

Supporting Information

Isolation of Elusive HAsAsH in a Crystalline Diuranium(IV) Complex

Benedict M. Gardner, Gábor Balázs, Manfred Scheer,* Ashley J. Wooles, Floriana Tuna, Eric J. L. McInnes, Jonathan McMaster, William Lewis, Alexander J. Blake, and Stephen T. Liddle*

ange_201508600_sm_miscellaneous_information.pdf

Experimental

General

All manipulations were carried out using Schlenk techniques, or an MBraun UniLab glovebox, under an atmosphere of dry nitrogen. Solvents were dried by passage through activated alumina towers and degassed before use. All solvents were stored over potassium mirrors except for THF which was stored over activated 4 Å sieves. Deuterated solvent was distilled from potassium, degassed by three freeze-pump-thaw cycles and stored under nitrogen. [U(Tren^{TIPS})(THF)][BPh₄] (1), $[U(Tren^{TIPS})(AsH_2)]$ (2), and KAsH₂ were prepared according to literature methods.¹⁻³ ¹H and ²⁹Si NMR spectra were recorded on a Bruker 400 spectrometer operating at 400.2 and 79.5 MHz respectively; chemical shifts are quoted in ppm and are relative to TMS. FTIR spectra were recorded on a Bruker Alpha-Platinum ATR spectrometer. Variable-temperature magnetic moment data were recorded in an applied dc field of 0.1 T on a Quantum Design MPMS XL5 superconducting quantum interference device (SQUID) magnetometer. Samples were carefully checked for purity and data reproducibility. Care was taken to ensure complete thermalisation of the sample before each data point was measured and samples were immobilised in an eicosane matrix to prevent sample reorientation during measurements. Diamagnetic corrections were applied using tabulated Pascal constants and measurements were corrected for the effect of the blank sample holders (flame sealed Wilmad NMR tube and straw) and eicosane matrix. Solution magnetic moments were recorded at room temperature using the Evans method. Elemental microanalyses were carried out by Tong Liu at the University of Nottingham.

In the X-ray crystal structure of **3**, the arsenic-bound hydrogen atoms were initially located in the Fourier transform difference maps and refined with geometric restraints based on literature data and metrical data computed from the DFT geometry optimisations.

Preparation of $[{U(Tren^{TIPS})}_2(\mu-\eta^2:\eta^2-As_2H_2)]$ (3)

Method A: THF (20 ml) was added to a cold (-78 °C) mixture of **1** (0.62 g, 0.50 mmol) and finely ground KAsH₂ (81 mg, 0.70 mmol). The dark brown slurry was allowed to warm to room temperature whilst stirring (30 mins) to afford a dark brown suspension, which was then stirred at room temperature overnight.

Method B: Compound **2** (1.16 g, 1.25 mmol) was treated with $KAsH_2$ (81 mg, 0.70 mmol) in THF (10 ml) at -78 °C. The dark brown slurry was allowed to warm to room temperature whilst stirring (30 mins) to afford a dark brown suspension, which was then stirred at room temperature overnight.

Work-up: Solvent was removed *in vacuo* and the resulting pale brown solid was extracted into toluene (10 ml) and filtered to afford a dark brown solution. The volume of the solution was reduced *in vacuo* to 2 ml and stored at -30 °C for 24 hrs to afford dark brown crystals, which were isolated by filtration, washed with hexanes (3 × 2 ml) and dried *in vacuo* for 30 mins. Yield: 38 mg (8%). Assaying the toluene extract before crystallisation by ¹H NMR spectroscopy, with 2,4,6-Bu^t₃C₆H₃ as an internal standard, showed that **3** is obtained in 50% crude yield. The preparation of the D-analogue of **3**, **3D**, was accomplished by identical procedures with essentially identical outcomes except KAsD₂ (see below) was used in place of KAsH₂.

Characterisation data for 3: Anal. calc'd for C₆₆H₁₅₂As₂N₈Si₆U₂·0.8C₇H₈: C 44.65%; H 8.29%; N 5.82%. Found: C 45.03%; H 8.47%; N 6.24%. ¹H NMR (THF-*d*₈, 298 K): δ 5.35 (s, br, FWHM = 99 Hz, 126 H, Prⁱ₃Si), 6.20 (s, br, FWHM = 66 Hz, 24 H, CH₂) ppm. As*H* resonance(s) not observed. ²⁹Si{¹H} NMR signal not observed due to lack of solubility. μ_{eff} (Evans method, THF-*d*₈, 298 K): 4.63 μ_{B} . FTIR (ATR-IR): v 2069 (w), 2029 (w, br, As–H stretch), 1632 (w), 1581 (w), 1557 (w), 1540 (w), 1402 (s), 1302 (w), 1201 (w), 1046 (s), 931 (m), 904 (w), 672 (s), 652 (m), 633 (m), 575 (w), 561 (w), 541 (w), 518 (w) cm⁻¹.

Synthesis of KAsD₂

Figure S1. Apparatus used for the synthesis of KAsD₂.

LiAlD₄ (4.48 g, 106.71 mmol) was added in flask (1), the flask was cooled to -60 °C and THF (50 ml) was added. A solution of AsCl₃ (6.45 g, 3 ml, 35.57 mmol) in THF (5 ml) was filled into the dropping funnel. The cooling trap (3) was cooled with liquid nitrogen and the pressure in (1) and (3) was reduced to 550 mbar. The AsCl₃ solution was slowly added (dropwise) to the vigorously stirred LiAlD₄ solution. After the addition the temperature was slowly raised to -40 °C and the pressure slowly decreased to 0.1 mbar. After the evolution of AsD_3 was finished, potassium (0.9 g, 23.01 mmol) was placed in flask (6) and NH₃ (ca 150 ml) was condensed in the flask. In flask (8) a $KMnO_4$ solution in deoxygenated water was introduced. Subsequently, the three-way stopcock (4) was opened to the cooling trap containing AsD3 and a slow stream of N2 was passed through the apparatus starting from the three-way stopcock (2). The temperature of the cooling trap (3) was allowed to rise to room temperature, while the AsD₃ was passed through the blue K/NH₃ solution. The reaction is finished when the intense blue colour changes to bright yellow. The stream of N₂ is maintained for an additional 5 minutes. It has to be ensured that the cooling trap (3) reaches room temperature in order to ensure that all AsD_3 is transferred to (6). Subsequently, from flask (6) the NH3 was slowly evaporated leading to a yellowish-light orange powder of KAsD2 (2.30 g, 19.49 mmol). The reaction is quantitative with respect to K used.

Spectroscopy, Magnetism, and Crystallography

Figure S2. ¹H NMR spectrum of 3 in D_8 -THF.

Figure S3. ¹H NMR spectrum of 3D in D_6 -benzene.

Figure S4. ATR-IR specta of 3 (blue) and 3D (black) with zoom in for As-H region of 3.

Figure S5. (a) μ_{eff} vs T, (b) $1/\chi$ vs T, (c) χ vs T, and (d) χ T vs T for 3.

Figure S6. Molecular structure of 4.

Chemical formula	$C_{66}H_{152}As_2N_8Si_6U_2$
M _r	1852.39
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	120
<i>a</i> , <i>b</i> , <i>c</i> (Å)	13.02406 (19), 23.0187 (3), 27.4687 (4)
β (°)	91.9142 (14)
$V(\text{\AA}^3)$	8230.4 (2)
Ζ	4
Radiation type	Cu Kα
μ (mm ⁻¹)	13.02
Crystal size (mm)	$0.20\times0.14\times0.07$
Diffractometer	GV1000, Atlas diffractometer
Absorption correction	Multi-scan <i>CrysAlis PRO</i> , Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
T_{\min}, T_{\max}	0.381, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	31532, 8238, 7831
R _{int}	0.031
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.624
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.035, 0.086, 1.04
No. of reflections	8238
No. of parameters	444
No. of restraints	734
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta_{\max}, \Delta_{\min} (e \text{ Å}^{-3})$	4.50, -2.71

Table S1. Experimental X-ray crystallographic details for 3 (CCDC-1403870).

Computer programs: *CrysAlis PRO*, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05), *SHELXS* (Sheldrick, 2008), *SHELXL* (Sheldrick, 2008), Olex2 (Dolomanov *et al.*, 2009).

U1—As1 ⁱ	3.1203 (7)	C18—H18	1.0000
U1—As1	3.1273 (7)	C18—C19	1.522 (9)
U1—N1	2.256 (4)	C18—C20	1.533 (9)
U1—N2	2.273 (4)	С19—Н19А	0.9800
U1—N3	2.261 (4)	С19—Н19В	0.9800
U1—N4	2.709 (4)	С19—Н19С	0.9800
As1—U1 ⁱ	3.1203 (7)	С20—Н20А	0.9800
As1—As1 ⁱ	2.4102 (13)	С20—Н20В	0.9800
As1—H1A	1.32 (3)	С20—Н20С	0.9800
As1—H1B	1.32 (3)	C21—H21A	0.9900
N1—Si1	1.752 (4)	C21—H21B	0.9900
N1—C10	1.490 (6)	C21—C22	1.510 (7)
Si1—C1	1.895 (6)	С22—Н22А	0.9900
Si1—C4	1.910 (5)	С22—Н22В	0.9900
Si1—C7	1.898 (6)	C22—N4	1.476 (7)
С1—Н1	1.0000	N3—Si3	1.741 (4)
C1—C2	1.532 (8)	N3—C32	1.489 (7)
C1—C3	1.544 (8)	Si3—C23	1.896 (6)
С2—Н2А	0.9800	Si3—C26	1.907 (7)
С2—Н2В	0.9800	Si3—C29	1.949 (10)
С2—Н2С	0.9800	Si3—C29A	1.892 (10)
С3—НЗА	0.9800	С23—Н23	1.0000
С3—Н3В	0.9800	C23—C24	1.542 (9)
С3—НЗС	0.9800	C23—C25	1.530 (8)
С4—Н4	1.0000	C24—H24A	0.9800
C4—C5	1.547 (8)	C24—H24B	0.9800
C4—C6	1.532 (8)	C24—H24C	0.9800
С5—Н5А	0.9800	С25—Н25А	0.9800
С5—Н5В	0.9800	С25—Н25В	0.9800
С5—Н5С	0.9800	С25—Н25С	0.9800
С6—Н6А	0.9800	С26—Н26	1.0000
С6—Н6В	0.9800	C26—C27	1.534 (9)
С6—Н6С	0.9800	C26—C28	1.532 (10)
С7—Н7А	1.0000	С27—Н27А	0.9800
С7—Н7В	1.0000	С27—Н27В	0.9800
С7—С8	1.519 (8)	С27—Н27С	0.9800
С7—С9	1.437 (11)	C28—H28A	0.9800
С7—С9А	1.533 (10)	C28—H28B	0.9800
C8—H8A	0.9800	C28—H28C	0.9800

Table S2. Bond lengths (Å) and angles (°) for 3. Symmetry code: -x, y, -z+1/2.

С8—Н8В	0.9800	С29—Н29	1.0000
С8—Н8С	0.9800	C29—C30	1.536 (12)
С10—Н10А	0.9900	C29—C31	1.548 (12)
С10—Н10В	0.9900	С29А—Н29А	1.0000
C10—C11	1.517 (7)	C29A—C30A	1.525 (12)
С11—Н11А	0.9900	C29A—C31A	1.538 (13)
С11—Н11В	0.9900	С30—Н30А	0.9800
C11—N4	1.484 (7)	С30—Н30В	0.9800
N2—Si2	1.746 (4)	С30—Н30С	0.9800
N2—C21	1.486 (6)	C30A—H30D	0.9800
Si2—C12	1.895 (5)	С30А—Н30Е	0.9800
Si2—C15	1.918 (6)	C30A—H30F	0.9800
Si2—C18	1.898 (6)	C31A—H31A	0.9800
С12—Н12	1.0000	C31A—H31B	0.9800
C12—C13	1.540 (7)	C31A—H31C	0.9800
C12—C14	1.526 (8)	С32—Н32А	0.9900
С13—Н13А	0.9800	С32—Н32В	0.9900
С13—Н13В	0.9800	C32—C33	1.508 (7)
С13—Н13С	0.9800	С33—Н33А	0.9900
C14—H14A	0.9800	С33—Н33В	0.9900
C14—H14B	0.9800	C33—N4	1.494 (7)
C14—H14C	0.9800	С9—Н9А	0.9800
С15—Н15	1.0000	С9—Н9В	0.9800
C15—C16	1.539 (9)	С9—Н9С	0.9800
C15—C17	1.537 (8)	С9А—Н9АА	0.9800
C16—H16A	0.9800	С9А—Н9АВ	0.9800
C16—H16B	0.9800	С9А—Н9АС	0.9800
С16—Н16С	0.9800	C31—H31D	0.9800
С17—Н17А	0.9800	С31—Н31Е	0.9800
С17—Н17В	0.9800	C31—H31F	0.9800
С17—Н17С	0.9800		
As1 ⁱ —U1—As1	45.38 (2)	Si2—C18—H18	106.8
N1—U1—As1	116.90 (11)	C19—C18—Si2	113.0 (4)
N1—U1—As1 ⁱ	99.66 (10)	C19—C18—H18	106.8
N1—U1—N2	109.51 (15)	C19—C18—C20	109.3 (6)
N1—U1—N3	105.95 (15)	C20—C18—Si2	113.8 (4)
N1—U1—N4	69.54 (14)	C20—C18—H18	106.8
N2—U1—As1	90.74 (11)	С18—С19—Н19А	109.5
N2—U1—As1 ⁱ	135.45 (11)	C18—C19—H19B	109.5

N2—U1—N4	68.84 (14)	С18—С19—Н19С	109.5
N3—U1—As1	122.81 (11)	H19A—C19—H19B	109.5
N3—U1—As1 ⁱ	93.44 (11)	H19A—C19—H19C	109.5
N3—U1—N2	109.29 (15)	H19B—C19—H19C	109.5
N3—U1—N4	69.68 (14)	C18—C20—H20A	109.5
N4—U1—As1	159.32 (9)	С18—С20—Н20В	109.5
N4—U1—As1 ⁱ	155.29 (9)	С18—С20—Н20С	109.5
U1 ⁱ —As1—U1	134.42 (2)	H20A—C20—H20B	109.5
U1 ⁱ —As1—H1A	80.6 (4)	H20A—C20—H20C	109.5
U1—As1—H1A	80.3 (4)	H20B—C20—H20C	109.5
U1—As1—H1B	84.1 (4)	N2—C21—H21A	109.9
U1 ⁱ —As1—H1B	84.4 (4)	N2—C21—H21B	109.9
As1 ⁱ —As1—U1 ⁱ	67.46 (3)	N2—C21—C22	109.1 (4)
As1 ⁱ —As1—U1	67.16 (3)	H21A—C21—H21B	108.3
As1 ⁱ —As1—H1A	69.8 (4)	C22—C21—H21A	109.9
As1 ⁱ —As1—H1B	69.9 (4)	С22—С21—Н21В	109.9
H1A—As1—H1B	139.7 (8)	C21—C22—H22A	110.1
Si1—N1—U1	139.5 (2)	С21—С22—Н22В	110.1
C10—N1—U1	106.4 (3)	H22A—C22—H22B	108.4
C10—N1—Si1	114.1 (3)	N4—C22—C21	107.9 (4)
N1—Si1—C1	111.2 (2)	N4—C22—H22A	110.1
N1—Si1—C4	109.8 (2)	N4—C22—H22B	110.1
N1—Si1—C7	108.6 (2)	Si3—N3—U1	135.6 (2)
C1—Si1—C4	111.1 (3)	C32—N3—U1	109.2 (3)
C1—Si1—C7	107.2 (3)	C32—N3—Si3	115.2 (3)
C7—Si1—C4	108.9 (3)	N3—Si3—C23	109.5 (2)
Si1—C1—H1	106.6	N3—Si3—C26	109.1 (3)
C2—C1—Si1	116.6 (4)	N3—Si3—C29	106.6 (4)
C2—C1—H1	106.6	N3—Si3—C29A	114.4 (4)
C2—C1—C3	108.3 (5)	C23—Si3—C26	111.7 (3)
C3—C1—Si1	111.6 (4)	C23—Si3—C29	100.9 (4)
С3—С1—Н1	106.6	C26—Si3—C29	118.6 (4)
C1—C2—H2A	109.5	C29A—Si3—C23	114.7 (4)
C1—C2—H2B	109.5	C29A—Si3—C26	96.8 (4)
C1—C2—H2C	109.5	Si3—C23—H23	106.7
Н2А—С2—Н2В	109.5	C24—C23—Si3	111.8 (4)
Н2А—С2—Н2С	109.5	С24—С23—Н23	106.7
Н2В—С2—Н2С	109.5	C25—C23—Si3	115.3 (4)
С1—С3—НЗА	109.5	С25—С23—Н23	106.7
С1—С3—Н3В	109.5	C25—C23—C24	109.2 (5)

С1—С3—Н3С	109.5	С23—С24—Н24А	109.5
НЗА—СЗ—НЗВ	109.5	С23—С24—Н24В	109.5
НЗА—СЗ—НЗС	109.5	С23—С24—Н24С	109.5
НЗВ—СЗ—НЗС	109.5	H24A—C24—H24B	109.5
Si1—C4—H4	106.0	H24A—C24—H24C	109.5
C5—C4—Si1	113.9 (4)	H24B—C24—H24C	109.5
С5—С4—Н4	106.0	С23—С25—Н25А	109.5
C6—C4—Si1	115.1 (4)	С23—С25—Н25В	109.5
С6—С4—Н4	106.0	С23—С25—Н25С	109.5
C6—C4—C5	109.0 (5)	H25A—C25—H25B	109.5
C4—C5—H5A	109.5	H25A—C25—H25C	109.5
C4—C5—H5B	109.5	H25B—C25—H25C	109.5
C4—C5—H5C	109.5	Si3—C26—H26	105.5
H5A—C5—H5B	109.5	C27—C26—Si3	116.2 (6)
H5A—C5—H5C	109.5	С27—С26—Н26	105.5
H5B—C5—H5C	109.5	C28—C26—Si3	114.5 (4)
С4—С6—Н6А	109.5	C28—C26—H26	105.5
C4—C6—H6B	109.5	C28—C26—C27	108.7 (6)
C4—C6—H6C	109.5	С26—С27—Н27А	109.5
H6A—C6—H6B	109.5	С26—С27—Н27В	109.5
Н6А—С6—Н6С	109.5	С26—С27—Н27С	109.5
H6B—C6—H6C	109.5	H27A—C27—H27B	109.5
Si1—C7—H7A	105.6	H27A—C27—H27C	109.5
Si1—C7—H7B	100.3	H27B—C27—H27C	109.5
C8—C7—Si1	114.1 (4)	C26—C28—H28A	109.5
С8—С7—Н7А	105.6	C26—C28—H28B	109.5
С8—С7—Н7В	100.3	С26—С28—Н28С	109.5
С8—С7—С9А	116.5 (7)	H28A—C28—H28B	109.5
C9—C7—Si1	117.5 (6)	H28A—C28—H28C	109.5
С9—С7—Н7А	105.6	H28B—C28—H28C	109.5
С9—С7—С8	107.4 (7)	Si3—C29—H29	106.1
C9A—C7—Si1	119.9 (6)	C30—C29—Si3	110.7 (8)
С9А—С7—Н7В	100.3	С30—С29—Н29	106.1
С7—С8—Н8А	109.5	C30—C29—C31	108.7 (9)
С7—С8—Н8В	109.5	C31—C29—Si3	118.2 (7)
С7—С8—Н8С	109.5	С31—С29—Н29	106.1
H8A—C8—H8B	109.5	Si3—C29A—H29A	107.4
H8A—C8—H8C	109.5	C30A—C29A—Si3	116.1 (8)
H8B—C8—H8C	109.5	С30А—С29А—Н29А	107.4
N1-C10-H10A	109.8	C30A—C29A—C31A	111.1 (10)

N1-C10-H10B	109.8	C31A—C29A—Si3	107.1 (7)
N1-C10-C11	109.4 (4)	С31А—С29А—Н29А	107.4
H10A—C10—H10B	108.2	С29—С30—Н30А	109.5
C11—C10—H10A	109.8	С29—С30—Н30В	109.5
C11—C10—H10B	109.8	С29—С30—Н30С	109.5
С10—С11—Н11А	110.3	H30A—C30—H30B	109.5
C10—C11—H11B	110.3	H30A—C30—H30C	109.5
H11A—C11—H11B	108.5	H30B—C30—H30C	109.5
N4—C11—C10	107.3 (4)	C29A—C30A—H30D	109.5
N4—C11—H11A	110.3	С29А—С30А—Н30Е	109.5
N4—C11—H11B	110.3	C29A—C30A—H30F	109.5
Si2—N2—U1	138.7 (2)	H30D—C30A—H30E	109.5
C21—N2—U1	107.6 (3)	H30D—C30A—H30F	109.5
C21—N2—Si2	113.6 (3)	H30E—C30A—H30F	109.5
N2—Si2—C12	110.3 (2)	С29А—С31А—Н31А	109.5
N2—Si2—C15	109.4 (2)	C29A—C31A—H31B	109.5
N2—Si2—C18	112.1 (2)	C29A—C31A—H31C	109.5
C12—Si2—C15	111.7 (2)	H31A—C31A—H31B	109.5
C12—Si2—C18	107.2 (3)	H31A—C31A—H31C	109.5
C18—Si2—C15	106.1 (3)	H31B—C31A—H31C	109.5
Si2—C12—H12	106.4	N3—C32—H32A	109.7
C13—C12—Si2	111.3 (4)	N3—C32—H32B	109.7
C13—C12—H12	106.4	N3—C32—C33	109.7 (4)
C14—C12—Si2	115.9 (4)	H32A—C32—H32B	108.2
C14—C12—H12	106.4	С33—С32—Н32А	109.7
C14—C12—C13	109.8 (5)	С33—С32—Н32В	109.7
С12—С13—Н13А	109.5	С32—С33—Н33А	109.9
С12—С13—Н13В	109.5	С32—С33—Н33В	109.9
С12—С13—Н13С	109.5	H33A—C33—H33B	108.3
H13A—C13—H13B	109.5	N4—C33—C32	108.9 (4)
H13A—C13—H13C	109.5	N4—C33—H33A	109.9
H13B—C13—H13C	109.5	N4—C33—H33B	109.9
C12—C14—H14A	109.5	C11—N4—U1	106.4 (3)
C12—C14—H14B	109.5	C11—N4—C33	111.6 (4)
C12—C14—H14C	109.5	C22—N4—U1	107.1 (3)
H14A—C14—H14B	109.5	C22—N4—C11	112.9 (4)
H14A—C14—H14C	109.5	C22—N4—C33	111.9 (4)
H14B—C14—H14C	109.5	C33—N4—U1	106.3 (3)
Si2—C15—H15	105.7	С7—С9—Н9А	109.5
C16—C15—Si2	114.5 (4)	С7—С9—Н9В	109.5

С16—С15—Н15	105.7	С7—С9—Н9С	109.5
C17—C15—Si2	115.6 (4)	Н9А—С9—Н9В	109.5
С17—С15—Н15	105.7	Н9А—С9—Н9С	109.5
C17—C15—C16	108.9 (5)	Н9В—С9—Н9С	109.5
C15—C16—H16A	109.5	С7—С9А—Н9АА	109.5
C15—C16—H16B	109.5	С7—С9А—Н9АВ	109.5
C15—C16—H16C	109.5	С7—С9А—Н9АС	109.5
H16A—C16—H16B	109.5	Н9АА—С9А—Н9АВ	109.5
H16A—C16—H16C	109.5	Н9АА—С9А—Н9АС	109.5
H16B—C16—H16C	109.5	Н9АВ—С9А—Н9АС	109.5
С15—С17—Н17А	109.5	C29—C31—H31D	109.5
С15—С17—Н17В	109.5	С29—С31—Н31Е	109.5
С15—С17—Н17С	109.5	C29—C31—H31F	109.5
H17A—C17—H17B	109.5	H31D—C31—H31E	109.5
H17A—C17—H17C	109.5	H31D—C31—H31F	109.5
H17B—C17—H17C	109.5	H31E—C31—H31F	109.5

Chemical formula	$C_{66}H_{150}As_{2}N_{8}Si_{6}U_{2} \\$
M _r	1850.37
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	120
<i>a</i> , <i>b</i> , <i>c</i> (Å)	12.9072 (5), 22.4152 (7), 15.0301 (6)
β (°)	113.904 (5)
$V(\text{\AA}^3)$	3975.5 (3)
Ζ	2
Radiation type	Cu Ka
μ (mm ⁻¹)	13.47
Crystal size (mm)	0.13 imes 0.10 imes 0.09
Diffractometer	GV1000, Atlas diffractometer
Absorption correction	Gaussian <i>CrysAlis PRO</i> , Agilent Technologies, Version 1.171.37.33 (release 27-03-2014 CrysAlis171 .NET) (compiled Mar 27 2014,17:12:48) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
T _{min} , T _{max}	0.108, 0.252
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	17159, 7884, 6866
R _{int}	0.043
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.624
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.046, 0.130, 1.05
No. of reflections	7884
No. of parameters	397
H-atom treatment	H-atom parameters constrained
$\Delta \rangle_{\rm max}, \Delta \rangle_{\rm min} \ (e \ {\rm \AA}^{-3})$	3.76, -1.47

Table S3. Experimental X-ray crystallographic details for 4 (CCDC-1419459).

Computer programs: *CrysAlis PRO*, Agilent Technologies, Version 1.171.37.33 (release 27-03-2014 CrysAlis171 .NET) (compiled Mar 27 2014,17:12:48), *SHELXS* (Sheldrick, 2008), *SHELXL* (Sheldrick, 2008), Olex2 (Dolomanov *et al.*, 2009).

U1—As1	3.0357 (7)	C15—C16	1.524 (11)
U1—As1 ⁱ	3.0497 (8)	C15—C17	1.530 (11)
U1—N1	2.270 (5)	C16—H16A	0.9800
U1—N2	2.278 (5)	C16—H16B	0.9800
U1—N3	2.266 (5)	С16—Н16С	0.9800
U1—N4	2.685 (5)	С17—Н17А	0.9800
As1—U1 ⁱ	3.0497 (7)	С17—Н17В	0.9800
As1—As1 ⁱ	2.2568 (14)	С17—Н17С	0.9800
N1—Si1	1.744 (5)	C18—H18	1.0000
N1—C10	1.490 (7)	C18—C19	1.532 (11)
Si1—C1	1.894 (7)	C18—C20	1.541 (11)
Si1—C4	1.917 (7)	С19—Н19А	0.9800
Si1—C7	1.912 (7)	С19—Н19В	0.9800
С1—Н1	1.0000	С19—Н19С	0.9800
C1—C2	1.545 (10)	С20—Н20А	0.9800
C1—C3	1.558 (10)	С20—Н20В	0.9800
С2—Н2А	0.9800	С20—Н20С	0.9800
С2—Н2В	0.9800	C21—H21A	0.9900
С2—Н2С	0.9800	С21—Н21В	0.9900
С3—НЗА	0.9800	C21—C22	1.520 (10)
С3—Н3В	0.9800	С22—Н22А	0.9900
С3—НЗС	0.9800	С22—Н22В	0.9900
С4—Н4	1.0000	C22—N4	1.480 (9)
C4—C5	1.520 (11)	N3—Si3	1.753 (6)
C4—C6	1.523 (10)	N3—C32	1.499 (8)
С5—Н5А	0.9800	Si3—C23	1.889 (7)
С5—Н5В	0.9800	Si3—C26	1.923 (6)
С5—Н5С	0.9800	Si3—C29	1.900 (7)
С6—Н6А	0.9800	С23—Н23	1.0000
С6—Н6В	0.9800	C23—C24	1.527 (10)
С6—Н6С	0.9800	C23—C25	1.541 (10)
С7—Н7	1.0000	C24—H24A	0.9800
С7—С8	1.526 (10)	С24—Н24В	0.9800
С7—С9	1.526 (10)	С24—Н24С	0.9800
С8—Н8А	0.9800	С25—Н25А	0.9800
С8—Н8В	0.9800	С25—Н25В	0.9800
С8—Н8С	0.9800	С25—Н25С	0.9800
С9—Н9А	0.9800	С26—Н26	1.0000
С9—Н9В	0.9800	C26—C27	1.519 (10)

Table S4. Bond lengths (Å) and angles (°) for 4. Symmetry code: -x, -y, -z.

С9—Н9С	0.9800	C26—C28	1.540 (10)
С10—Н10А	0.9900	С27—Н27А	0.9800
С10—Н10В	0.9900	С27—Н27В	0.9800
C10—C11	1.477 (10)	С27—Н27С	0.9800
С11—Н11А	0.9900	C28—H28A	0.9800
С11—Н11В	0.9900	C28—H28B	0.9800
C11—N4	1.469 (8)	C28—H28C	0.9800
N2—Si2	1.741 (5)	С29—Н29	1.0000
N2—C21	1.471 (8)	C29—C30	1.553 (9)
Si2—C12	1.889 (7)	C29—C31	1.515 (10)
Si2—C15	1.909 (7)	С30—Н30А	0.9800
Si2—C18	1.906 (7)	С30—Н30В	0.9800
С12—Н12	1.0000	С30—Н30С	0.9800
C12—C13	1.530 (10)	С31—Н31А	0.9800
C12—C14	1.550 (10)	С31—Н31В	0.9800
С13—Н13А	0.9800	С31—Н31С	0.9800
С13—Н13В	0.9800	С32—Н32А	0.9900
С13—Н13С	0.9800	С32—Н32В	0.9900
C14—H14A	0.9800	C32—C33	1.506 (10)
C14—H14B	0.9800	С33—Н33А	0.9900
C14—H14C	0.9800	С33—Н33В	0.9900
С15—Н15	1.0000	C33—N4	1.486 (9)
As1—U1—As1 ⁱ	43.54 (3)	С17—С15—Н15	104.2
N1—U1—As1 ⁱ	90.70 (13)	С15—С16—Н16А	109.5
N1—U1—As1	125.05 (13)	С15—С16—Н16В	109.5
N1—U1—N2	110.74 (19)	С15—С16—Н16С	109.5
N1—U1—N4	69.58 (18)	H16A—C16—H16B	109.5
N2—U1—As1 ⁱ	109.31 (13)	H16A—C16—H16C	109.5
N2—U1—As1	112.37 (13)	H16B—C16—H16C	109.5
N2—U1—N4	69.53 (18)	С15—С17—Н17А	109.5
N3—U1—As1 ⁱ	129.20 (14)	С15—С17—Н17В	109.5
N3—U1—As1	89.65 (14)	С15—С17—Н17С	109.5
N3—U1—N1	109.09 (19)	H17A—C17—H17B	109.5
N3—U1—N2	106.34 (19)	H17A—C17—H17C	109.5
N3—U1—N4	70.31 (19)	H17B—C17—H17C	109.5
N4—U1—As1 ⁱ	157.21 (12)	Si2—C18—H18	106.0
N4—U1—As1	159.06 (12)	C19—C18—Si2	115.4 (5)
U1—As1—U1 ⁱ	136.46 (3)	C19—C18—H18	106.0
As1 ¹ —As1—U1	68.56 (3)	C19—C18—C20	106.9 (6)

As1 ⁱ —As1—U1 ⁱ	67.90 (3)	C20—C18—Si2	115.9 (5)
Si1—N1—U1	137.0 (3)	C20—C18—H18	106.0
C10—N1—U1	109.0 (4)	С18—С19—Н19А	109.5
C10—N1—Si1	113.9 (4)	C18—C19—H19B	109.5
N1—Si1—C1	107.7 (3)	С18—С19—Н19С	109.5
N1—Si1—C4	111.2 (3)	H19A—C19—H19B	109.5
N1—Si1—C7	112.7 (3)	H19A—C19—H19C	109.5
C1—Si1—C4	112.9 (3)	H19B—C19—H19C	109.5
C1—Si1—C7	107.1 (3)	С18—С20—Н20А	109.5
C7—Si1—C4	105.2 (3)	C18—C20—H20B	109.5
Si1—C1—H1	106.8	C18—C20—H20C	109.5
C2—C1—Si1	115.4 (5)	H20A—C20—H20B	109.5
С2—С1—Н1	106.8	H20A—C20—H20C	109.5
C2—C1—C3	108.9 (6)	H20B—C20—H20C	109.5
C3—C1—Si1	111.7 (5)	N2—C21—H21A	109.7
С3—С1—Н1	106.8	N2—C21—H21B	109.7
С1—С2—Н2А	109.5	N2—C21—C22	109.6 (5)
С1—С2—Н2В	109.5	H21A—C21—H21B	108.2
C1—C2—H2C	109.5	C22—C21—H21A	109.7
H2A—C2—H2B	109.5	C22—C21—H21B	109.7
H2A—C2—H2C	109.5	C21—C22—H22A	110.3
H2B—C2—H2C	109.5	C21—C22—H22B	110.3
С1—С3—НЗА	109.5	H22A—C22—H22B	108.5
С1—С3—Н3В	109.5	N4—C22—C21	107.3 (5)
C1—C3—H3C	109.5	N4—C22—H22A	110.3
НЗА—СЗ—НЗВ	109.5	N4—C22—H22B	110.3
НЗА—СЗ—НЗС	109.5	Si3—N3—U1	138.5 (3)
НЗВ—СЗ—НЗС	109.5	C32—N3—U1	105.9 (4)
Si1—C4—H4	105.8	C32—N3—Si3	115.3 (4)
C5—C4—Si1	114.3 (5)	N3—Si3—C23	108.3 (3)
С5—С4—Н4	105.8	N3—Si3—C26	108.8 (3)
C5—C4—C6	109.9 (6)	N3—Si3—C29	111.0 (3)
C6—C4—Si1	114.4 (5)	C23—Si3—C26	110.7 (3)
C6—C4—H4	105.8	C23—Si3—C29	107.2 (3)
C4—C5—H5A	109.5	C29—Si3—C26	110.8 (3)
C4—C5—H5B	109.5	Si3—C23—H23	105.4
C4—C5—H5C	109.5	C24—C23—Si3	112.7 (5)
H5A—C5—H5B	109.5	С24—С23—Н23	105.4
Н5А—С5—Н5С	109.5	C24—C23—C25	110.7 (6)
H5B—C5—H5C	109.5	C25—C23—Si3	116.3 (5)

С4—С6—Н6А	109.5	С25—С23—Н23	105.4
С4—С6—Н6В	109.5	C23—C24—H24A	109.5
С4—С6—Н6С	109.5	С23—С24—Н24В	109.5
Н6А—С6—Н6В	109.5	С23—С24—Н24С	109.5
Н6А—С6—Н6С	109.5	H24A—C24—H24B	109.5
Н6В—С6—Н6С	109.5	H24A—C24—H24C	109.5
Si1—C7—H7	106.8	H24B—C24—H24C	109.5
C8—C7—Si1	114.9 (5)	С23—С25—Н25А	109.5
С8—С7—Н7	106.8	С23—С25—Н25В	109.5
C9—C7—Si1	111.3 (5)	С23—С25—Н25С	109.5
С9—С7—Н7	106.8	H25A—C25—H25B	109.5
С9—С7—С8	109.7 (6)	H25A—C25—H25C	109.5
С7—С8—Н8А	109.5	H25B—C25—H25C	109.5
С7—С8—Н8В	109.5	Si3—C26—H26	106.2
С7—С8—Н8С	109.5	C27—C26—Si3	115.2 (5)
H8A—C8—H8B	109.5	С27—С26—Н26	106.2
H8A—C8—H8C	109.5	C27—C26—C28	110.1 (6)
H8B—C8—H8C	109.5	C28—C26—Si3	112.3 (5)
С7—С9—Н9А	109.5	С28—С26—Н26	106.2
С7—С9—Н9В	109.5	С26—С27—Н27А	109.5
С7—С9—Н9С	109.5	С26—С27—Н27В	109.5
Н9А—С9—Н9В	109.5	С26—С27—Н27С	109.5
Н9А—С9—Н9С	109.5	H27A—C27—H27B	109.5
Н9В—С9—Н9С	109.5	H27A—C27—H27C	109.5
N1-C10-H10A	109.9	Н27В—С27—Н27С	109.5
N1-C10-H10B	109.9	C26—C28—H28A	109.5
H10A—C10—H10B	108.3	C26—C28—H28B	109.5
C11—C10—N1	109.0 (5)	C26—C28—H28C	109.5
С11—С10—Н10А	109.9	H28A—C28—H28B	109.5
C11—C10—H10B	109.9	H28A—C28—H28C	109.5
C10—C11—H11A	109.5	H28B—C28—H28C	109.5
C10—C11—H11B	109.5	Si3—C29—H29	106.2
H11A—C11—H11B	108.1	C30—C29—Si3	113.7 (4)
N4—C11—C10	110.7 (5)	С30—С29—Н29	106.2
N4-C11-H11A	109.5	C31—C29—Si3	115.3 (5)
N4—C11—H11B	109.5	С31—С29—Н29	106.2
Si2—N2—U1	135.8 (3)	C31—C29—C30	108.5 (6)
C21—N2—U1	109.3 (4)	С29—С30—Н30А	109.5
C21—N2—Si2	114.9 (4)	С29—С30—Н30В	109.5
N2—Si2—C12	106.3 (3)	С29—С30—Н30С	109.5

N2—Si2—C15	117.0 (3)	H30A—C30—H30B	109.5
N2—Si2—C18	110.2 (3)	H30A—C30—H30C	109.5
C12—Si2—C15	109.2 (3)	H30B—C30—H30C	109.5
C12—Si2—C18	107.0 (3)	С29—С31—Н31А	109.5
C18—Si2—C15	106.7 (3)	С29—С31—Н31В	109.5
Si2—C12—H12	106.1	С29—С31—Н31С	109.5
C13—C12—Si2	115.6 (5)	H31A—C31—H31B	109.5
С13—С12—Н12	106.1	H31A—C31—H31C	109.5
C13—C12—C14	108.6 (7)	H31B—C31—H31C	109.5
C14—C12—Si2	113.7 (5)	N3—C32—H32A	109.8
C14—C12—H12	106.1	N3—C32—H32B	109.8
С12—С13—Н13А	109.5	N3—C32—C33	109.3 (5)
С12—С13—Н13В	109.5	H32A—C32—H32B	108.3
С12—С13—Н13С	109.5	С33—С32—Н32А	109.8
H13A—C13—H13B	109.5	С33—С32—Н32В	109.8
H13A—C13—H13C	109.5	С32—С33—Н33А	110.2
H13B—C13—H13C	109.5	С32—С33—Н33В	110.2
C12—C14—H14A	109.5	H33A—C33—H33B	108.5
C12—C14—H14B	109.5	N4—C33—C32	107.3 (5)
C12—C14—H14C	109.5	N4—C33—H33A	110.2
H14A—C14—H14B	109.5	N4—C33—H33B	110.2
H14A—C14—H14C	109.5	C11—N4—U1	106.1 (4)
H14B—C14—H14C	109.5	C11—N4—C22	111.8 (5)
Si2—C15—H15	104.2	C11—N4—C33	112.3 (6)
C16—C15—Si2	117.1 (6)	C22—N4—U1	107.5 (4)
C16—C15—H15	104.2	C22—N4—C33	112.3 (6)
C16—C15—C17	108.4 (6)	C33—N4—U1	106.3 (4)
C17—C15—Si2	116.9 (5)		

Density Functional Theory Calculations

General

Unrestricted geometry optimisations were performed for the full model of **3** using coordinates derived from the X-ray crystal structure; both *E* and *Z* isomers were considered, but since the *E* isomer was found to be the most stable subsequent investigations focussed on this isomer. No constraints were imposed on the structures during the geometry optimisations. The calculations were performed using the Amsterdam Density Functional (ADF) suite version 2012.01.^{4,5} The DFT

geometry optimisations employed Slater type orbital (STO) triple-ζ-plus polarisation all-electron basis sets (from the ZORA/TZP database of the ADF suite). Scalar relativistic approaches were used within the ZORA Hamiltonian for the inclusion of relativistic effects and the local density approximation (LDA) with the correlation potential due to Vosko et al⁶ was used in all of the calculations. Gradient corrections were performed using the functionals of Becke⁷ and Perdew.⁸ MOLEKEL⁹ was used to prepare the three-dimensional plot of the electron density. Natural Bond Order (NBO) analyses were carried out with NBO 5.0.¹⁰

Figure S7. The top four α-spin Kohn Sham molecular orbitals of 3: (a) HOMO (471a, -2.944 eV), (b) HOMO-1 (470a, -2.951), (c) HOMO-2 (469a, -2.977 eV), (d) HOMO-3 (468a, -2.989).

Table S:	5. Final coor	dinates and	single point	19.0
energy a	of the E ison	ner of 3 aft	ter geometry	20.0
optimisa	tion.			21.0
1.C	4.208630	0.936163	-6.513490	22.0
2.C	1.081636	-1.122586	-5.819694	23.0
3.C	0.651898	1.365979	-5.701500	24.0
4.C	4.369861	0.202329	-5.163745	25.0
5.C	1.153532	0.131957	-4.924978	26.0
6.C	-3.386808	-0.599204	-4.847466	27.0
7.C	5.696831	0.629624	-4.498591	28.0
8.C	-3.692136	1.868348	-4.389044	29.0
9.C	3.087397	3.185818	-3.923419	30.0
10.C	-6.869168	-0.155308	-3.754097	31.0
11.C	-3.387302	0.493036	-3.759436	32.0
12.C	3.374102	-2.356061	-3.463361	33.0
13.C	1.910347	-6.296079	-3.228783	34.0
14.C	4.762785	-2.688120	-2.927595	35.0
15.C	2.814943	1.969700	-3.009945	36.0
16.C	-0.233070	-3.426956	-2.942480	37.0
17.C	-4.750590	-2.740744	-2.380918	38.0
18.C	-6.315055	0.360782	-2.407470	39.0

9.C	-1.658240	-5.327518	-2.076037
0.C	-1.065050	3.833289	-2.178073
1.C	0.639805	5.670354	-1.835186
2.C	1.675619	-6.552902	-1.726113
3.C	0.939819	-7.899539	-1.544063
4.C	3.745405	2.051823	-1.787698
5.C	-0.593854	-4.272615	-1.710094
6.C	-3.986916	-1.665981	-1.576095
7.C	-7.170414	-0.194989	-1.247544
8.C	-2.987714	6.620980	-0.990370
9.C	4.450044	-4.307499	-1.089229
0.C	-0.140613	4.522303	-1.161381
1.C	-4.471169	2.658544	-1.067209
2.C	5.787909	-2.269441	-0.708071
3.C	5.396192	-0.856905	-0.291794
4.C	-1.283128	8.007378	0.245211
5.C	-4.171912	-1.938646	-0.073987
6.C	-5.442781	2.899879	0.084665
7.C	3.404358	-4.370065	0.017393
8.C	-2.062241	6.673138	0.242869
9.C	0.188161	-5.773856	0.887005

40.C	5.729354	2.126457	1.511312	91.H	0.959049	-6.260301	-3.781556
41.C	0.476216	5.576844	1.681021	92.H	-3.532637	2.692734	-3.682482
42.C	-4.271645	4.274606	1.774531	93.H	2.511954	-7.105653	-3.676986
43.C	-0.669188	-4.775892	1.684648	94.H	5.855350	0.159756	-3.517120
44.C	1.245745	-6.411291	1.811805	95.H	0.238047	-4.027480	-3.732985
45.C	1.556147	4.488590	1.811177	96.H	5.197898	-3.579463	-3.418804
46.C	4.505731	1.542946	2.247551	97.H	2.942895	4.122631	-3.361355
47.C	-2.830777	4.229587	2.268676	98.H	2.434341	-5.348991	-3.423919
48.C	-5.345971	2.155252	2.446222	99.H	-2.355641	0.548577	-3.360297
49.C	-4.861325	0.710941	2.418601	100.H	-4.633179	-2.633526	-3.466602
50.C	6.089324	-1.184358	2.888790	101.H	2.700186	-3.197327	-3.225757
51.C	0.015848	6.029630	3.081410	102.H	-1.134217	-2.966068	-3.378086
52.C	5.984119	-2.704420	3.138038	103.H	5.428284	-1.839221	-3.125154
53.C	2.296516	-2.281126	2.963646	104.H	-1.275096	-6.054279	-2.808503
54.C	4.323399	2.240303	3.610099	105.H	-0.496018	3.512499	-3.065866
55.C	2.921107	-0.920923	3.319662	106.H	1.185881	5.300826	-2.717790
56.C	-4.391232	-2.522634	3.700102	107.H	-2.540830	-4.848890	-2.529158
57.C	-2.944669	-2.005756	3.841629	108.H	1.778913	2.062961	-2.631892
58.C	6.742356	-0.494153	4.106061	109.H	0.457914	-2.599850	-2.711817
59.C	-0.572008	1.795081	4.008438	110.H	-5.827933	-2.715016	-2.160922
60.C	-0.967706	0.354206	4.374355	111.H	-1.868961	4.495212	-2.529146
61.C	-2.160974	-2.889939	4.831926	112.H	-6.469153	1.456130	-2.418171
62.C	3.228304	-0.901342	4.833855	113.H	-0.029546	6.471197	-2.184395
63.C	-3.942715	0.523739	5.558489	114.H	1.477060	-8.705713	-2.073321
64.C	-3.684270	1.992542	5.957122	115.H	-0.081015	-7.869521	-1.955414
65.C	-0.496122	0.069418	5.817764	116.H	-4.394602	-3.746742	-2.106829
66.C	-3.951748	-0.368367	6.819072	117.H	4.803573	1.975913	-2.076068
67.H	5.103883	0.782109	-7.141577	118.H	-2.412374	6.697595	-1.925547
68.H	3.343050	0.574047	-7.085778	119.H	-4.999908	2.790046	-2.023759
69.H	0.081039	-1.219881	-6.273351	120.H	4.062344	-4.844002	-1.963962
70.H	1.806293	-1.077870	-6.648261	121.H	-1.538980	2.923017	-1.774630
71.H	4.090501	2.022229	-6.382507	122.H	-2.910317	-1.789597	-1.799521
72.H	1.327857	1.647151	-6.523435	123.H	-8.218299	0.139197	-1.338018
73.H	-0.333410	1.157063	-6.151958	124.H	6.718323	-2.280404	-1.307063
74.H	-2.725405	-0.307651	-5.680839	125.H	-2.004412	-5.892512	-1.198478
75.H	4.471936	-0.869672	-5.414268	126.H	2.672956	-6.684870	-1.264508
76.H	-3.033504	2.052560	-5.254302	127.H	-7.183787	-1.295063	-1.248960
77.H	1.273419	-2.044958	-5.256608	128.H	1.377845	6.126989	-1.159651
78.H	6.558043	0.364277	-5.135806	129.H	3.619944	3.019583	-1.274409
79.H	-4.388064	-0.763422	-5.274052	130.H	-3.701710	7.462454	-0.982156
80.H	0.529744	2.244100	-5.052367	131.H	-3.574293	5.692164	-1.046713
81.H	2.431918	3.224192	-4.802365	132.H	5.225210	-0.256819	-1.201201
82.H	-6.373289	0.311758	-4.616686	133.H	-3.711859	3.462127	-1.050521
83.H	-4.728510	1.933930	-4.755731	134.H	3.539108	1.275800	-1.036793
84.H	3.408333	-2.316429	-4.563582	135.H	-1.052406	-3.586057	-0.975029
85.H	4.126223	3.191279	-4.285513	136.H	5.402764	-4.787187	-0.795369
86.H	5.736226	1.718053	-4.343523	137.H	-0.992978	-1.104618	-1.003557
87.H	0.443250	-0.030042	-4.090563	138.H	0.598669	3.761063	-0.849866
88.H	-3.022226	-1.563884	-4.468250	139.H	-0.583630	8.076866	-0.601926
89.H	-7.947530	0.068972	-3.835602	140.H	0.861090	-8.197717	-0.489064
90.H	-6.758759	-1.245402	-3.856294	141.H	-6.807360	0.119981	-0.258417

142.H	-6.008963	3.842556	-0.039576	193.H	6.942720	0.571331	3.923788
143.H	-1.979791	8.859314	0.159404	194.H	5.385015	-2.926258	4.034308
144.H	5.967278	-2.863274	0.197663	195.H	3.376745	1.963753	4.095109
145.H	-6.166868	2.076869	0.112850	196.H	5.139791	2.007498	4.310653
146.H	6.257066	-0.387968	0.211292	197.H	-0.406694	-0.325110	3.703403
147.H	-5.225669	-1.846442	0.225693	198.H	7.708614	-0.972352	4.345035
148.H	-3.854180	-2.963945	0.175596	199.H	0.507733	1.952585	4.163963
149.H	3.306665	-5.409718	0.367512	200.H	-2.258292	-3.952406	4.551701
150.H	-0.481619	-6.589793	0.552322	201.H	-4.973414	-2.379775	4.624242
151.H	5.793219	1.780158	0.471703	202.H	-1.099627	2.532984	4.629325
152.H	-3.579050	-1.264637	0.561100	203.H	-1.087091	-2.656597	4.837810
153.H	-0.700786	8.153146	1.166100	204.H	6.116029	-0.565331	5.008089
154.H	3.777146	-3.806448	0.891177	205.H	3.946617	-1.688953	5.105882
155.H	-2.717639	6.700959	1.133897	206.H	3.643463	0.055398	5.176143
156.H	-4.318963	4.936833	0.901184	207.H	-3.664854	2.669724	5.090731
157.H	2.009653	4.231891	0.843568	208.H	-4.970454	0.482082	5.150262
158.H	0.945617	6.452865	1.193152	209.H	2.310574	-1.091170	5.413006
159.H	1.874615	-7.152550	1.296141	210.H	-2.531347	-2.793502	5.864118
160.H	-1.523540	-4.400515	1.103803	211.H	0.589930	0.232734	5.906288
161.H	5.673972	3.227734	1.482605	212.H	-0.703710	-0.958282	6.142039
162.H	1.148910	1.163682	1.398727	213.H	-2.721364	2.104944	6.478299
163.H	-5.160933	0.255821	1.459394	214.H	-4.465700	2.357157	6.645749
164.H	3.616496	1.793004	1.638162	215.H	-0.980748	0.746549	6.536924
165.H	6.675632	1.866236	2.011262	216.H	-4.248377	-1.402924	6.596323
166.H	-0.080360	-3.901969	1.999178	217.H	-2.966690	-0.403081	7.308613
167.H	6.797207	-1.049509	2.048606	218.H	-4.667900	0.024907	7.561815
168.H	1.911587	-5.647915	2.242208	219.As	0.658081	1.039938	-0.054137
169.H	1.908817	-2.345466	1.932328	220.As	-0.543569	-1.044748	0.471823
170.H	-6.447002	2.226618	2.358796	221.N	2.880842	-1.098356	-2.844052
171.H	1.140552	3.562559	2.234653	222.N	4.666957	-2.886830	-1.460190
172.H	5.518805	-3.240224	2.297485	223.N	-3.831792	1.321180	-0.938059
173.H	-4.964729	4.675591	2.538456	224.N	2.121261	-3.802542	-0.474523
174.H	2.369332	4.819932	2.478666	225.N	4.174159	-0.891402	0.554411
175.H	0.761328	-6.927082	2.658463	226.N	-1.940923	3.763392	1.171850
176.H	-1.073148	-5.248149	2.596112	227.N	-4.677787	2.909186	1.357384
177.H	-2.551887	5.220971	2.659943	228.N	-3.385894	0.671091	2.581328
178.H	-0.747798	6.820980	3.044169	229.Si	2.831539	0.296374	-3.969481
179.H	-2.460563	-2.125155	2.853094	230.Si	-4.397118	0.129580	-2.145627
180.H	-4.932344	-2.027152	2.883511	231.Si	0.885055	-5.050735	-0.763766
181.H	-2.773748	3.549644	3.135801	232.Si	-0.957078	5.083817	0.485292
182.H	6.981745	-3.146937	3.301552	233.Si	4.434293	-0.390305	2.246885
183.H	3.010396	-3.106804	3.093447	234.Si	-2.822531	-0.092122	4.091961
184.H	-5.399503	0.143615	3.194832	235.U	2.372576	-1.545189	-0.669200
185.H	-0.760643	2.071063	2.956998	236.U	-2.345415	1.542558	0.756989
186.H	4.311761	3.335569	3.479476	Energy:	-29169.12 kc	al/mol	
187.H	2.153310	-0.145890	3.129076			-	
188.H	-5.056602	2.601949	3.406026	Table St	6. Final coord	linates and	single point
189.H	-4.395454	-3.604062	3.482305	energy (of the Z isom	er of 3 aft	er geometrv
190.H	0.866081	6.423453	3.663835	optimisa	tion.	jjv	
191.H	-0.402345	5.187889	3.654199	1.C	3.485252	3.857613	-6.189382
192.H	1.432575	-2.492999	3.614493	2.C	2.129142	0.424956	-6.373099

3.C	1.358196	1.415805	-5.476752	54.C	-0.423968	-3.872323	3.276995
4.C	3.851715	3.159901	-4.860593	55.C	3.050419	0.409918	3.389775
5.C	0.027603	0.787526	-5.028142	56.C	-2.690733	-4.787075	3.892116
6.C	-2.894069	-1.834409	-4.954164	57.C	5.915438	2.952248	4.207818
7.C	-4.565101	-0.061421	-4.287681	58.C	2.349986	3.791023	3.984733
8.C	4.540582	4.170037	-3.921280	59.C	-1.651491	-3.685957	4.185386
9.C	-5.894531	-3.647086	-3.748500	60.C	-1.181114	0.802062	4.268403
10.C	0.728716	4.487466	-3.854452	61.C	-0.897129	-0.692618	4.490550
11.C	-3.473006	-1.023391	-3.777734	62.C	3.327013	0.520879	4.906550
12.C	4.892061	-4.135678	-3.353166	63.C	-3.680562	-1.825126	5.618542
13.C	4.208995	0.160538	-3.600279	64.C	-4.056767	-0.398372	6.066511
14.C	5.517844	0.585838	-2.944861	65.C	-0.268570	-0.911841	5.882664
15.C	1.561542	-2.524493	-3.168219	66.C	-3.331985	-2.679484	6.857640
16.C	1.228905	3.293965	-3.014263	67.H	1.525526	0.146293	-7.253579
17.C	-2.573259	-4.519154	-2.659564	68.H	3.098039	3.154669	-6.940769
18 C	1 346104	-4 981056	-2 729845	69 H	4 373803	4 346711	-6 625283
19.C	-5.654468	-2.956802	-2.388380	70.H	3.079123	0.836538	-6.746406
20.C	4.633110	-6.114083	-1.794493	71.H	2.724111	4.640522	-6.047132
21 C	4 682908	-4 574164	-1 887402	72 H	1 112509	2 295260	-6 102430
22.C	-3.152721	2.620929	-2.017663	73.H	2.356548	-0.506800	-5.833024
23.C	1.632188	-3.608929	-2.079664	74.H	-0.532178	0.398786	-5.895830
24 C	-2 513982	-3 232960	-1 805233	75 H	-2 580322	-1 155930	-5 765479
25.C	-2.603394	5.052764	-1.739407	76.H	4.607523	2.394068	-5.116554
26.C	1.764554	3.787562	-1.659826	77.H	-3.629257	-2.532576	-5.383387
27.C	-5.935403	-3.943062	-1.234377	78.H	-4.180498	0.552729	-5.119735
28.C	6.031384	-1.097856	-1.214177	79.H	-5.444386	-0.604557	-4.668989
29.C	-2.522841	3.659889	-1.074162	80.H	0.252558	4.168071	-4.792856
30.C	-5.390915	-0.066244	-0.870163	81.H	-5.818957	-2.943812	-4.590272
31.C	6.011390	1.312183	-0.629285	82.H	5.454694	4.579808	-4.384177
32.C	-5.873816	4.258258	-0.241836	83.H	4.279920	0.321007	-4.687495
33.C	-2.353650	-3.630401	-0.328201	84.H	-2.008804	-2.416180	-4.661715
34.C	4.865723	2.212132	-0.175375	85.H	-0.624250	1.508947	-4.514746
35.C	5.150020	-1.808116	-0.194408	86.H	0.190767	-0.053056	-4.337792
36.C	-6.225608	-0.410701	0.357180	87.H	1.549762	5.172632	-4.115966
37.C	-4.739579	6.166320	0.962455	88.H	4.081381	-4.498964	-4.002650
38.C	-4.864046	4.629797	0.866088	89.H	5.834794	-4.541850	-3.757328
39.C	1.927092	-5.661409	0.699863	90.H	-5.177833	-4.462005	-3.930424
40.C	2,777462	-4.375483	0.712314	91.H	-6.904857	-4.090962	-3.781134
41.C	-1.129582	5.707045	1.405023	92.H	3.882006	5.024126	-3.700274
42.C	3.972265	-4.543369	1.672769	93.H	-2.641611	-4.316293	-3.736170
43.C	3,430305	4.652367	1.864757	94.H	2.367269	-2.630505	-3.908021
44.C	-1.808591	4.406557	1.880081	95.H	-4.910415	0.631224	-3.509476
45.C	-5.679812	1.271899	2.094864	96.H	4.928404	-3.041716	-3.463515
46.C	-4.467918	-2.163570	2.460951	97.H	6.399094	0.119308	-3.423842
47.C	-4.340905	1.881375	2.500096	98.H	0.606657	-2.587143	-3.715874
48.C	-5.589869	-1.144997	2.626125	99.H	4.088052	-0.930069	-3.476238
49.C	2.817232	3.420403	2.562903	100 H	2.094095	-5.221333	-3.499667
50.C	5.729219	2.085165	2.943215	101.H	-0.013184	5.075830	-3.291453
51.C	6.522089	0.768352	3.093865	102.H	-2.648603	-0.397484	-3.384246
52.C	3.362514	-1.024505	2.930689	103.H	4.829344	3.726361	-2.956987
53.C	-2.242611	4.539955	3.354635	104.H	5.619153	1.672894	-3.043379

105.H	0.364496	-4.970272	-3.229485	156.H	3.593760	4.480271	0.792818
106.H	-2.660380	2.645645	-3.003304	157.H	4.683555	-5.303939	1.313353
107.H	5.530002	-6.557205	-2.261965	158.H	2.137952	-3.573316	1.129056
108.H	0.352159	2.656752	-2.796728	159.H	-6.112457	1.878623	1.291366
109.H	-1.672559	-5.130786	-2.492550	160.H	0.516665	0.376363	1.660006
110.H	2.133472	5.023692	-2.735808	161.H	-4.127172	6.482935	1.818691
111.H	3.758199	-6.531428	-2.315623	162.H	-5.309215	4.301875	1.823594
112.H	-3.437587	-5.141320	-2.384783	163.H	-4.547496	-2.619460	1.458119
113.H	1.609088	-1.491632	-2.780986	164.H	1.664856	-5.953487	1.730848
114.H	-6.415934	-2.157322	-2.314826	165.H	4.527347	-3.607859	1.818892
115.H	-4.220486	2.821312	-2.186890	166.H	-0.341581	6.007776	2.116444
116.H	6.030335	-1.681525	-2.142773	167.H	-1.037279	3.612323	1.847102
117.H	1.340769	-5.806198	-2.005881	168.H	4.395217	4.942409	2.310229
118.H	-1.599153	-2.683357	-2.101624	169.H	6.203547	2.647946	2.118311
119.H	-3.645917	5.370194	-1.889577	170.H	2.760253	5.524025	1.955299
120.H	-6.000002	-0.242609	-1.770732	171.H	3.111755	-1.206198	1.875089
121.H	2.648961	4.429924	-1.772707	172.H	1.909760	3.149333	1.988709
122.H	5.588341	-4.264684	-1.331691	173.H	6.410213	0.100814	2.226948
123.H	-3.057556	1.587902	-1.651439	174.H	-6.592117	-1.610521	2.577004
124.H	-6.978119	-4.302516	-1.265165	175.H	-0.673472	-3.692776	2.221152
125.H	-5.288099	-4.831045	-1.295676	176.H	3.624783	-4.872019	2.667076
126.H	-5.568144	4.664920	-1.217681	177.H	-6.400686	1.257097	2.933414
127.H	6.801931	1.878869	-1.155315	178.H	-3.035157	-4.741574	2.847497
128.H	4.599010	-6.466769	-0.753670	179.H	-4.517823	2.849856	2.992687
129.H	0.814099	-3.409557	-1.359988	180.H	7.599463	0.970305	3.220305
130.H	-2.099878	5.836683	-1.159169	181.H	-4.624681	-2.993175	3.168103
131.H	0.999519	4.377819	-1.130114	182.H	4.424009	-1.273594	3.072616
132.H	7.078472	-1.012940	-0.869105	183.H	-0.034535	-4.901424	3.354471
133.H	4.388659	2.642617	-1.074270	184.H	-3.075657	5.250190	3.477352
134.H	2.044065	2.966078	-0.979769	185.H	-3.892452	1.240525	3.280495
135.H	-5.184868	1.018139	-0.863343	186.H	1.965212	0.567706	3.244420
136.H	-1.450387	3.404796	-0.981584	187.H	-5.487775	-0.672089	3.609883
137.H	-5.988052	3.171798	-0.369415	188.H	-1.538101	1.028298	3.250147
138.H	-6.871877	4.672841	-0.019422	189.H	0.397954	-3.190490	3.538043
139.H	-5.770072	-3.491214	-0.245103	190.H	2.779401	-1.753345	3.516591
140.H	-1.495924	-4.311472	-0.201065	191.H	-2.555875	3.578204	3.781170
141.H	-4.295060	6.603761	0.055782	192.H	-1.409028	4.913458	3.973069
142.H	5.611687	-2.776210	0.055452	193.H	5.472187	3.952019	4.097946
143.H	-3.241326	-4.151552	0.056768	194.H	6.196204	0.201273	3.978736
144.H	6.463588	0.847372	0.254263	195.H	-2.250209	-5.787666	4.041118
145.H	2.461064	-6.512233	0.249171	196.H	1.716646	4.693994	3.954671
146.H	-7.192993	0.125262	0.364106	197.H	-0.141157	-0.988411	3.739997
147.H	-0.250056	1.685594	-0.507111	198.H	6.989734	3.091865	4.420974
148.H	-6.438423	-1.486832	0.343659	199.H	1.751613	2.992564	4.446285
149.H	0.982713	-5.529624	0.153519	200.H	-3.577691	-4.721879	4.540549
150.H	5.277298	3.075404	0.370066	201.H	-0.265600	1.398571	4.412140
151.H	-2.155520	-2.781216	0.348977	202.H	3.192101	4.010856	4.659003
152.H	-0.649737	5.589855	0.422739	203.Н	5.468502	2.486594	5.099115
153.H	-5.736787	6.623661	1.086145	204.H	-1.933668	1.189951	4.969227
154.H	5.158851	-1.227953	0.744989	205.H	4.390007	0.357147	5.138017
155.H	-1.836900	6.547788	1.334068	206.H	-1.312444	-3.829293	5.229426

207.H	-4.592825	-2.275344	5.184484	223.N	-4.126549	-0.846958	-0.865303
208.H	3.044181	1.495493	5.325193	224.N	3.767112	-1.945658	-0.720543
209.H	-4.313111	0.259365	5.222954	225.N	3.881092	1.432685	0.622316
210.H	2.760431	-0.251397	5.451679	226.N	-3.441567	1.982571	1.319186
211.H	0.033370	-1.956619	6.046137	227.N	-5.442781	-0.101186	1.579988
212.H	0.628974	-0.285441	6.006517	228.N	-3.153815	-1.491089	2.632415
213.H	-3.175844	-3.738513	6.607843	229.Si	2.400189	2.156288	-4.028728
214.H	-4.923504	-0.414490	6.749278	230.Si	-3.961843	-2.021904	-2.195045
215.H	-3.228373	0.080780	6.610680	231.Si	3.234700	-3.621453	-1.009195
216.H	-0.964887	-0.637729	6.689985	232.Si	-3.182791	3.653644	0.738826
217.H	-2.420575	-2.321599	7.361338	233.Si	3.887836	1.816602	2.368375
218.H	-4.149107	-2.634508	7.598674	234.Si	-2.367261	-1.891516	4.177578
219.As	-0.371329	0.312000	-1.192340	235.U	2.778069	0.085060	-0.849926
220.As	0.296852	-0.917245	0.853968	236.U	-2.785701	-0.143084	0.816002
221.N	3.076044	0.891731	-2.974848	Energy: -	-29145.08 kca	ıl/mol	
222.N	5.460818	0.243265	-1.500962				

References

- B. M. Gardner, G. Balázs, M. Scheer, F. Tuna, E. J. L. McInnes, J. McMaster, W. Lewis, A. J. Blake, S. T. Liddle, *Angew. Chem. Int. Ed.* 2014, 53, 4484.
- B. M. Gardner, G. Balázs, M. Scheer, F. Tuna, E. J. L. McInnes, J. McMaster, W. Lewis, A. J. Blake, S. T. Liddle, *Nat. Chem.* 2015, 7, 582.
- 3. W. C. Johnson, A. Pechukas, J. Am. Chem. Soc. 1937, 59, 2068.
- 4. C. Fonseca Guerra, J. G. Snijders, G. te Velde E. J. Baerends, *Theor. Chem. Acc.* **1998**, *99*, 391.
- G. te Velde, F. M. Bickelhaupt, S. J. A. van Gisbergen, C. Fonseca Guerra, E. J. Baerends, J. G. Snijders T. Ziegler, J. Comput. Chem. 2001, 22, 931.
- 6. S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200.
- 7. A. D. Becke, *Phys. Rev. A.* **1988**, *38*, 3098.
- 8. J. P. Perdew, *Phys. Rev. B.* **1986**, *33*, 8822.
- 9. S. Portmann, H. P. Luthi, *Chimia* **2000**, *54*, 766.
- NBO 5.0: E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann,
 C. M. Morales, F. Weinhold, (Theoretical Chemistry Institute, University of Wisconsin,
 Madison, WI, 2001); <u>http://www.chem.wisc.edu/~nbo5</u>.