

## Supporting Information

# Spectroscopic and Crystal Field Consequences of Fluoride Binding by [Yb·DTMA]<sup>3+</sup> in Aqueous Solution

Octavia A. Blackburn, Nicholas F. Chilton, Katharina Keller, Claudia E. Tait, William K. Myers, Eric J. L. McInnes, Alan M. Kenwright, Paul D. Beer, Christiane R. Timmel, and Stephen Faulkner\*

ange\_201503421\_sm\_miscellaneous\_information.pdf

## **Supplementary Information:**

### Contents:

| Materials and Methods                  | 1                                                                                                                                               |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| <sup>1</sup> H and <sup>19</sup> F NMR | 2                                                                                                                                               |
| Equilibrium constant                   | 4                                                                                                                                               |
| EPR Spectroscopy                       | 5                                                                                                                                               |
| Computational details                  | 7                                                                                                                                               |
| Computational results                  | 8                                                                                                                                               |
| References                             | 17                                                                                                                                              |
|                                        | Materials and Methods <sup>1</sup> H and <sup>19</sup> F NMR<br>Equilibrium constant<br>EPR Spectroscopy<br>Computational details<br>References |

### **1** Materials and Methods

The ligand DTMA (1,4,7,10-tetrakis[(*N*-methylcarbamoyl)methyl]-1,4,7,10-tetraazacyclododecane) and its lanthanide complex YbDTMA(OTf)<sub>3</sub> was synthesised as previously described.<sup>1</sup> The complex was characterised by NMR, mass spectrometry and CHN analysis.

NMR measurements were made using either a Bruker AVIII-500 ( ${}^{1}\text{H} = 500 \text{ MHz}$ ,  ${}^{19}\text{F} = 470 \text{ MHz}$ ) or a Bruker AVIII-400 ( ${}^{1}\text{H} = 400 \text{ MHz}$ ,  ${}^{19}\text{F} = 376 \text{ MHz}$ ). Wide spectral width spectra were obtained using pulses sufficiently short to ensure reasonably uniform excitation over the observed bandwidth, and with acquisition and recycle times matched to the relaxation characteristics of the lanthanide complexes (repetition time typically 100 ms). EXSY spectra were recorded at 500 MHz using a gradient selected NOESY sequence with a mixing time of 1 ms.

To obtain an equilibrium constant by <sup>1</sup>H NMR, 0.005M YbDTMA was titrated with 0.8M NaF in D<sub>2</sub>O at 298 K. A non-dilution method was used where 0.5 mL of the YbDTMA stock solution was put in an NMR tube and a solution of NaF made with the same stock solution was titrated in using a glass microliter syringe. The water-soluble standard DSS (4,4-dimethyl-4-silapentane-1-sulfonic acid) was included to provide signals to integrate against. The delay time (d1) used was at least 5 times longer than the T1 of the slowest relaxing peak in order to make integration quantitative. Spectra were individually phased and baseline corrected before analysis.

The increasing signals of the fluoride-bound species and the decreasing signals of the original species were both monitored and averaged respectively to give two independent data sets. These were then fitted simultaneously in Dynafit<sup>2</sup> to give the association constant K using the equilibrium:

$$(LnDTMA - H_2O)^{3+} + F^{-} \rightleftharpoons (LnDTMA - F)^{2+} + H_2O$$
$$K = \frac{[(LnDTMA - F)^{2+}]}{[(LnDTMA - H_2O)^{3+}] + [F^{-}]}$$

The following script was used in Dynafit:

```
[task]
data = equil
task = fit
[mechanism]
Yb + F <==> complex1 : K1 assoc
[constants]
K1 = 10 ??
[concentrations]
Yb = 0.005
[responses]
[equil]
variable F
file ./NMR/YbDTMA_F_NMR_1H_new.txt |response complex1 = 60?
file ./NMR/YbDTMA F NMR 1H original.txt |response Yb = 106?
[output]
directory ./output/NMR/YbDTMA F 1H
[end]
```

## 2 <sup>1</sup>H and <sup>19</sup>F NMR



Figure S1: Bleaney plots for YbDTMA proton resonances in the absence (black) and presence (red) of an excess of sodium fluoride in  $D_2O$ , using atomic coordinates from the crystal structure of  $DyDTMA^1$ 



Figure S2. <sup>1</sup>H EXSY spectrum of YbDTMA with added fluoride at 298 K with a mixing time of 1 ms at 500 MHz.



Figure S3:  ${}^{19}F$  NMR spectrum (470 MHz, 298 K,  $D_2O$ ) of the trifluoromethanesulfonate salt of YbDTMA in the presence of excess fluoride.

## 3 Equilibrium constant



*Figure S4. Binding isotherms and fits for titration of YbDTMA with NaF monitoring* <sup>1</sup>*H NMR integrals relative to DSS.* 

#### 4 EPR Spectroscopy<sup>3</sup>

Samples for the EPR measurements were thoroughly degassed with at least three freeze-pump-thaw cycles and flame-sealed under vacuum.

X-band CW-EPR data was collected on a Bruker BioSpin Premium EMX<sup>micro</sup> spectrometer and a Bruker BioSpin ElexSys E680 spectrometer with a Bruker SHQE-W TE<sub>011</sub> cylindrical mode cavity and Oxford Instruments ESR-900 cryostat. Data were acquired with a modulation amplitude of 8 G, time constant of 81.92 ms, sweep time of 2 min. The microwave power was adjusted so as to prevent saturation for each acquisition. Additional measurements at S- and Q-band, at the EPSRC National EPR Facility at the University of Manchester on Bruker Elexsys E580 and EMX spectrometers, were performed to confirm the effective g-values.

EPR simulations were performed in MATLAB<sup>TM</sup> with the EasySpin toolbox.<sup>4</sup> The sample temperature was included as a parameter in the simulations. The g-values were fitted to the experimental spectrum and the Yb hyperfine couplings used in the simulations were calculated from the g-value for the corresponding orientation according to the relationship  $A_i(^{171}$ Yb) = [796 ± 2.5 MHz] g<sub>i</sub>-[43 ± 3 MHz]. This equation was determined based on literature data on Yb<sup>3+</sup> in different compounds<sup>5</sup> and is valid if the ground state is derived exclusively from the <sup>2</sup>F<sub>7/2</sub> free ion state. Additional measurements at S- and Q-band, at the EPSRC National EPR Facility at the University of Manchester on Bruker Elexsys E580 and EMX spectrometers, were performed to confirm the effective g-values.



Figure S5. X-band EPR spectrum of a magnetically dilute powder of  $[Yb.DTMA.OH_2]^{3+}$  (1:99  $[Yb.DTMA.OH_2]^{3+}$ :  $[Lu.DTMA.OH_2]^{3+}$ ) recorded at 5 K ( $v_{mw}$ =9.386 GHz, acquisition conditions described in the text). The asterisk indicates a region of background signals.



Figure S6. X-band EPR simulations of the  $g_{||}$  region of the spectrum of  $[Yb.DTMA.OH_2]^{3+}$  recorded in frozen solution at 5 K ( $v_{mw}=9.386$  GHz). The parameters for the simulation shown in dark red were  $g_{||}=6.45$ ,  $A(^{173}Yb)=1401$  MHz, and  $A(^{171}Yb)=5092$  MHz, with linewidths defined by g-strain (0.4 FWHM) and A-strain (75 MHz FWHM). The contributions of different Yb isotopes are shown below (not to scale). The simulation in red was performed by considering a distribution of g-values based on the slope on the high-field side of the  $g_{||}=6.45$  peak. The best fit was obtained by summing spectra with g-values in the range from 6.6-5.6 with a scaling factor determined by the amplitude Y at the field position X corresponding to that g-value calculated according to Y(EPR a.u.)=-0.0530 (EPR a.u.) \*X(mT)+6.4814 (EPR a.u.). The origin of the structure of the g = 6.3 feature observed in the neat powder is not clear but the splitting is field independent, i.e. it behaves as a coupling rather than as due to different effective g-values. We speculate that it is inter-molecular in nature: the splitting is not observed in the magnetically dilute material.



Figure S7. X-band EPR simulations of the spectrum of  $[Yb.DTMA.F]^{2+}$  recorded in frozen solution at 9 K ( $v_{mw}=9.384$  GHz). The parameters for the simulation shown in dark red were  $g_{\perp}=3.00$ ,  $g_{\parallel}=1.65$ ,  $[A_{\perp} A_{\parallel}](^{173}Yb)=[645\ 350]$  MHz, and  $[A_{\perp} A_{\parallel}](^{171}Yb)=[2345\ 1270]$  MHz, with linewidths defined by g-strain (1.2 and 0.7 FWHM) and A-strain (250 and 140 MHz FWHM). The simulation in red was performed by considering a distribution of  $g_{\perp}$ -values in analogy to the simulation in Figure S6. The best fit was obtained with g-values in the range from 3.2-2.5 and scaling by an amplitude Y at the corresponding field position X calculated according to Y(EPR a.u.)= -0.0182 (EPR a.u.) \*X(mT)+ 5.4545 (EPR a.u.).

#### 5 Computational details

Compound geometries were optimized with Density Functional Theory (DFT) using the B3LYP functional<sup>6</sup> with DFTD3 dispersion corrections,<sup>7</sup> the RIJCOSX approximation,<sup>8</sup> the ZORA relativistic treatment<sup>9</sup> and the SARC-def2-TZVP basis<sup>10</sup> as implemented in ORCA 3.0.2.<sup>11</sup> The Yb<sup>3+</sup> ions were replaced by the diamagnetic Lu<sup>3+</sup> ions to simplify the DFT convergence. The DTMA geometries were then symmetrized yielding four-fold symmetric structures. *Ab initio* calculations were performed using the CASSCF/RASSI/SINGLE\_ANISO approach,<sup>12</sup> using MOLCAS 7.8.<sup>13</sup> For all calculations the Yb atom was treated with the ANO-RCC-VTZP basis, the N, O and F donors with the ANO-RCC-VDZP basis, while all other atoms were treated with treated with the ANO-RCC-VDZ basis.<sup>14</sup> The two electron integrals were Cholesky decomposed with the default thresholds. The 4f<sup>13</sup> configuration of Yb<sup>III</sup> was modelled with a complete active space of 13 electrons in 7 orbitals where the 7 doublets were included in the orbital optimization and then mixed by spin-orbit coupling. Simulation of the EPR spectra for the crystal field multiplets was performed with PHI,<sup>15</sup> using the crystal field decomposition from SINGLE\_ANISO.

## 6 Computational results

|      | X            | у            | Z            |
|------|--------------|--------------|--------------|
| Lu1  | 0            | 0            | 0            |
| O1w  | 0            | 0            | 2.398027876  |
| H1w  | -0.136594063 | -0.7958725   | 2.924992693  |
| H1w  | -0.278583774 | 0.75939963   | 2.922470102  |
| 01   | 0.138070524  | -2.180069999 | 0.698816873  |
| N1   | -1.229000146 | -1.71562694  | -1.623443969 |
| N2   | -0.374634839 | -4.382966987 | 0.648523681  |
| C1   | 1.104718802  | -2.435256729 | -2.236652267 |
| C2   | -0.317941831 | -2.183522643 | -2.699423239 |
| C3   | -1.628640172 | -2.836475403 | -0.752641969 |
| C4   | -0.543450318 | -3.134549918 | 0.258305813  |
| C5   | 0.598460957  | -4.819740111 | 1.650691056  |
| Hln  | -0.954168074 | -5.093622615 | 0.224664698  |
| H2a  | 1.133598873  | -3.240158384 | -1.507443352 |
| H2e  | 1.695059181  | -2.780593442 | -3.091942902 |
| Hla  | -0.318170102 | -1.428919722 | -3.482399186 |
| Hle  | -0.710338899 | -3.097589191 | -3.159120824 |
| Hlam | -1.905304327 | -3.724211139 | -1.330570444 |
| H2am | -2.498899561 | -2.528579719 | -0.172300726 |
| H1m  | 1.423625147  | -5.339355466 | 1.164030634  |
| H1m  | 0.116512298  | -5.498092797 | 2.350874942  |
| H1m  | 0.972750164  | -3.951694749 | 2.183051341  |
| 01   | 2.180069999  | 0.138070524  | 0.698816873  |
| N1   | 1.71562694   | -1.229000146 | -1.623443969 |
| N2   | 4.382966987  | -0.374634839 | 0.648523681  |
| C1   | 2.435256729  | 1.104718802  | -2.236652267 |
| C2   | 2.183522643  | -0.317941831 | -2.699423239 |
| C3   | 2.836475403  | -1.628640172 | -0.752641969 |
| C4   | 3.134549918  | -0.543450318 | 0.258305813  |
| C5   | 4.819740111  | 0.598460957  | 1.650691056  |
| H1n  | 5.093622615  | -0.954168074 | 0.224664698  |
| H2a  | 3.240158384  | 1.133598873  | -1.507443352 |
| H2e  | 2.780593442  | 1.695059181  | -3.091942902 |
| Hla  | 1.428919722  | -0.318170102 | -3.482399186 |
| Hle  | 3.097589191  | -0.710338899 | -3.159120824 |
| Hlam | 3.724211139  | -1.905304327 | -1.330570444 |
| H2am | 2.528579719  | -2.498899561 | -0.172300726 |
| H1m  | 5.339355466  | 1.423625147  | 1.164030634  |
| H1m  | 5.498092797  | 0.116512298  | 2.350874942  |
| H1m  | 3.951694749  | 0.972750164  | 2.183051341  |
| 01   | -0.138070524 | 2.180069999  | 0.698816873  |
| N1   | 1.229000146  | 1.71562694   | -1.623443969 |
| N2   | 0.374634839  | 4.382966987  | 0.648523681  |
| C1   | -1.104718802 | 2.435256729  | -2.236652267 |
| C2   | 0.317941831  | 2.183522643  | -2.699423239 |
| C3   | 1.628640172  | 2.836475403  | -0.752641969 |
| C4   | 0.543450318  | 3.134549918  | 0.258305813  |
| C5   | -0.598460957 | 4.819740111  | 1.650691056  |
| Hln  | 0.954168074  | 5.093622615  | 0.224664698  |
| H2a  | -1.133598873 | 3.240158384  | -1.507443352 |
| H2e  | -1.695059181 | 2.780593442  | -3.091942902 |
| Hla  | 0.318170102  | 1.428919722  | -3.482399186 |

Table S1. DFT optimized and symmetrized coordinates of  $[Lu.DTMA.OH_2]^{3+}$ 

| Hle  | 0.710338899  | 3.097589191  | -3.159120824 |
|------|--------------|--------------|--------------|
| Hlam | 1.905304327  | 3.724211139  | -1.330570444 |
| H2am | 2.498899561  | 2.528579719  | -0.172300726 |
| H1m  | -1.423625147 | 5.339355466  | 1.164030634  |
| H1m  | -0.116512298 | 5.498092797  | 2.350874942  |
| H1m  | -0.972750164 | 3.951694749  | 2.183051341  |
| 01   | -2.180069999 | -0.138070524 | 0.698816873  |
| N1   | -1.71562694  | 1.229000146  | -1.623443969 |
| N2   | -4.382966987 | 0.374634839  | 0.648523681  |
| C1   | -2.435256729 | -1.104718802 | -2.236652267 |
| C2   | -2.183522643 | 0.317941831  | -2.699423239 |
| C3   | -2.836475403 | 1.628640172  | -0.752641969 |
| C4   | -3.134549918 | 0.543450318  | 0.258305813  |
| C5   | -4.819740111 | -0.598460957 | 1.650691056  |
| H1n  | -5.093622615 | 0.954168074  | 0.224664698  |
| H2a  | -3.240158384 | -1.133598873 | -1.507443352 |
| H2e  | -2.780593442 | -1.695059181 | -3.091942902 |
| Hla  | -1.428919722 | 0.318170102  | -3.482399186 |
| Hle  | -3.097589191 | 0.710338899  | -3.159120824 |
| H1am | -3.724211139 | 1.905304327  | -1.330570444 |
| H2am | -2.528579719 | 2.498899561  | -0.172300726 |
| H1m  | -5.339355466 | -1.423625147 | 1.164030634  |
| H1m  | -5.498092797 | -0.116512298 | 2.350874942  |
| H1m  | -3.951694749 | -0.972750164 | 2.183051341  |

*Table S2. DFT optimized and symmetrized coordinates of [Lu.DTMA.F]*<sup>2+</sup>

|      | X            | v            | Z            |
|------|--------------|--------------|--------------|
| Lu1  | 0            | 0            | 0            |
| F1   | 0            | 0            | 1.967922391  |
| 01   | -0.137896936 | 2.302591721  | 0.431487524  |
| N1   | 1.290410773  | 1.703994917  | -1.826889258 |
| N2   | 0.56794775   | 4.442064039  | 0.4272012    |
| C1   | -1.044569751 | 2.464012213  | -2.437279751 |
| C2   | 0.377958983  | 2.173581356  | -2.890167156 |
| C3   | 1.72435035   | 2.810868004  | -0.967247012 |
| C4   | 0.637105683  | 3.180036822  | 0.021387334  |
| C5   | -0.3871255   | 4.910741845  | 1.42925235   |
| H1n  | 1.209386765  | 5.109639833  | 0.028123386  |
| H2a  | -1.055977547 | 3.275290088  | -1.715616117 |
| H2e  | -1.609972651 | 2.823979517  | -3.306197355 |
| Hla  | 0.356555862  | 1.409616586  | -3.664076418 |
| H1e  | 0.781449598  | 3.076498573  | -3.367900021 |
| H1am | 2.051121947  | 3.682079764  | -1.548967407 |
| H2am | 2.567964657  | 2.468182812  | -0.367122258 |
| H1m  | -1.246325806 | 5.380061081  | 0.947187853  |
| H1m  | 0.099142297  | 5.637833109  | 2.076134121  |
| H1m  | -0.718202815 | 4.062453943  | 2.02154114   |
| 01   | -2.302591721 | -0.137896936 | 0.431487524  |
| N1   | -1.703994917 | 1.290410773  | -1.826889258 |
| N2   | -4.442064039 | 0.56794775   | 0.4272012    |
| C1   | -2.464012213 | -1.044569751 | -2.437279751 |
| C2   | -2.173581356 | 0.377958983  | -2.890167156 |
| C3   | -2.810868004 | 1.72435035   | -0.967247012 |
| C4   | -3.180036822 | 0.637105683  | 0.021387334  |
| C5   | -4.910741845 | -0.3871255   | 1.42925235   |
| H1n  | -5.109639833 | 1.209386765  | 0.028123386  |

| H2a  | -3.275290088 | -1.055977547 | -1.715616117 |
|------|--------------|--------------|--------------|
| H2e  | -2.823979517 | -1.609972651 | -3.306197355 |
| Hla  | -1.409616586 | 0.356555862  | -3.664076418 |
| H1e  | -3.076498573 | 0.781449598  | -3.367900021 |
| H1am | -3.682079764 | 2.051121947  | -1.548967407 |
| H2am | -2.468182812 | 2.567964657  | -0.367122258 |
| H1m  | -5.380061081 | -1.246325806 | 0.947187853  |
| H1m  | -5.637833109 | 0.099142297  | 2.076134121  |
| H1m  | -4.062453943 | -0.718202815 | 2.02154114   |
| 01   | 0.137896936  | -2.302591721 | 0.431487524  |
| N1   | -1.290410773 | -1.703994917 | -1.826889258 |
| N2   | -0.56794775  | -4.442064039 | 0.4272012    |
| C1   | 1.044569751  | -2.464012213 | -2.437279751 |
| C2   | -0.377958983 | -2.173581356 | -2.890167156 |
| C3   | -1.72435035  | -2.810868004 | -0.967247012 |
| C4   | -0.637105683 | -3 180036822 | 0.021387334  |
| C5   | 0.3871255    | -4 910741845 | 1 42925235   |
| H1n  | -1 209386765 | -5 109639833 | 0.028123386  |
| H2a  | 1.055977547  | -3 275290088 | -1 715616117 |
| H2e  | 1 609972651  | -2.823979517 | -3 306197355 |
| Hla  | -0.356555862 | -1 409616586 | -3 664076418 |
| Hle  | -0 781449598 | -3 076498573 | -3 367900021 |
| Hlam | -2 051121947 | -3 682079764 | -1 548967407 |
| H2am | -2 567964657 | -2 468182812 | -0.367122258 |
| H1m  | 1 246325806  | -5 380061081 | 0.947187853  |
| H1m  | -0.099142297 | -5 637833109 | 2 076134121  |
| H1m  | 0.718202815  | -4 062453943 | 2 02154114   |
| 01   | 2 302591721  | 0 137896936  | 0.431487524  |
| N1   | 1 703994917  | -1 290410773 | -1 826889258 |
| N2   | 4 442064039  | -0 56794775  | 0 4272012    |
| Cl   | 2 464012213  | 1 044569751  | -2 437279751 |
| C2   | 2,173581356  | -0.377958983 | -2.890167156 |
| C3   | 2.810868004  | -1.72435035  | -0.967247012 |
| C4   | 3.180036822  | -0.637105683 | 0.021387334  |
| C5   | 4.910741845  | 0.3871255    | 1.42925235   |
| H1n  | 5,109639833  | -1.209386765 | 0.028123386  |
| H2a  | 3.275290088  | 1.055977547  | -1.715616117 |
| H2e  | 2.823979517  | 1.609972651  | -3.306197355 |
| Hla  | 1.409616586  | -0.356555862 | -3.664076418 |
| Hle  | 3.076498573  | -0.781449598 | -3.367900021 |
| Hlam | 3.682079764  | -2.051121947 | -1.548967407 |
| H2am | 2.468182812  | -2.567964657 | -0.367122258 |
| H1m  | 5.380061081  | 1.246325806  | 0.947187853  |
| H1m  | 5 637833109  | -0.099142297 | 2 076134121  |
| H1m  | 4.062453943  | 0.718202815  | 2.02154114   |

Table S3. Kramers doublets of the  ${}^{2}F_{7/2}$  multiplet of Yb<sup>III</sup> in the optimized and symmetrized [Yb.DTMA.OH<sub>2</sub>]<sup>3+</sup>. Lack of pure axial symmetry is due to the fixed position of the water molecule which would of course be freely rotating in solution.

| Energy (cm <sup>-1</sup> ) | g <sub>x</sub> | $g_{\mathrm{y}}$ | gz   |
|----------------------------|----------------|------------------|------|
| 0                          | 0.03           | 0.61             | 7.39 |
| 160                        | 2.74           | 2.31             | 4.56 |
| 329                        | 5.20           | 2.65             | 1.22 |
| 361                        | 6.65           | 1.42             | 0.49 |

Table S4. Kramers doublets of the  ${}^{2}F_{7/2}$  multiplet of Yb<sup>III</sup> in the optimized and symmetrized [Yb.DTMA.F]<sup>2+</sup>, where the Yb-F bond length is 1.97 Å.

| Energy (cm <sup>-1</sup> ) | <b>g</b> <sub>x</sub> | $g_{y}$ | gz   |
|----------------------------|-----------------------|---------|------|
| 0                          | 4.47                  | 4.40    | 0.92 |
| 222                        | 1.59                  | 1.66    | 3.05 |
| 522                        | 1.76                  | 1.50    | 5.30 |
| 614                        | 0.25                  | 0.00    | 7.73 |

Table S5. Kramers doublets of the  ${}^{2}F_{7/2}$  multiplet of Yb<sup>III</sup> in the optimized and symmetrized [Yb.DTMA.F]<sup>2+</sup>, where the Yb-F bond length is 2.382 Å.

| Energy (cm <sup>-1</sup> ) | <b>g</b> <sub>x</sub> | $g_{y}$ | gz   |
|----------------------------|-----------------------|---------|------|
| 0                          | 3.02                  | 3.24    | 1.72 |
| 73                         | 3.34                  | 3.10    | 1.51 |
| 207                        | 2.51                  | 0.06    | 4.80 |
| 220                        | 4.30                  | 1.84    | 3.46 |

The first excited crystal field doublets lie at approximately 160 and 73 cm<sup>-1</sup>, for  $[Yb.DTMA.OH_2]^{3+}$  and  $[Yb.DTMA.F]^{2+}$  respectively (see Tables S3 and S5), and

therefore no transitions to these doublets would be expected at X-band (~0.3 cm<sup>-1</sup>). Furthermore, at the cryogenic temperatures at which the EPR spectra were collected, 5 and 9 K respectively, there is no population (< 0.0001 %) in the first excited doublets and therefore we do not observe any transitions from within these excited states. The Zeeman splitting (x and z orientations) and calculated EPR spectra based on the entire crystal field multiplet as determined through *ab initio* are shown below. These clearly show the same features as the experimental spectra, highlighting that the transitions arise from the ground Kramers doublet.



Figure S8. Zeeman splitting of the  ${}^{2}F_{7/2}$  multiplet of Yb<sup>III</sup> with the external field along the x-axis, in the optimized and symmetrized [Yb.DTMA.OH<sub>2</sub>]<sup>3+</sup>.



Figure S9. Zeeman splitting of the  ${}^{2}F_{7/2}$  multiplet of Yb<sup>III</sup> with the external field along the z-axis, in the optimized and symmetrized [Yb.DTMA.OH<sub>2</sub>]<sup>3+</sup>.



Figure S10. Zeeman splitting of the  ${}^{2}F_{7/2}$  multiplet of Yb<sup>III</sup> with the external field along the x-axis, in the optimized and symmetrized [Yb.DTMA.F]<sup>2+</sup>, where the Yb-F bond length is 2.382 Å.



Figure S11. Zeeman splitting of the  ${}^{2}F_{7/2}$  multiplet of Yb<sup>III</sup> with the external field along the z-axis, in the optimized and symmetrized [Yb.DTMA.F]<sup>2+</sup>, where the Yb-F bond length is 2.382 Å.



*Figure S12. Calculated X-band EPR spectra for the optimized and symmetrized* [*Yb.DTMA.OH*<sub>2</sub>]<sup>3+</sup>, *employing the entire*  ${}^{2}F_{7/2}$  *crystal field multiplet.* 



Figure S13. Calculated X-band EPR spectra for the optimized and symmetrized [Yb.DTMA.F]<sup>2+</sup>, where the Yb-F bond length is 2.382 Å, employing the entire  ${}^{2}F_{7/2}$  crystal field multiplet.

Table S6. DFT optimized coordinates of  $[Lu.DTMA.F]^{2+}$ .7H<sub>2</sub>O, in the presence of a water solvent continuum, using the COSMO approach.

|      | X            | у            | Z            |
|------|--------------|--------------|--------------|
| Lul  | 0            | 0            | 0            |
| F1   | 0            | 0            | 2.129540432  |
| 01   | 1.534744927  | 1.607294898  | 0.685295915  |
| N1   | 2.148438425  | 0.201768693  | -1.570376388 |
| N2   | 3.545397271  | 2.627602775  | 0.689560628  |
| C1   | 1.213409568  | 2.445751922  | -2.200439032 |
| C2   | 1.94333023   | 1.197059441  | -2.647235727 |
| C3   | 3.227857235  | 0.63227695   | -0.666944593 |
| C4   | 2.716369322  | 1.679104073  | 0.292785421  |
| C5   | 3.184355636  | 3.667779917  | 1.64322033   |
| Hln  | 4.47280993   | 2.644175388  | 0.292968633  |
| H2a  | 1.792992326  | 2.992955277  | -1.462936435 |
| H2e  | 1.109141932  | 3.115674967  | -3.060298442 |
| Hla  | 1.381055226  | 0.712882917  | -3.441961895 |
| Hle  | 2.907989815  | 1.484684952  | -3.079728364 |
| H1am | 4.108466101  | 0.981975593  | -1.214168854 |
| H2am | 3.525668364  | -0.217795171 | -0.053603393 |
| H1m  | 3.002753531  | 4.610811471  | 1.125198179  |
| H1m  | 3.995893789  | 3.800622546  | 2.355710102  |
| H1m  | 2.282667694  | 3.368551192  | 2.169838923  |
| 01   | -1.609592829 | 1.618076523  | 0.622414449  |
| N1   | -0.114317087 | 2.130888124  | -1.62440243  |
| N2   | -2.549440281 | 3.683899844  | 0.517184859  |

| C1   | -2.343345099 | 1.199280809  | -2.329199896 |
|------|--------------|--------------|--------------|
| C2   | -1.07556594  | 1.922737839  | -2.734520777 |
| C3   | -0.549357699 | 3.239662324  | -0.762647723 |
| C4   | -1.636202188 | 2.790053467  | 0.183026511  |
| C5   | -3.664839381 | 3.462851312  | 1.429556993  |
| H1n  | -2.495495373 | 4.583719595  | 0.063210439  |
| H2a  | -2.913615606 | 1.785248231  | -1.613874383 |
| H2e  | -2.980804614 | 1.096251587  | -3.214334825 |
| Hla  | -0.565927866 | 1.355490032  | -3.510073046 |
| Hle  | -1.343067046 | 2.886005143  | -3.182258806 |
| H1am | -0.862752679 | 4.111294384  | -1.344966027 |
| H2am | 0.28735564   | 3.539167901  | -0.131935976 |
| H1m  | -4.594325909 | 3.387020344  | 0.862904029  |
| H1m  | -3.734153101 | 4.304228177  | 2.11697783   |
| H1m  | -3.51766933  | 2.544438152  | 1.986758274  |
| 01   | -1.646977359 | -1.509292469 | 0.570266037  |
| N1   | -2.060448608 | -0.1221979   | -1.730076669 |
| N2   | -3.631706488 | -2.571582727 | 0.373009999  |
| C1   | -1.071621257 | -2.357337026 | -2.32059648  |
| C2   | -1.75845811  | -1.095842589 | -2.805718727 |
| C3   | -3.217939568 | -0.576302721 | -0.945342155 |
| C4   | -2.781560879 | -1.610269381 | 0.063633629  |
| C5   | -3.369919963 | -3.595831482 | 1.372357639  |
| H1n  | -4.513111203 | -2.595692627 | -0.11681614  |
| H2a  | -1.705335834 | -2.905517401 | -1.629070842 |
| H2e  | -0.910911059 | -3.020317058 | -3.176911296 |
| Hla  | -1.12562295  | -0.598837139 | -3.536372738 |
| Hle  | -2.679449697 | -1.372630555 | -3.330384696 |
| H1am | -4.02670936  | -0.946931177 | -1.582005997 |
| H2am | -3.606598497 | 0.261921967  | -0.367792181 |
| H1m  | -3.207932493 | -4.56092378  | 0.890144576  |
| H1m  | -4.221194704 | -3.670263025 | 2.047279075  |
| H1m  | -2.47953384  | -3.319202871 | 1.926613853  |
| 01   | 1.584489731  | -1.57799435  | 0.667705273  |
| N1   | 0.213044093  | -2.058462918 | -1.647769494 |
| N2   | 2.630019245  | -3.574832029 | 0.483134287  |
| C1   | 2.48725988   | -1.103862495 | -2.179913696 |
| C2   | 1.254516873  | -1.832204227 | -2.680701326 |
| C3   | 0.58663803   | -3.180248454 | -0.767627438 |
| C4   | 1.653872985  | -2.731172168 | 0.197386542  |
| C5   | 3.723105776  | -3.287868326 | 1.399325171  |
| H1n  | 2.613413192  | -4.47843504  | 0.035705746  |
| H2a  | 3.022091088  | -1.698582947 | -1.446256473 |
| H2e  | 3.175176652  | -0.970986404 | -3.021446936 |
| Hla  | 0.801129491  | -1.25899179  | -3.486288229 |
| Hle  | 1.56089043   | -2.789031258 | -3.11695412  |
| H1am | 0.894779064  | -4.060827635 | -1.339315944 |
| H2am | -0.271865228 | -3.445447517 | -0.151663929 |
| H1m  | 4.673936865  | -3.391103842 | 0.876650095  |
| H1m  | 3.701146659  | -3.977127153 | 2.242668867  |
| H1m  | 3.618555375  | -2.271285001 | 1.764686793  |
| Ow   | 0.034252734  | -3.823695508 | 2.478818106  |
| Hw   | 0.021804526  | -4.705338358 | 2.870929171  |
| Hw   | -0.482596839 | -3.268231685 | 3.09755156   |
| Ow   | 2.538219322  | 0.156703563  | 3.210337413  |
| Hw   | 1.711374924  | 0.137984861  | 2.683845815  |
| Hw   | 2.383272632  | 0.838091877  | 3.876604745  |
| Ow   | 1 967503767  | -2 367297363 | 4 169196778  |

| Hw | 1.583208227  | -2.850718751 | 3.417663421 |
|----|--------------|--------------|-------------|
| Hw | 2.238712406  | -1.489754254 | 3.822141474 |
| Ow | -0.305782329 | 1.773305189  | 3.944201683 |
| Hw | -0.574355644 | 2.618126839  | 3.565532923 |
| Hw | -0.169432536 | 1.158143773  | 3.176198894 |
| Ow | -0.798912147 | -2.280379766 | 4.66029691  |
| Hw | 0.153526018  | -2.073778009 | 4.662951985 |
| Hw | -1.290538549 | -1.437953262 | 4.625729235 |
| Ow | -2.28796343  | 0.12279147   | 4.812596793 |
| Hw | -2.718938237 | 0.34267079   | 5.647390753 |
| Hw | -1.630117973 | 0.835716664  | 4.634740289 |
| Ow | -3.574122166 | 0.270264188  | 2.336111025 |
| Hw | -2.801955897 | 0.573143321  | 1.83760845  |
| Hw | -3.215957211 | 0.111875482  | 3.229998661 |

#### 7 References

<sup>1</sup>S.Aime, A. Barge, J.I. Bruce, M. Botta, J.A.K. Howard, J.M. Moloney, D. Parker,

- A.S. de Sousa, M. Woods, J. Am. Chem. Soc. 1999, 121, 5762–5771.
- <sup>2</sup> P. Kuzmic, Anal. Biochem. 1996, 237, 260–273.
- <sup>3</sup> Electron Paramagnetic Resonance; A. Abragam, B. Bleaney, Eds.; Oxford: Clarendon Press: Oxford, 1970.
- <sup>4</sup> S. Stoll, A. Schweiger, J. Magn. Reson. 2006, 178, 42-55.
- <sup>5</sup> R.G. Denning, J. Harmer, J.C. Green, M. Irwin, *J. Am. Chem. Soc.* **2011**, 133, 20644-20660.

<sup>6</sup> (a) C. Lee, W. Yang, R.G. Parr, *Phys. Rev. B* **1988**, *37*, 785. (b) A.D. Becke. *Phys. Rev. A* **1988**, *38*, 3098. (c) A.D. Becke, *J. Chem. Phys.* **1993**, *98*, 5648.

<sup>7</sup> (a) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, H. J. Chem. Phys. 2010, 132,

154104. (b) S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456.

<sup>8</sup> (a) F. Neese, F. Wennmohs, A. Hansen, U. Becker, Chem. Phys. 2009, 356, 98. (b)

R. Izsák, F. Neese, J. Chem. Phys. 2011, 135, 144105.

<sup>9</sup> (a) E. van Lenthe, E. E.J. Baerends, J.G. Snijders, J. Chem. Phys. 1993, 99, 4597.

(b) C. van Wüllen, C. J. Chem. Phys. 1998, 109, 392.

<sup>10</sup> (a) A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 1992, 97, 2571.

(b) F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.

(c) D.A. Pantazis, F. Neese, J. Chem. Theory Comput. 2009, 5, 2229.

<sup>11</sup> F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73.

<sup>12</sup> (a) L. Ungur, L.F. Chibotaru, Phys. Chem. Chem. Phys. 2011, 13, 20086.

(b) R.J. Blagg, L. Ungur, F. Tuna, J. Speak, P. Comar, D. Collison, W. Wernsdorfer,

E.J.L. McInnes, L.F. Chibotaru, R.E.P. Winpenny, Nat. Chem. 2013, 5, 673.

(c) L. Ungur, J.J. Le Roy, I. Korobkov, M. Murugesu, L.F. Chibotaru, *Angew. Chem. Int. Ed.* **2014**, *53*, 4413.

<sup>13</sup> (a) G. Karlström, R. Lindh, P.A. Malmqvist, B.O. Roos, U. Ryde, V. Veryazov,
P.O. Widmark, M.Cossi, B. Schimmelpfennig, P. Neogrady, L. Seijo, *Comput. Mater. Sci.* 2003, *28*, 222. (b) V. Veryazov, P. Widmark, L. Serrano-Andrés, R. Lindh, B.O. Roos, *Int. J. Quantum Chem.* 2004, *100*, 626. (c) F. Aquilante, L. De Vico, N. Ferré, G. Ghigo, P. Malmqvist, P. Neogrády, T.B. Pedersen, M. Pitoňák, M. Reiher, B.O. Roos, L. Serrano-Andrés, M. Urban, V. Veryazov, R. Lindh, *J. Comput. Chem.* 2010, *31*, 224.

<sup>14</sup> (a) B.O. Roos, V. Veryazov, P.O. Widmark, *Theor. Chem. Acc.* 2004, 111, 345.

(b) B.O. Roos, R. Lindh, P.Å Malmqvist,.; V. Veryazov, P.O. Widmark, J. Phys. Chem. A 2004, 108, 2851.

(c) B.O. Roos, R. Lindh, P.Å Malmqvist, V. Veryazov, P.O. Widmark, J. Phys. Chem. A 2005, 109, 6575.

(d) B.O. Roos, R. Lindh, P.Å Malmqvist, V. Veryazov, P.O. Widmark Chem. Phys. Lett. 2005, 409, 295.

<sup>15</sup> N. F. Chilton, R. P. Anderson, L. D. Turner, A. Soncini, K. S. Murray, *J. Comput. Chem.*, **2013**, 34, 1164.