 1
hsa00190 Oxidative phosphorylation 132 1
hsa04740 Olfactory transduction 388 2] 21
hsa05016 Huntington's disease 183 l

A proxy gold standard based on thean vivo data for comparison at the patient-levelVerifying experimentally
all predicted pathways is rate-limiting and extrgmexpansive. Therefore, identifying a gold standfor studies
generating dozens of GO terms and KEGG pathwaysiisalistic. On the other hand, similarity to poasly
obtained results in comparable context allows fmegatingoroxy gold standardsSince we aimed at finding if the
N-of-1-pathwayssingle-patient framework was able to uncover pagswvsignificant in individual patients, we
created a “proxy gold standard” using the list gérégulated pathways unveiled by GSEA initheivo dataset in
order to obtain a global picture of the pathwayssheuld find dysregulated. We used FBR% as a cutoff to fix
the list of dysregulated gene sets, which lead% GO-BP terms and 11 KEGG pathways found signifiga
dysregulated in thén vivo dataset. Then, we ran the N-opathwaysframework on each patient of tlex vivo
dataset and compared the results with this proxi Gtandard. This comparison allow us to see_tlkvidual
transcriptomic response similarity between #xevivoandin vivo protocols. As a matter of comparison, we used
both the Wilcoxon and the ssGSEAmModels Methods: N-of-1pathway$. Figure 5 shows the ROC curves
corresponding to this comparison.

N-of-1-pathways scores naturally split then vivo patients by phenotypeln order to demonstrate the scalability
of the method to other viruses and to show theviddalized pathway scores could predict the clinmatcome
(symptomatic vs asymptomatic infections), we perfed an additional study. We used more samples fhein
vivo dataset [5] than the 9 symptomatic patients. ldd#ee dataset also contains 10 patients that exquesed to
the rhinovirus but remained asymptomatic. We ranNkof-1pathwaysWilcoxon model on those extra 10 patients
and looked for differences in the individual renetation of the dysregulated pathways betweemibegtoups. Of
note, for those asymptomatic patients, the “exposmuiple” was extracted after 72 hours of exposwiach
corresponds to the median time for peak symptooms fsymptomatic patient post inoculatidfigure 6 shows a
Principal Component Analysis that clearly clustéte two groups of patients without any supervis@npre-
treatment of the N-of-pathwaysscores. This protocol was applied for the Rhingvias well as Influenza, which
were both studied in thie vivo dataset [5]. Of note, the ssGSkANodel also clusters the data but the clusters are
less visible (data not shown).
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Figure 5. ROC curves showing robustness of the N-dfpathwayspredictions in eachex vivo infected PBMC
confirmed by in vivo human infection study.ROC curves are calculated with different nominabjue cutoffs for each
patient. As measured by th&rea Under the Curves (AUC), N-ofgathways’ Wilcoxon model outperforms the
sSGSEAc: model in every instance (one-tailed Wilcoxon mattipaired signed rank test p=0.0039). As the thieate
random AUC is 0.5, we tested the significance aheaodels of N-of-1pathwayshy pooling GO-BP and KEGG results:
Wilcoxon Model p=0.004; ssGSEAModel p=ns (using the one-tailed Wilcoxon signaak test).
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Figure 6. Principal Component Analysis of N-of-1Pathways Scores discriminates asymptotic patients from
symptomatic infected patientsin vivo (PBMC expression).The PCA analysis was conducted on the Z-scoresxmatr
(Patientsx GO-BP) produced by the Wilcoxon model within theoMt-pathwaysframework(Methods: PCA) in the
context of two different virus exposures (Rhinonadvirus; Flu=Influenza). Each data point is a distipatient for
which all GO-BP Z-scores were presented to the Pi@Aoth PCA plots, we can see that the two fimihponents
cluster the symptomatic patients together. Of nibiie, PCA method is totally unsupervised, which ssggthat N-of-1-
pathwaysproduces relevant p-values for each GO-BP term.
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Discussion

Overall, this study shows that the biology is cademt betweemx vivoandin vivo assays, showing a significantly
high similarity of biologically relevant function® viral infection. IndeedFigures 2&3 show that conventional
cohort-level methods (GSEA and enrichment of DEG{am very concordant results both within each gtadd
acrossex vivoandin vivo studies. Concerning the biological meaning of #sults,Figure 4 probably synthetizes
best their range. Cytokines are broad categoriessnalll proteins that are important in cell signglidkmong them,
interferons are released by host cells in respohgathogens. Here, thex vivoandin vivo studies corroborate in
viral response specificity. Specificalllfigure 4 shows that the cytokine regulation leads to ontgriferons Type |
and Gammayj to be dysregulated. Type | interferons are wielli'ed molecules that play an essential role ialvir
functions, such as inducing direct anti-viral effe@s well as regulating innate and adaptive auteine systems
[34]. Interferony is crucial for immunity against viral infectionsiéis produced rapidly by natural killer cells in
viral infection and at a later stage by differetitia of T cells [35]. Additionally, to the rightmbgart of Figure 4,
the network shows a strong cellular innate immwesponse of leukocyte migration in response to clexissignal,
leucocyte mediated cytotoxicity. Among leukocytesyltiple GO terms specify T cell lymphocytes meelght
immunity. Rhinoviruses infections being the mosginent cause of the common cold, it is not surighat than
vivo study shows a response of T cells in the PBMCmeasiory T cells from previously stimulated in prawgo
rhinovirus infections may be re-activated by timfection and proliferate.

In the context of precision medicin€able 4 recapitulates the main biological processes dysated between the
virus-exposed and control samples. Unsurprisingdgry patient harbors dysregulated pathways su¢reaponse

to virus” or “innate immune response”. The motingtipart is that N-of-athwaysis able to uncover this
dysregulation at the single subject level. Moreptggure 5 shows thathe patient-level results obtained by the N-
of-1-pathwaysframework are concordant with conventional cohevel methods. On the methodological aspect,
we have shown again that the Wilcoxon model of fhef-1-pathwaysframework was more accurate than the
ssSGSEA¢ model when the individual results are compared jpwoxy gold standard. Further, Zaas et al. estadxi
the separation of the asymptomatic from symptomplienotype of a rhinovirus infection through sujsss
studies [5], suggesting that the feasibility is tiatial. Here, we show that integrating both thenfected and virus-
exposed PBMC transcriptome states into a singleamym transcriptome interpretation probably increatiee
sensitivity since an unsupervised PCA can ideritifg phenotype on its two first componenEg(re 6). Future
studies are required to develop and test improvediets even though the lack of similarity of patheay
dysregulated on an individual level with a “conaesigoroxy gold standard can be explained by indigidvariation.
Since we pioneered single subjects transcriptoratys@s, very few studies report individual pathwagiations. In
our previous study in cancer, individual similaritya gold standard varied considerably and a highssimilarity
was significantly associated with poor patient stal[7]. We had initially hypothesized this outcenas clonal
cancer cell selection in response to therapy wdikiely favor cancer cell having more therapeuticagse
mechanisms (in other words more dysregulated). thaldil studies comprising infected hosts symptonosild/
provide evidence to the reliability of the N-ofphthwaysframework to unveil individual subject mechanisnis o
resistance or sensitivity to infections.

This new application of the N-of-fiathwaysframework differs in many ways with our previoyspécations in
cancer. The obvious first difference is the biologgncer transcriptome is a consequence of inldesitel acquired
human gene mutations as well as epigenetic chargfesen the normal and cancer tissues, while & iniiection
consists of the introduction of an foreign regutgtapparatus comprising hon-human nucleotides (RNANA)
and proteins without mutations to human genes dastl initially). Previously, we showed that the ayic
transcriptome analysis of uninvolved vs solid tuatdissue could be predictive of survival at thegée patient level.
Here, we show that the same framework could be tsedveil relevant individual pathway deregulatianwhite
bloods cells of the PBMC samples. Since the concapte extended to different tissues and conditibshifts the
clinical implications of the results. In follow-ugiudies, we are translating this process to clirpcactice: a single
blood sample followed by a transcriptomic analysfsthe ex vivo assay is enough to predict future outcome
(predictive virogram). Moreover, in our previous studies, the N-opdthwaysframework was validated using
straightforward discovery techniques such as higfeal clustering and principal component analyais,well as
survival curves. In this study, we extended thelyesim of the results thanks to a more elabor&gdilarity Venn
Diagram framework (which could also be used independenflyje similarity metrics and visualization tools
provide a more comprehensive set of results asagedl straightforward visualization in order toidgpgrasp the
results and their meaning. Finally, the presentlysitould be considered as a preliminary step tosvéneg future
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development ofex vivo assays for precision medicine. And here this t&nunequivocal since we can unveil
deregulated pathways at the single patient level.

We are aware that the current Wilcoxon model ofNkef-1-pathwaysframework may not be accurate in certain
conditions. For example, if a batch effect is pnedeetween the two paired samples, we hypothedizatithe
Wilcoxon test may produce False Positives res#is], due to the shift of the mean. While convewtidatch
effect correction models could adjust FPs acrogsraé samples, the analytical innovation requiredhallenging
when dealing with only two samples. Further studieslve designing new models for producing statégt
significance of dysregulated pathways with a mesx@tamples may circumvent this issue.

We also presented in this study an extended remasmn of classic Venn Diagrams. We showed thasé¢h
Similarity Venn Diagramsould display the simple overlap between two lidtserms, as well as their similarity.
We believe that this kind of representation is &kl to any field comprising sets of terms fromabha similarity
metric can be obtained, such as BIG DATA resultsp@e™ queries, etc. Of particular interest are shiges of
analytical packages applicable to the associ&@guilarity Contingency Tablesve propose (e.g. Odds Ratio,
enrichment studies, etc).

Conclusion

In conventional comparative study analyses, mamyp$es of different human subjects are requiredaftrieving
sufficient statistical power to draw conclusions the level of the studied population. The N-opdthways
framework does not require a cohort for reachinffient statistical power. The transcriptomic dggulation
induced by a virus is more subtle than the onedadiby cancer. Therefore these results underlmadhlability of
N-of-1-pathwaysto many clinical conditions such as “before verfteatment”, “paired single cell studies”, etc. |
also provides a way of analyzing studies previogsiysidered underpowered due to the scarcity oémat as well

as a strong framework for patient-centered precisiedicine.

This paper is the first of its kind to report a gmralex vivodynamic transcriptome assay that recapitulatem an
vivo infection —a foundational work for developingrograms for clinical practice. This is a step forward for
precision medicine since suelx vivoassays can be extended to interpret individualiesgonse to infections or
putative therapies in high throughput. In other dgprthese analyses are required to multiplex systeatly
alternate dynamic transcriptome responses of tle bonditions in a way analogous as those conwvesitio
conducted on pathogens in microbiology (e.g. angjiam). The unveiled pathways are biologically niegfiul and
can be recapitulated by several well-establisheldpit-level methods. Moreover, this concordance lsaifound at

a lower level, since we also found a strong ovedbgifferentially dysregulated genes between the tonditions.
Therefore, this raises the question of consideexrgivo studies whenn vivo studies are either unethical and/or
clinically unadvisable.
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Supplements

Supplement Table S1. Overlapping GO-Terms irex vivostudy between two cohort-level methods.

GO Term Description
G0O:000961¢ response to viru
G0:000181¢ cvtokine production
G0:000725¢ JAK-STAT cascadt
G0:001922: cvtokine-mediated siagnaling pathwa
G0:003409° response to cvtokine stimulu
G0:003134¢ positive requlation of defense respon
G0:000225: immune effector proces
L G0:0002697 regulation of immune effector process
G0:000181° reaulation of cvtokine production
I GO:0001819 positive regulation of cytokine production
L G0:0032760 positive regulation of tumor necroaistdr production
I GO:0032652 regulation of interleukin-1 production
|: G0:0032732 positive regulation of interleukin-bguction
G0:0032651 regulation of interleukin-1 beta prddc
L G0:0032731 positive regulation of interleukin-Xaproduction
I GO:0032655 regulation of interleukin-12 production
L G0:0032735 positive regulation of interleukin-I®guction
I GO:0032675 regulation of interleukin-6 production
L G0:0032755 positive regulation of interleukin-®guction
- G0O:0042035 regulation of cytokine biosynthetic process
L G0:0042108 positive regulation of cytokine biosynthetic proges
G0:005124i positive requlation of multicellular organismal pes:
G0:005086¢ reaulation of cell activation
tGO:0050867 positive regulation of cell activation
G0:0002694 regulation of leukocyte activation
L G0:0051249 regulation of lymphocyte activation
G0:0050864 regulation of B cell activation
L G0:0050871 positive regulation of B cell activation
G0:0050863 regulation of T cell activation
L G0:0042129 regulation of T cell proliferation
G0O:007066! reaulation of leukocvte proliferation
G0:0070665 positive regulation of leukocyte proliferation
G0:0032944 regulation of mononuclear cell proliferation
|: G0:0032946 positive regulation of mononuclear cell prolifecati
G0:0050670 regulation of lymphocyte proliferation
L G0:0050671 positive regulation of lymphocyte proliferation
G0:004532: leukocvte activatior
L G0O:0046649 lymphocyte activation
L G0:0042110 T cell activation
G0:000281¢ reaulation of adaptive immune respons
L G0:0002822 regulation of adaptive immune response based omationecombination of immune receptors built frg
G0:000268. negative requlation of immune system proc
G0:000268: positive requlation of irmune system proces
L G0:0050778 positive regulation of immune response
G0:004312: reaulation of I-kappaB kinase/NF-kappaB cascad
L G0:0043123 positive regulation of I-kappaB kinABekappaB cascade
G0:005069. reaulation of defense response to virby hos
G0:005124. neaative requlation of multicellular oraanismal pees:
G0:000691! activation of cvstein-tvpe endopeptidase activity involved in apoptoticaes:
G0:000223° response to molecule of bacterial oriai
L G0:0032496 response to lipopolysaccharide
G0:001250: induction of proarammed cell deatt
L G0:0006917 induction of apoptosis
G0O:000961° response to bacteriu
G0:0001771 leukocyte homeostas
G0:000695. inflammatory respons
G0:004333! response to exogenous dsR
G0:0043901 requlation of multi-organism proces
G0:004508 innate immune respons
G0:004508:! requlation of innate immune respon
G0:0002701 requlation of lvmphocvte mediated immun
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Supplement Table S2. Overlapping GO-Terms itin vivo study between two cohort-level methods.

GO Term Description
G0:000961¢ | response to viru:
GO0:000301: | circulatory system proces
L G0:0008015| blood circulation
G0:000801¢ | blood circulation
G0:000715¢ | homophilic cell adhesiol

Supplement Table S3. Overlapping DEG betweeex vivoand in vivo studies.

Differentially Expressed Genes (DEC

ANKFY1 DHX58 IFI6 JUP OAS1 SDC3 TAP2 WARS
ATF5 EIF2AK2 IFIT1 LAMP3 OAS2 SERPING1 TCN2 XAF1
BLVRA EPHB2 IFIT2 LGALS3BP OAS3 SIGLEC1 TNFAIP6 ZBP 1

Cc2 GBP1 IFIT3 LILRAG OASL SOCS1 TNK2
CASP5 GTPBP1 IFITS LILRB4 PARP12 SORT1 TOR1B
CCL7 HERC5 IFITM1 LYGE PLSCR1 SP110 TRAFD1

CMKLR1 IFI127 IFITM2 MREG PML SPATS2L TRIM22
CNP IFI35 IL411 MX1 RSAD2 SPTLC2 UBE2L6
DDX58 IF144 IRF7 MX2 RTP4 STAT1 UNC93B1
DDX60 IFI144L ISG15 NRP2 SAMD4A STAT2 USP18
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Supp. Figure S1. Similarity Venn Diagrams with 3 sis. This Figure extends the three possible representaf
Similarity Venn Diagrampresented irFigure 1. Each panel is the extension of its correspondimepa Figure 1.
While Panel Ais the most ergonomic representation with 2 $&sels BandC are easier to represent and apprehend in
higher dimensionsPanel Cis the simplest representation overall, but mettge overlap with the similarity, thus
displaying less information. ThelX subsets represent the intersection between setisdXY, but not the other set Z.
The centrahn subset represents the intersection between the fats XY NZ.
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