## $\gamma$ irradiation induced effects on bismuth active centres and related photoluminescence properties of Bi/Er co-doped optical fibers

D. Sporea<sup>1\*</sup>, L. Mihai<sup>1</sup>, D. Neguţ<sup>2</sup>, Yanhua Luo<sup>3</sup>, Binbin Yan<sup>3,4</sup>, Mingjie Ding<sup>3</sup>, Shuen Wei<sup>3</sup>, Gang-Ding Peng<sup>3</sup>

## **Supplementary materials**

| Sample                  |                                    | SA1                  | SA2  | SA3  | SA4  | SA5  |      |
|-------------------------|------------------------------------|----------------------|------|------|------|------|------|
| Length of the BEDF (cm) |                                    | 30.5                 | 31.6 | 30.5 | 31.0 | 31.0 |      |
|                         | Dose (kGy)                         |                      | 1    | 5    | 15   | 30   | 50   |
|                         | Measured parameter                 | Measuring conditions |      |      |      |      |      |
| Small signal            | α@1300<br>nm (dB)                  | Before irradiation   | 17.8 | 10.9 | 10.8 | 10.6 | 11.4 |
| absorption              | α@1300<br>nm (dB)                  | After irradiation    | 16.5 | 9.1  | 10.4 | 9.8  | 10.3 |
|                         | ά <sub>max</sub> @830<br>nm (dB/m) |                      | 58.4 | 55.0 | 56.4 | 53.1 | 52.2 |
| Pump<br>absorption      | α <sub>s</sub> @830 nm (dB/m)      | Before irradiation   | 45.3 | 41.2 | 40.0 | 36.1 | 32.8 |
|                         | α <sub>us</sub> @830<br>nm (dB/m)  |                      | 13.2 | 13.8 | 16.4 | 17.0 | 19.4 |

<sup>&</sup>lt;sup>1</sup>National Institute for Laser, Plasma and Radiation Physics, Laser Metrology Laboratory, Măgurele, RO-077125, Romania

<sup>&</sup>lt;sup>2"</sup>Horia Hulubei" National Institute of Physics and Nuclear Engineering, IRASM, RO-077125, Măgurele, Romania

<sup>&</sup>lt;sup>3</sup>Photonics & Optical Communications, School of Electrical Engineering & Telecommunications, University of New South Wales, Sydney, NSW 2052, Australia

<sup>&</sup>lt;sup>4</sup>State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China

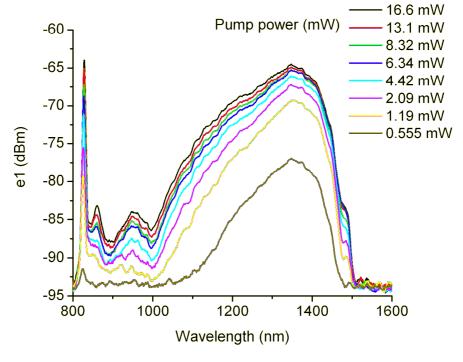
<sup>\*</sup>dan.sporea@inflpr.ro

| ά <sub>max</sub> @830<br>nm (dB/m) |                      | 72.5 | 71.3 | 77.2 | 86.9 | 91.0 |
|------------------------------------|----------------------|------|------|------|------|------|
| α <sub>s</sub> @830 nm (dB/m)      | After<br>irradiation | 51.0 | 41.2 | 40.4 | 44.5 | 46.1 |
| α <sub>us</sub> @830<br>nm (dB/m)  |                      | 21.5 | 30.1 | 36.7 | 42.3 | 44.9 |

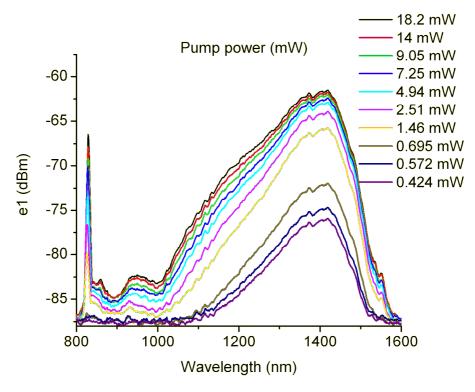
**Supplementary Table S1.** The values of the attenuation related parameters measured before and after gamma irradiation.

|          | Sample                         |                    | SA1      | SA2       | SA3       | SA4       | SA5       |
|----------|--------------------------------|--------------------|----------|-----------|-----------|-----------|-----------|
|          | $e_2(\lambda)$ at maximum      | Before irradiation | V        | V         | V         | V         | V         |
|          | pumping                        | After irradiation  | <b>√</b> | V         | <b>V</b>  | V         | V         |
|          |                                | Before irradiation | V        | V         | V         | V         | V         |
| Forward  | e <sub>2</sub> (1410)/e2(1540) | After irradiation  | V        | V         | V         | V         | V         |
| emission |                                | Variation          | V        | V         | $\sqrt{}$ | $\sqrt{}$ | V         |
|          |                                | Before irradiation | V        | $\sqrt{}$ | V         | V         | $\sqrt{}$ |
|          | e <sub>2</sub> (1100)/e2(1540) | After irradiation  | V        | √         | V         | V         | V         |
|          |                                | Variation          | V        | V         | V         | V         | V         |
|          | e <sub>2</sub> (1100)/e2(1410) | Before irradiation | V        | V         | V         | V         | V         |

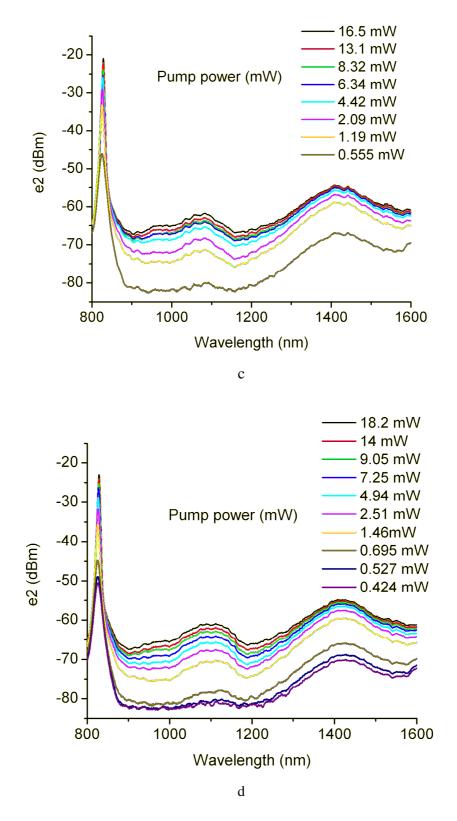
|                      |                                                     | After irradiation     | $\sqrt{}$ | V | V | V | V        |
|----------------------|-----------------------------------------------------|-----------------------|-----------|---|---|---|----------|
|                      |                                                     | Variation             | $\sqrt{}$ | V | V | V | V        |
|                      | $e_2(\lambda)$ at different                         | Before<br>irradiation | V         | V | V | V | V        |
|                      | pump power                                          | After irradiation     | V         | V | V | V | <b>√</b> |
| Emission<br>under    | e <sub>2</sub> (1410) vs pump                       | Before<br>irradiation | V         | V | V | V | V        |
| different<br>pumping | power                                               | After irradiation     | V         | V | V | V | V        |
| conditions           | $\mathbf{P}_{\mathrm{sat}}$                         | Before<br>irradiation | V         | V | V | V | V        |
|                      |                                                     | After irradiation     | V         | V | V | V | V        |
|                      | P <sub>sat</sub> (after)/ P <sub>sat</sub> (before) | Variation             | $\sqrt{}$ | V | V | V | <b>√</b> |


**Supplementary Table S2.** Emission related tests performed pre and post gamma irradiation.

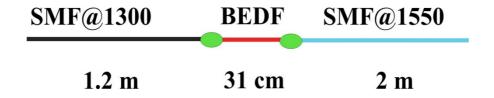
|                        | Sample     | Sample     | Sample     |  |
|------------------------|------------|------------|------------|--|
| Measurement conditions | Dose (kGy) | Dose (kGy) | Dose (kGy) |  |
|                        | SA2        | SA3        | SA5        |  |
|                        | 5 kGy      | 15 kGy     | 50 kGy     |  |
| Pump power before      | 27.2       | 20.7       | 44.1       |  |
| irradiation (mW)       | 27.3       | 30.7       | 44.1       |  |
| Pump power after       | 20.1       | 25.7       | 44.1       |  |
| irradiation (mW)       | 29.1       | 35.7       | 44.1       |  |


**Supplementary Table S3.** The pump power for emission tests - before and after the 5 kGy, 15 kGy, 50 kGy dose irradiations.

| Sample name | Sample constituents                                | Total       |  |
|-------------|----------------------------------------------------|-------------|--|
|             |                                                    | irradiation |  |
|             |                                                    | dose (kGy)  |  |
| SA-1        | SMF@1300 (1.2 m) + BEDF (30.5 cm) + SMF@1550 (2 m) | 1           |  |
| SA-2        | SMF@1300 (1.2 m) + BEDF (30 cm) + SMF@1550 (2 m)   | 5           |  |
| SA-3        | SMF@1300 (1.2 m) + BEDF (31.6 cm) + SMF@1550 (2 m) | 15          |  |
| SA-4        | SMF@1300 (1.2 m) + BEDF (30 cm) + SMF@1550 (2 m)   | 30          |  |
| SA-5        | SMF@1300 (1.2 m) + BEDF (30.5 cm) + SMF@1550 (2 m) | 50          |  |


Supplementary Table S4. The investigated samples and the irradiation conditions.

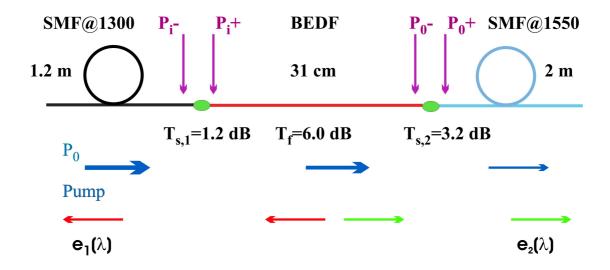



a

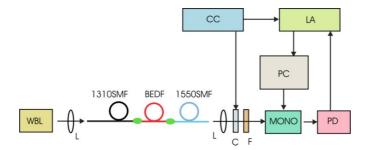


b

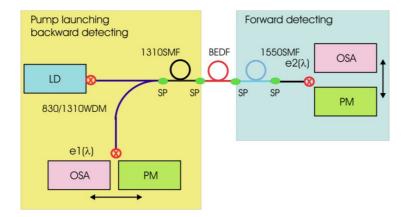



Supplementary Figure S1. The dependence on the pump power of: the backward  $e_1(\lambda)$  propagated spectral emission for sample SA1 before (a) and after (b) 1 kGy gamma irradiation; the forward  $e_2(\lambda)$  propagated spectral emission for sample SA1 before (c) and after (d) 1 kGy gamma irradiation, pump power at 830 nm.




Supplementary Figure S2. The sketch of the SA optical fiber sample.




Supplementary Figure S3. The sample geometry during the irradiation



**Supplementary Figure S4**. The optical power measuring points for the spectral emission of the tested sample SA5 (50 kGy), used for investigations done before and after the irradiation:  $P_0$  – the pump power;  $P_{i-}$  – the optical power at the input of the splicer coupling the SMF@1300 to BEDF;  $P_{i+}$  – the optical power at the output of the splicer coupling the SMF@1300 to BEDF;  $P_{0-}$  – the optical power at the input of the splicer coupling the BEDF to the SMF@1550;  $P_{0+}$  – the optical power at the output of the splicer coupling the BEDF to the SMF@1550;  $T_{s,1}$  – transmission losses in the splicer coupling the SMF@1300 to the BEDF;  $T_{s,2}$  – transmission losses in the splicer coupling the BEDF to the SMF@1550;  $T_f$  – transmission losses in the BEDF.



**Supplementary Figure S5**. The setup for spectral attenuation evaluation: WBL – wide band lamp; L – lens; F – filter; C –copper; CC – chopper controller; LA – lock-in amplifier; MONO – monochromator; PD – photodiode; PC – desk top computer.



**Supplementary Figure S6**. The setup for spectral emission measurements: LD – laser diode; OSA – optical spectrum analyser; PM – power meter; SP – splice.