1	Secretory locations of SIPC in Amphibalanus amphitrite cyprids
2	and a novel function of SIPC in biomineralization
3	
4	
5	Gen Zhang ¹ , Xiao-Xue Yang ¹ , Pok Man Leung ¹ , Li-Sheng He ² , Tat Yin Chan ¹ , Guo-Yong
6	Yan ² , Yu Zhang ³ , Jin Sun ¹ , Ying Xu ³ & Pei-Yuan Qian ^{1*}
7	

Name	Sequence	Purpose
SIPC-N1-F	GAAGAGGACATGGGTGGTCC	1st round of nested PCR for N terminal of SIPC
SIPC-N1-R	GCTTCATCGAGTACGGCAGA	1st round of nested PCR for N terminal of SIPC
SIPC-N2-F	TCGTTCTACTGGTCGCCTTG	2nd round of nested PCR for N terminal of SIPC
SIPC-N2-R	GACAGTCTTCACACCCTCCG	2nd round of nested PCR for N terminal of SIPC
SIPC-C1-F	GCTTACTGGTCAGTCCACCC	1st round of nested PCR for C terminal of SIPC
SIPC-C1-R	AGAACTGTGATTCGCTGCCT	1st round of nested PCR for C terminal of SIPC
SIPC-C2-F	AGACACTAGATGCGGAGGGT	2nd round of nested PCR for C terminal of SIPC
SIPC-C2-R	TATGTTCCGCTTGGGCCTTC	2nd round of nested PCR for C terminal of SIPC
SIPC-N-anti-F-BamHI	TTTTggatccGTCAAGGTCCCCGAAAGCGG	antigen expression of N terminal of SIPC
SIPC-N-anti-R-XhoI	TTTTctcgagTCAGCTCCATGTGCATGTCAG	antigen expression of N terminal of SIPC
SIPC-C-anti-F-BamHI	TTTTggatccGCCATTCGCTGGATCAACAC	antigen expression of C terminal of SIPC
SIPC-C-anti-R-NotI	TTTTgcggccgcCTA CACACCGAGAGAGAGAGGCAG	antigen expression of C terminal of SIPC
SIPC-F-BamHI-EZ	TGTATTTTCAGGGCGCCATGggatccGTCAAGGTCCCCGAAAGCGG	cloning of total length of SIPC into pFastBac HT A vector
SIPC-R-HindIII-EZ	TCCTCTAGTACTTCTCGACaagcttCTAAGCAGCGGGAGTCAGCT	cloning of total length of SIPC into pFastBac HT A vector
SIPC-F172	CTGTTCAACCTACCCGGACC	Sequencing
SIPC-R1520	GGAGTGCGAGCTGTCAGAAT	Sequencing
SIPC-F1465	CAGGCTGAGGACATCGACTC	Sequencing
SIPC-R2731	GGCAGAGACACTTCGGTGAA	Sequencing
SIPC-F2585	AGACACTAGATGCGGAGGGT	Sequencing
SIPC-R3929	CAGCGAGAGAGCCATGTAGG	Sequencing
SIPC-F3787	ATGGGCCAAGATGTCAAGGG	Sequencing
SIPC-R5026	CTTGCACAAACGATGCACCA	Sequencing

Supplementary Table S1. Primers used in this study.

1 cavity; Ta=thoraco-abdomen.

Supplementary Figure S2. SEM of decalcified shell matrix sections. (B)-(C): Higher
magnifications of (A) at different areas. (D): A higher magnification of (C), in which many
granular particles were observed on the surface of the fiber network. Yellow arrows indicate
typical rhombohedral calcite crystals.

1	in size to the 76-kDa subunit of natural SIPC. (D) recSIPC was separated in an 8% PAGE gel
2	and then stained using the $Pro-Q^{\mathbb{R}}$ emerald 488 glycoprotein gel and blot stain kit (Life
3	Technologies, Grand Island, NY, USA). A clear band of recSIPC was displayed by the
4	glycoprotein staining. The CandyCane TM glycoprotein molecular weight standards (Invitrogen,
5	Cat. No. C21852) were used as both positive and negative controls. Four bands in the standards
6	were glycosylated and positively stained in present study.

2 Supplementary Figure S5. Crystals grown with recSIPC were immunostained using a

SIPC antibody. Rhombohedral calcites displayed positive signals.

1

2 Supplementary Figure S7. Morphological changes in crystals formed under different

3 conditions after soaking in Milli-Q water.

4 holes could contact the underlying surface while the cyprids were exploring or climbing on a

5 surface.

Supplementary Figure S9. CaCO₃ crystals were formed on chitin fragments in the
presence/absence of BSA/recSIPC.

2 Supplementary Figure S10. SIPC, chitin and newly formed crystals were observed in the

membrane attached to the surface of channels inside barnacle shells. (A) SEM image showing the membrane inside a barnacle shell. (B). A membrane was separated from a barnacle shell and then placed on a glass slide. (C). Highly magnified SEM pictures showing newly formed crystals. (D). Hematoxylin and eosin (HE) staining revealing a network structure that is believed to be chitin in the membrane. (E). Positive immunostaining for SIPC at the membrane.

2 Supplementary Figure S11. Effectiveness of and specificity tests for the produced SIPC

1	antibodies. As previously reported, SIPC degraded into 3 subunits in barnacles, corresponding
2	to 76, 88, and 98 kDa, due to unknown reasons. In the present study, 10 μg of total protein
3	extracted from adult barnacles using 8 M urea were separated in a 4-20% gradient PAGE gel
4	and then transferred onto a PVDF membrane. Western blot was performed using the SIPC
5	antibodies. The secondary antibody was linked to HRP and the signals were revealed using a
6	DAB (3,3-diaminobenzidine) substrate kit (Boster, Wuhan, China). (A). The antibody against
7	SIPC N-termini detected 3 bands on the PVDF membrane (approximately 88, 98 and 200 kDa).
8	(B). The antibody against the SIPC C-terminus detected 2 bands on the PVDF membrane
9	(approximately 76 and 200 kDa). (C). Immunoprecipitation was conducted by incubating 40 μl
10	(~10 μ g) of antibody, 2 mg of total protein extracted from cyprids and 10 μ l of A/G agarose
11	beads (Sangon, Shanghai, China) at 4°C for 4 hours. The protein that was bound to the beads
12	was separated in a 4-20% SDS PAGE gel and stained using Coomassie blue G250. No clear
13	bands corresponding to SIPC were observed. However, after the gel pieces (from 75 to 200 kDa)
14	was excised and digested with trypsin, the subsequent mass spectrometry analysis revealed the
15	presence of SIPC in the treatments with SIPC antibodies but not in the control (rabbit anti-goat
16	IgG antibody). The red and green arrows indicate the heavy and light chain of the antibody,
17	respectively. Overall, Western blot and immunoprecipitation analysis results suggest that our
18	antibodies are effective and specific to SIPC.

1	Supplementary Movie S1. A 3D view of SIPC-immunoreactive signals in a deposit left by
2	cyprids.

4 Supplementary Movie S2. A 3D view of SIPC-immunoreactive signals in decalcified shell
5 matrix sections.

7	Supplementary Movie S3. Crystals formed with recSIPC were more stable than crystals
8	formed with BSA or the control. Crystals on coverslips were soaked in Milli-Q water for 60
9	hours. The crystals were then observed under an inverted microscope (Olympus XI51). The
10	video was obtained using a Cannon 700D digital camera through an eyepiece. When a water
11	current was generated with a pipette, the crystals formed in the control or BSA treatment
12	detached from the surface and flowed with the current (Section I and II). However, the crystals
13	formed with recSIPC remained attached to the surface (Section III).
14	
15	Supplementary Movie S4. A cyprid "walking" on a surface. Cyprids were placed to a 24-
16	well tissue culture plate and observed using an inverted microscopy (Olympus XI51). The

18 cyprids were "walking".

ventral area of the frontal horn holes (indicated in Fig. S8) could touch the surface while the