
ABSTRACT – Point mutations in members of the
serine proteinase inhibitor or serpin superfamily
cause them to change shape, polymerise and be
deposited in the tissues. This process is best seen
in mutants of α1-antitrypsin within hepatocytes to
cause periodic acid-Schiff (PAS) positive inclu-
sions and cirrhosis. An identical process underlies
the PAS positive inclusions of mutants of neuro-
serpin within neurones to cause a dementia that
we have called familial encephalopathy with 
neuroserpin inclusion bodies (FENIB). In both
cases, there is a direct correlation between the
molecular instability, the rate of intracellular
polymer formation and the severity of disease.
This process of polymerisation also explains
the failure to secrete mutants of other members
of the serpin superfamily – antithrombin,
C1 inhibitor and α1-antichymotrypsin – to cause
thrombosis, angio-oedema and emphysema,
respectively. In view of the common mechanism
underlying these conditions, we have grouped
them together as the serpinopathies. 
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The serine proteinase inhibitor or serpin
superfamily 

The serine proteinase inhibitors or serpins are
important inhibitors of a wide range of proteolytic
cascades. Members of this family include α1-anti-
trypsin, C1 inhibitor, antithrombin and plasminogen
activator inhibitor-1 which play important roles in
the control of proteinases involved in the inflamma-
tory, complement, coagulation and fibrinolytic path-
ways, respectively.1 The superfamily is defined by
more than 30% sequence homology with the arche-
typal member α1-antitrypsin and conservation of
tertiary structure. This structure is composed of
three β-sheets (A–C) and an exposed mobile reactive
loop (Fig 1a).2–8 The reactive loop presents a peptide
sequence as a pseudosubstrate for the target
proteinase. After docking, the enzyme cleaves the
P1–P1' peptide bond of the serpin9 and the
proteinase is inactivated by a dramatic conforma-

tional transition that swings it 70 Å from the upper
to the lower pole of the protein in association with
the insertion of the reactive loop as an extra strand
(s4A) in β-sheet A (Fig 1a).10–14 The altered confor-
mation of α1-antitrypsin bound to its target enzyme
is then recognised by hepatic receptors and cleared
from the circulation.15–17 This remarkable conforma-
tional transition can be likened to the function of a
mousetrap and is central to the inhibitory activity of
the serpins. However, as with most sophisticated
mechanisms, the mobile domains are vulnerable to
dysfunction. In the case of the serpins, mutations
cause aberrant conformational transitions that result
in the retention of the serpin within the cell of
synthesis. This gives rise to clinical conditions that
result from either: 

(i) protein overload and death of the cell in which
the serpin is synthesised (toxic gain of function)
such as Z α1-antitrypsin related cirrhosis and 
the dementia familial encephalopathy with
neuroserpin inclusion bodies (FENIB), or 

(ii) plasma deficiency (loss of function) such as
deficiency of plasma antithrombin, C1-inhibitor
or α1-antichymotrypsin. These can be manifest
as diseases as diverse as thrombosis, angio-
oedema and emphysema respectively.

We have shown that there is a common mechanism
underlying these conditions and so have grouped
them together as a new class of disease, the
serpinopathies.18–20

Polymerisation of mutants of 
α1-antitrypsin causes cirrhosis and
plasma deficiency

Alpha-1-antitrypsin is an acute phase glycoprotein
that is synthesised and secreted by the liver. The pri-
mary role of α1-antitrypsin is to inhibit the enzyme
neutrophil elastase. Most individuals carry two
normal M alleles that result in plasma concentrations
of 1.5–3.5 g/l. The most important deficiency muta-
tion is the Z allele (Glu342Lys). Approximately 4% of
Northern Europeans are heterozygous for the Z allele
(PI*MZ) with approximately 1 in 2,000 being
homozygotes (PI*Z). The Z allele results in the reten-
tion of synthesised α1-antitrypsin within the endo-
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plasmic reticulum of hepatocytes. The accumulation of
abnormal protein starts in utero21 and is characterised by the
formation of diastase-resistant, periodic acid-Schiff positive
inclusions of α1-antitrypsin in the periportal cells22,23 (Fig 2).
Seventy-three per cent of Z α1-antitrypsin homozygote infants
have a raised serum alanine aminotransferase in the first year of
life but in only 15% of children is it still abnormal by 12 years of
age.24–27 Similarly, serum bilirubin is raised in 11% of PI*Z
infants in the first 2–4 months but falls to normal by six months
of age. One in 10 infants develops cholestatic jaundice and 6%
develop clinical evidence of liver disease without jaundice. These
symptoms usually resolve by the second year of life but approx-
imately 15% of patients with cholestatic jaundice progress to
juvenile cirrhosis. The overall risk of death from liver disease in
PI*Z children during childhood is 2–3%, with boys being at
greater risk than girls. All adults with the Z allele of α1-anti-
trypsin have slowly progressive hepatic damage that is often sub-
clinical and only evident as a minor degree of portal fibrosis.
However, up to 50% of Z α1-antitrypsin homozygotes present
with clinically evident cirrhosis and occasionally with hepato-
cellular carcinoma.28 The lack of circulating plasma α1-anti-
trypsin leaves the lungs exposed to enzymatic damage that is
thought to underlie the adult onset emphysema (see later). 

We have shown that the Z variant of α1-antitrypsin is retained
within hepatocytes as it causes a unique conformational transition
and protein–protein interaction. The mutation distorts the rela-
tionship between the reactive centre loop and β-sheet A (Fig 1b).

The consequent perturbation in structure allows the reactive
centre loop of one α1-antitrypsin molecule to lock into the A sheet
of a second to form a dimer which then extends to form chains of
loop-sheet polymers.29–34 These polymers accumulate within the
endoplasmic reticulum of hepatocytes to form the PAS positive
inclusions that are the hallmark of Z α1-antitrypsin liver dis-
ease.29,35,36 Although many α1-antitrypsin deficiency variants have
been described, only two other mutants of α1-antitrypsin have
similarly been associated with profound plasma deficiency and
hepatic inclusions: α1-antitrypsin Siiyama (Ser53Phe)37,38 and
Mmalton39 (deletion of phenylalanine at position 52, also known
as Mnichinan40 and Mcagliari41). Both of these mutants are in the
shutter domain underlying the bifurcation of strands 3 and 5 of 
β-sheet A (Fig 1b). The mutations disrupt a hydrogen bond net-
work that is based on 334His and bridges strands 3 and 5 of the
A sheet,42 causing it to part to allow the formation of folding
intermediates43 and loop-sheet polymers in vivo.44,45

Polymerisation also underlies the mild plasma deficiency of
other variants that perturb the shutter domain: S (Glu264Val)
and I (Arg39Cys) α1-antitrypsin.46,47 These point mutations
cause less disruption to β-sheet A than does the Z variant. Thus,
the rates of polymer formation are much slower than that of
Z α1-antitrypsin31 and this results in less retention of protein
within hepatocytes, milder plasma deficiency, and the lack of a
clinical phenotype. However, if a mild, slowly polymerising I or
S variant of α1-antitrypsin is inherited with a rapidly poly-
merising Z variant, then the two can interact to form het-
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Fig 1a. Inhibition of neutrophil
elastase by α1-antitrypsin. Following
docking (left), the neutrophil elastase
(grey) is inactivated by movement from
the upper to the lower pole of the
protein (right). This is associated with
insertion of the reactive loop (red) as
an extra strand into β-sheet A (green).
(Reproduced from Ref 18 with
permission.)

Fig 1b. The structure of α1-antitrypsin
is centred on β-sheet A (green) and
the mobile reactive centre loop (red).
Polymer formation results from the Z
variant of α1-antitrypsin (Glu342Lys at
P17; arrowed) or mutations in the
shutter domain (blue circle) that open 
β-sheet A to favour partial loop
insertion and the formation of an
unstable intermediate (M*). The patent
β-sheet A can accept the loop of
another molecule to form a dimer (D)
which then extends into polymers (P).
The individual molecules of α1-
antitrypsin within the polymer, although
identical, are coloured red, yellow and
blue for clarity. (Adapted from Ref 77
with permission.)
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eropolymers within hepatocytes leading to inclusions and finally
cirrhosis.47–49 Thus, the severity of retention of mutants of 
α1-antitrypsin within hepatocytes can be explained by the rate
of polymer formation. Those mutants that cause the most rapid
polymerisation cause the most retention of α1-antitrypsin
within the liver. This in turn correlates with the greatest risk
of liver damage and cirrhosis, and the most severe plasma
deficiency.

Polymerisation of Z α1-antitrypsin and
emphysema

Emphysema was noted in some of the first individuals who were
reported to have an absence of the alpha-1 band on serum
protein electrophoresis.50 It was confirmed by family studies51

and is now the only genetic factor that is widely accepted to pre-
dispose smokers to emphysema. The respiratory disease associ-
ated with α1-antitrypsin deficiency usually presents with
increasing dyspnoea with cor pulmonale and polycythaemia
occurring late in the course of the disease. Chest radiographs
typically show bilateral basal emphysema with paucity and
pruning of the basal pulmonary vessels. Upper lobe vascularisa-
tion is relatively normal. Ventilation perfusion radioisotope
scans and angiography also show abnormalities with a lower
zone distribution.52 Lung function tests are typical for emphy-
sema with a reduced ratio of forced expiratory volume in
1 second to forced vital capacity (FEV1/FVC), gas trapping
(raised ratio of residual volume to total lung capacity) and low

gas transfer factor. The onset of respiratory disease can be
delayed to the sixth decade in never-smokers with PI*Z α1-anti-
trypsin deficiency, and these individuals often have a normal
lifespan.53
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Fig 2. Z α1-antitrypsin is retained
within hepatocytes as intracellular
inclusions. These inclusions are PAS
positive and diastase resistant (Fig 2a)
and are associated with neonatal hepatitis
and hepatocellular carcinoma. Fig 2b:
Electron micrograph of an hepatocyte
from the liver of a patient with Z α1-
antitrypsin deficiency shows the
accumulation of 
α1-antitrypsin within the rough
endoplasmic reticulum. These inclusions
are composed of chains of α1-antitrypsin
polymers shown here from the plasma of
a Siiyama α1-antitrypsin homozygote (Fig
2c). More recently, polymers have been
identified within PAS positive inclusions
with a monoclonal anti-polymer α1-
antitrypsin antibody30,36 (Fig 2e and f).
Immunohistochemistry of liver from an
individual with Z α1-antitrypsin deficiency
showing staining with an anti-α1-
antitrypsin polyclonal antibody (Fig 2e)
and a monoclonal anti-polymer α1-
antitrypsin antibody (Fig 2f). It is these
intracellular inclusions of polymers that
are associated with neonatal hepatitis and
hepatocellular carcinoma. (Figs 2a, b and
c reproduced from Refs 96, 29 and 44,
respectively. Figs 2d and e reproduced
from Ref 36. All figures reproduced with
permission.)
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Key Points

The serine proteinase inhibitor or serpin superfamily includes
proteins such as α1-antitrypsin, antithrombin, C1 inhibitor,
α1-antichymotrypsin and neuroserpin

These proteins inhibit their target proteinases by undergoing
a remarkable conformational transition that can be likened
to the movement of a mousetrap

Mutations in mobile domains cause aberrant conformational
transitions and a unique protein–protein linkage
(polymerisation) that results in retention of the serpin in
the cell of synthesis

Protein overload and death of the cell in which the mutant
serpin is synthesised (toxic gain of function) underlies
Z α1-antitrypsin related cirrhosis and the dementia familial
encephalopathy with neuroserpin inclusion bodies (FENIB) 

Retention of polymerised mutant serpins causes plasma
deficiency of antithrombin, C1-inhibitor, α1-antichymotrypsin
and heparin co-factor II in association with disease

Understanding the pathways of polymerisation has allowed
the development of novel therapeutic strategies



Emphysema associated with plasma deficiency of α1-anti-
trypsin is widely believed to be due the reduction in plasma
levels of α1-antitrypsin to 10–15% of normal. This in turn
markedly reduces the α1-antitrypsin that is available to protect
the lungs against proteolytic attack by the enzyme neutrophil
elastase.54 The situation is exacerbated as the Z mutation
reduces the association rate between α1-antitrypsin and neutro-
phil elastase approximately five-fold.55–58 Thus the α1-anti-
trypsin available within the lung is not as effective as the normal
M protein. This combination of α1-antitrypsin deficiency,
reduction in efficacy of the α1-antitrypsin molecule and ciga-
rette smoke can have a devastating effect on lung function,59,60

probably by allowing the unopposed action of proteolytic
enzymes. The inhibitory activity of Z α1-antitrypsin can be fur-
ther reduced as the Z mutation favours the spontaneous forma-
tion of α1-antitrypsin loop-sheet polymers within the lung.61

This conformational transition inactivates α1-antitrypsin as a
proteinase inhibitor, thereby further reducing the already
depleted levels of α1-antitrypsin that are available to protect the
alveoli. Moreover, the conversion of α1-antitrypsin from a

monomer to a polymer converts it to a chemoattractant for
human neutrophils.62,63 The magnitude of the effect is similar to
that of the chemoattractant C5a and present over a range of
physiological concentrations (EC50 4.5 ± 2 µg/ml). Polymers
also induced neutrophil shape change and stimulated myeloper-
oxidase release and neutrophil adhesion.62 The chemotactic
properties of polymers were confirmed by one group63 but
refuted by another.64 More recently, we have used a monoclonal
antibody to demonstrate polymers in emphysematous tissue
associated with Z α1-antitrypsin deficiency (Fig 3a) but not in
emphysema in individuals with normal levels of α1-antitrypsin
(Fig 3b). Neutrophils co-localised with polymers in the alveoli
(Fig 3c). The pro-inflammatory properties of polymers were
further confirmed by the demonstration that they caused a neu-
trophil influx when instilled into the lungs of mice.65 Therefore
the chemoattractant properties of polymers may explain the
excess number of neutrophils in bronchoalveolar lavage66 and in
tissue sections of lung parenchyma (Fig 3d) from individuals
with Z α1-antitrypsin deficiency. Moreover, polymers may con-
tribute to the excess inflammation that is apparent even in
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Fig 3. Polymers of α1-antitrypsin can be detected in
the emphysematous regions of the lungs from
individuals with Z α1-antitrypsin deficiency (a; brown
staining), but not in regions of emphysema from M α1-
antitrypsin controls (b). The polymers co-localise with
neutrophils in alveolar tissue (c; neutrophils in red and
arrowed, polymers in brown). The chemoattractant
properties of polymers are likely to be an important
factor in the recruitment of excess neutrophils to the
lungs of Z, rather than M α1-antitrypsin homozygotes
with emphysema (d). (Reproduced from Ref 65 with
permission.)
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Fig 4. Proposed model for the pathogenesis of
emphysema in patients with Z α1-antitrypsin deficiency.
The plasma deficiency and reduced inhibitory activity of Z
α1-antitrypsin may be exacerbated by the polymerisation of
α1-antitrypsin within the lungs. Polymerisation inactivates
α1-antitrypsin thereby further reducing the antiproteinase
screen. Alpha1-antitrypsin polymers may also act as a pro-
inflammatory stimulus to attract and activate neutrophils
thereby further increasing tissue damage. (Modified from
Ref 19.)
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individuals with Z α1-antitrypsin deficiency
with very early lung disease67 and may drive
the progressive inflammation that continues
even after cessation of smoking. Any pro-
inflammatory effect of polymers is likely to be
exacerbated by inflammatory cytokines,
cleaved or complexed α1-antitrypsin,68 elastin
degradation products69 and cigarette smoke,
which themselves cause neutrophil recruit-
ment. Thus our understanding of the biolog-
ical properties of α1-antitrypsin provides novel
pathways for the pathogenesis of emphysema
in individuals who are homozygous for the
Z mutation (Fig 4).

For many years the emphysema associated
with Z α1-antitrypsin deficiency has been a
paradigm for emphysema seen in smokers who
have normal levels of α1-antitrypsin. However,
this is clearly an oversimplification as emphy-
sema associated with Z α1-antitrypsin defi-
ciency has a different distribution (upper
rather than lower lobe), different pathology
(panlobular rather than centrilobular emphy-
sema), the presence of pro-inflammatory lung
polymers61–63,65 and different patterns of gene
expression.70 It seems likely that more differ-
ences will become apparent as we dissect the
pathways of inflammation and tissue damage
in individuals with α1-antitrypsin deficiency.

Polymerisation of mutants of antithrombin,
C1 inhibitor, α1-antichymotrypsin and heparin 
co-factor II causing liver retention and plasma
deficiency 

The phenomenon of loop-sheet polymerisation is not restricted to
α1-antitrypsin and has now been reported in mutants of other
members of the serpin superfamily to cause disease. Naturally
occurring mutations have been described in the shutter (Fig 1b)
and other domains of the plasma proteins C1-inhibitor (Phe52Ser,
Pro54Leu, Ala349Thr, Val366Met; Phe370Ser, Pro391Ser),71,72

antithrombin (Pro54Thr, Asn158Asp, Phe229Leu)73,74 and 
α1-antichymotrypsin (Leu55Pro, Pro229Ala).75–77 These muta-
tions destabilise the serpin architecture to allow the formation of
inactive reactive loop-β-sheet polymers that are also retained
within hepatocytes. The associated plasma deficiency results in
uncontrolled activation of proteolytic cascades and angio-
oedema, thrombosis and chronic obstructive pulmonary disease
respectively (see reviews18–20). More recently a mutation in
heparin co-factor II (Glu428Lys) has been associated with plasma
deficiency, but as yet this has not been shown to cause disease.78

The mutation is of particular interest as it is the same as the
Z allele that causes polymerisation and deficiency of α1-anti-
trypsin. We have shown that this same mutation also causes
temperature-dependent polymerisation and inactivation of the
Drosophila serpin, necrotic.79
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Fig 5a. Mutant Syracuse and Portland neuroserpin aggregate within COS-7
transfected cells. a-l: Immunocytochemistry with an anti-neuroserpin antibody
showing the distribution of wildtype (a, d, g, j), Syracuse (b, e, h, k) and Portland
(c, f, i, l) neuroserpin in COS-7 transfected cells. The nucleus appears blue due to
DNA staining with DAPI. Over a three-day period, wildtype neuroserpin shows a
normal endoplasmic reticulum staining pattern whereas the neuroserpin mutants
form distinct protein aggregates after 24 hours of expression that persist for the
three days of the experiment.
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Fig 5b. Intracellular localization of wildtype, Syracuse and
Portland neuroserpin in COS-7 transfected cells. Confocal
microscopy of cells cultured for 24 h after transfection and
stained for neuroserpin (labelled with Texas red) and an ER-
resident protein, calreticulin (labelled with fluorescein). The
merged image shows that the mutant protein is retained within
the endoplasmic reticulum. The nucleus appears blue due to DNA
staining with DAPI. (Figures reproduced from Ref 87 with
permission.)
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Polymers of neuroserpin and the dementia familial
encephalopathy with neuroserpin inclusion bodies
(FENIB)

Perhaps the most striking finding of polymer-associated disease
is the inclusion body dementia, familial encephalopathy with
neuroserpin inclusion bodies (FENIB).80–82 This is an autosomal
dominant dementia characterised by eosinophilic neuronal
inclusions of neuroserpin (Collins’ bodies) in the deeper layers
of the cerebral cortex and the substantia nigra. The inclusions
are PAS positive and diastase resistant and bear a striking resem-
blance to those of Z α1-antitrypsin that form within the liver
(Fig 2). The observation that FENIB was associated with a muta-
tion Ser49Pro in the neuroserpin gene that was homologous to
one in α1-antitrypsin that causes cirrhosis (Ser53Phe)44 strongly
indicated a common molecular mechanism. This was confirmed
by the finding that the neuronal inclusion bodies of FENIB were
formed by entangled polymers of neuroserpin with identical
morphology to those isolated from hepatocytes from an
individual with Z α1-antitrypsin related cirrhosis.81

Other families have now been identified with FENIB. These
have allowed comparison of the severity of the mutation (as pre-
dicted by molecular modelling), the number of inclusions and
the age of onset of dementia (Table 1). Affected members in the
original family with Ser49Pro neuroserpin (neuroserpin

Syracuse) had diffuse small intraneuronal inclusions of neu-
roserpin with an onset of dementia between the ages of 45 and
60 years.80–82 A second family, with a conformationally more
severe mutation (neuroserpin Portland; Ser52Arg), had larger
inclusions and an onset of dementia in early adulthood, whilst a
third family, with yet another mutation (His338Arg), had even
more inclusions and the onset of dementia in adolescence. The
most striking example was the family with the most ‘polymero-
genic’ mutation of neuroserpin, Gly392Glu. This replacement of
a consistently conserved residue in the shutter region resulted in
large inclusions with affected family members dying by age
20 years.83

The role of polymerisation in disease is supported in our
demonstration that recombinant Ser49Pro neuroserpin has a
greatly accelerated rate of polymerisation when compared to the
wild type protein,84–86 and that Ser52Arg, which causes a more
severe clinical phenotype, polymerises even more rapidly.85 The
cellular handling of neuroserpin has been assessed by transiently
transfecting COS cells with wildtype neuroserpin and mutants
of neuroserpin that cause FENIB (Fig 5). The most striking fea-
ture of the cell model is the retention of Syracuse (Ser49Pro) and
Portland (Ser52Arg) neuroserpin as intracellular aggregates
composed of polymers of mutant neuroserpin, similar to the
loop-sheet polymers of mutant neuroserpin that can be isolated
from the brains of individuals affected by FENIB.87 Once again,

Portland (Ser52Arg) neuroserpin accumu-
lates more rapidly than the Syracuse
(Ser49Pro) mutant, in keeping with the
more severe clinical phenotype. Thus
FENIB shows a clear genotype–phenotype
correlation, with the severity of disease cor-
relating closely with the propensity of the
mutated neuroserpin to form polymers
(Table 1). 

Novel strategies to prevent
polymer formation and disease

Our understanding of the serpinopathies
has allowed the development of new strate-
gies to attenuate polymerisation and so treat
the associated disease. We have identified a
hydrophobic pocket in α1-antitrypsin that is
bounded by strand 2A and helices D and
E.5,88 The cavity is patent in the native pro-
tein but is filled as β-sheet A accepts an
exogenous reactive loop peptide during
polymerisation.5 The introduction of bulky
residues into this pocket retards the poly-
merisation of M α1-antitrypsin and
increases the secretion of Z α1-antitrypsin
from a Xenopus oocyte expression system.89

We are currently screening data bases for
lead compounds that can bind to this cavity,
stabilise β-sheet A and so ameliorate
polymer formation. 
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Table 1. Correlation between the rate of polymerisation of mutants of
neuroserpin, the number of inclusions and the severity of the associated
dementia (based on data from Refs 81, 83–85, 87). There is a striking genotype-
phenotype correlation that is explicable by the rate of polymer formation and hence
the number and size of intracellular inclusions (shown in red).

Histology of Age of
inclusions at Rate of onset of

Mutation post-mortem polymerisation symptoms Clinical manifestations

Ser49Pro + 48 Dementia, temor, 
seizures in terminal 

stages

Ser52Arg ++ 24 Myoclonus, status 
epilepticus, dementia

His338Arg N/A +++ 15 Myoclonic seizures, 
dementia, tremor, 

dysarthria

Gly392Glu ++++ 13 Myoclonus, status 
epilepticus, dementia, 

chorea



An alternative approach is to block the aberrant reactive loop-
β-sheet A linkage that underlies polymerisation. We have shown
previously that the polymerisation of Z α1-antitrypsin can be
blocked by annealing of reactive loop peptides to β-sheet A.29,90

However, such peptides were too long (11–13 amino acids in
length) to be lead compounds for blocking mimetics and were
non-specific, being able to bind to other members of the serpin
superfamily.90–92 More recently, we have designed a 6-mer pep-
tide that specifically anneals to Z α1-antitrypsin alone and
blocks polymerisation.93–95 The aim now is to convert these
peptides into small drugs that can be used in vivo. 
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