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Discussion: Simulation tests on the number of isolates retrieved in pyrosequences 8	

To simulate the number of isolates retrieved in pyrosequences, we simulated 3000 sets of 9	

species counts using the method described above for RSE calculations, but with the total 10	

number of reads fixed at the present sequencing effort N.  For each set of simulated 11	

sequencing counts, 38 species were selected at random without replacement from the list 12	

of all S counts (including zeros), and the number of these with non-zero counts was 13	

recorded to give the simulated number retrieved by sequencing rs.  The simulation 14	

p-value for the actual number of species retrieved by sequencing r was then taken as      15	

(1 + #(rs ≤ r))/3001 following Davison and Hinkley (1997). 16	

 17	

Discussion: Simulation/bootstrap tests on the counts of isolates retrieved in 18	

pyrosequences 19	

To simulate the counts of isolates retrieved in pyrosequences, we again simulated 3000 20	

sets of species counts as described above, and this time randomly selected without 21	

replacement 9 species from the list of non-zero counts for each simulation.  The mean, 22	

median, and maximum counts from this subset were recorded for each simulation, and p-23	
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values were calculated as described above assuming lower-than-random count statistics 24	

as an alternative hypothesis. 25	

These tests were also repeated using a bootstrap method, thus avoiding the need to 26	

assume a parametric distribution.   To do this, a vector of 9 species counts was randomly 27	

resampled with replacement from the observed species count vector.  This was repeated 28	

over 9999 bootstraps and bootstrap p-values were calculated as (1 + #(ts ≤ t))/10000 or   29	

(1 + #(ts ≥  t))/10000, again following Davison and Hinkley (1997). 30	

 31	
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References for the supporting information text: 33	
 34	
1.  Davison A, Hinkley D. Bootstrap methods and their applications. New York: 35	

Cambridge University Press; 1997.  36	
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Figure A.  Goodness-of-fit of the best-approximating Sichel distribution to (A) surface 41	

and (B) bottom HTS datasets.  Observed and predicted count frequencies (numbers of 42	

OTUs with a given sample abundance) are plotted against read counts (sample 43	

abundances) on a log-log scale.  Goodness-of-fit is illustrated by the closeness of the 44	

predicted frequencies (posterior means, solid lines) to the observed frequencies (dots) as 45	

well as by the narrowness of the 95% prediction intervals (dashed lines) while still 46	

containing most of the data.  The comparison is restricted to rare counts in the range 47	

1‒100 because these are likely the most important for estimating total richness and 48	

required sequencing effort, and because the computation of stable frequency prediction 49	

intervals for higher counts would require too many simulations (the intervals shown used 50	

3000).  The distributions were however fitted to the full range of observed count 51	

frequencies (f1‒178569 and f1‒45414 for surface and bottom samples respectively). 52	

 53	
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Table A.  Four different compound Poisson distributions were fitted to the surface and 55	

bottom HTS data: the Poisson log-normal, the Poisson inverse Gaussian, the Poisson log-56	

student, and the Poisson generalized inverse Gaussian (Sichel) distribution.  As a 57	

robustness check we reran the Sichel fit for the surface sample excluding the counts of 58	

the most abundant species which, for this sample, was more than 3 times as abundant as 59	

the second most abundant species (see Surface*).  The relative goodness-of-fit is assessed 60	

using Akaike's Information Criterion (AICc = -2 × max(log likelihood) + 2p + 61	

2p(p+1)/(n-p-1), where p is the number of fitted parameters and n is the number of data; 62	

Hurvich and Tsai, 1989; Burnham and Anderson, 2002) and the deviance information 63	

criterion (DIC = -2×posterior mean(log likelihood) +  p; Spiegelhalter et al., 2002; 64	

Quince et al., 2008).  For the robustness check the selection criteria are placed in square 65	

parentheses since these cannot be compared to other rows.  We also show the total 66	

species richness estimates from maximum likelihood (ŜML) as well as the posterior 67	

median (Ŝ50%) and the 95% credible bounds (Ŝ2.5% and Ŝ97.5%) from the Bayesian MCMC 68	

method (Quince et al. 2008). 69	

Reference: Hurvich, C.M. and Tsai, C.-L. (1989) Regression and time series model 70	

selection in small samples. Biometrika 76: 297-307. 71	

 72	

 73	
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Distribution 
No. fitted 

parameters 
p 

Sample min 
(-log lik) AICc DIC Ŝmax. lik. 

Ŝposterior 

mean 
Ŝ50% Ŝ2.5% Ŝ97.5% 

Log-normal 3 Surface 869.4 1744.8 1744.8 2449 2501 2488 2238 2819 
Log-student 4 Surface 840.6 1689.1 1689.3 1869 1897 1891 1797 2027 

Inverse 
Gaussian 

3 Surface 836.9 1679.8 1679.9 1644 1644 1643 1594 1702 
Sichel 4 Surface 834.7 1677.4 1677.3 1618 1615 1614 1568 1669 
Sichel 4 Surface* [821.3] [1650.7] [1651] 1619 1616 1615 1568 1671 

Log-normal 3 Bottom 1276.9 2559.8 2559.8 6843 6856 6850 6544 7199 
Log-student 4 Bottom 1198.0 2404.1 2404.1 5850 5867 5863 5701 6055 

Inverse 
Gaussian 

3 Bottom 1230.0 2466.0 2466.0 5352 5353 5352 5250 5463 
Sichel 4 Bottom 1176.9 2361.8 2362.1 5118 5109 5108 5027 5196 
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Table B. Semiparametric functional fits to surface sample collector's curve data and 81	

corresponding estimates of total species richness.  A set of 12 convex, saturating 82	

functions were fitted to the rarefied species accumulation curve, sampled at intervals of 83	

1000 reads (hence 502 data points), using the nonlinear least squares function "nls" in R 84	

to estimate the parameters a, b etc.  The absolute quality of the fits was measured using 85	

the generalized R2 values (defined for nonlinear fit as 1 - RSS/SSM, where RSS is the 86	

residual sum of squares and SSM is the sum of squares of the sample mean).  The best-87	

approximating model was selected as that which minimized Akaike's Information 88	

Criterion (AICc, in this case the Power Michaelis Menten (2) function was selected).  The 89	

selected model was then used to estimate the total sample richness S as the asymptotic 90	

value of the function at x = Inf (final column shows the estimates for all candidate 91	

functions).  Required sequencing effort (not shown) was predicted by inverting the 92	

selected function for x such that the value of the function was 0.9 times the estimated 93	

sample richness.  Note that for certain 3 and 4 parameter functions the R2 values are 94	

extremely high and differ only in the fourth or fifth decimal places (R2>0.999) yet the 95	

estimated richness can differ substantially (cf. Power Michaelis Menten (2) vs. Weibull 96	

Cumulative).  For such functions, the AICc values also tend to differ by relatively large 97	

amounts, such that a model averaging strategy based on AIC weights would differ little 98	

from simply choosing the lowest-AICc model (Burnham and Anderson, 2002), and any 99	

assessment of model selection uncertainty based on AIC-weights is unlikely to predict the 100	

level of selection uncertainty observed in simulations (see Table S3).  This latter is likely 101	

the result of the neglected error correlation in the functional fits.  102	
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Function Formula                    
(x = #reads-1) 

Number of 
Parameters R2 AICc Ŝ 

Michaelis Menten (ax)/(b+x)+1 2 0.98414 4976 1520 
Negative Exponential a(1-exp(-bx))+1 2 0.93681 5670 1317 

Power Michaelis Menten (1) axc/(b+xc)+1 3 0.99977 2856 1927 
Power Michaelis Menten (2) axc/(b+x)c+1 3 0.99995 2086 1679 
Power Negative Exponential a(1-exp(-bx))c+1 3 0.99947 3274 1459 

Weibull Cumulative a(1-exp(-bx)c) 3 0.99992 2323 1568 
Michaelis Menten + offset (ax)/(b+x)+1+c 3 0.99680 4174 1590 

Negative Exponential + offset a(1-exp(-bx))+1+c 3 0.98639 4901 1373 
Power Michaelis Menten (1) + offset axc/(b+xc)+1+d 4 0.99988 2545 1864 
Power Michaelis Menten (2) + offset axc/(b+x)c+1+d 4 0.99995 2088 1679 

Power Negative Exponential a(1-exp(-bx))c+1+d 4 0.99957 3169 1467 
Weibull Cumulative + offset a(1-exp(-bx)c)+d 4 0.99992 2316 1565 

103	
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Table C. Semiparametric functional fits to bottom sample collector's curve data and 103	

corresponding estimates of total species richness.  A set of 12 convex, saturating 104	

functions were fitted to the rarefied species accumulation curve, sampled at intervals of 105	

1000 reads (hence 576 data points), using the nonlinear least squares function "nls" in R 106	

to estimate the parameters a, b etc.  The absolute quality of the fits was measured using 107	

the generalized R2 values (defined for nonlinear fit as 1 - RSS/SSM, where RSS is the 108	

residual sum of squares and SSM is the sum of squares of the sample mean).  The best-109	

approximating model was selected as that which minimized Akaike's Information 110	

Criterion (AICc, in this case the Power Michaelis Menten (2) + offset function was 111	

selected).  The selected model was then used to estimate the total sample richness S as the 112	

asymptotic value of the function at x = Inf (final column shows the estimates for all 113	

candidate functions).  Required sequencing effort (not shown) was predicted by inverting 114	

the selected function for x such that the value of the function was 0.9 times the estimated 115	

sample richness.  Note that for certain 3 and 4 parameter functions the R2 values are 116	

extremely high and differ only in the fourth or fifth decimal places (R2>0.999) yet the 117	

estimated richnesses can differ substantially (cf. Power Michaelis Menten (2) vs. Weibull 118	

Cumulative).  For such functions, the AICc values also tend to differ by relatively large 119	

amounts, such that a model averaging strategy based on AIC weights would differ little 120	

from simply choosing the lowest-AICc model (Burnham and Anderson, 2002), and any 121	

assessment of model selection uncertainty based on AIC-weights is unlikely to predict the 122	

level of selection uncertainty observed in simulations (see Table S3).  This latter is likely 123	

the result of the neglected error correlation in the functional fits.  124	
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125	

Function Formula Number of 
Parameters R2 AICc Ŝ 

Michaelis Menten (ax)/(b+x)+1 2 0.98873 6899 4947 
Negative Exponential a(1-exp(-bx))+1 2 0.95179 7737 4224 

Power Michaelis Menten (1) axc/(b+xc)+1 3 0.99986 4380 6122 
Power Michaelis Menten (2) axc/(b+x)c+1 3 0.99999 2897 5425 
Power Negative Exponential a(1-exp(-bx))c+1 3 0.99959 4996 4666 

Weibull Cumulative a(1-exp(-bx)c) 3 0.99999 3062 4981 
Michaelis Menten + offset (ax)/(b+x)+1+c 3 0.99758 6014 5157 

Negative Exponential + offset a(1-exp(-bx))+1+c 3 0.98893 6891 4397 
Power Michaelis Menten (1) + offset axc/(b+xc)+1+d 4 0.99992 4081 5971 
Power Michaelis Menten (2) + offset axc/(b+x)c+1+d 4 0.99999 2566 5435 

Power Negative Exponential a(1-exp(-bx))c+1+d 4 0.99974 4729 4702 
Weibull Cumulative + offset a(1-exp(-bx)c)+d 4 0.99999 2924 4996 
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Table D.  Simulation-based tests of estimator performance, considering estimates of both 1	

the total species richness (S) and the required sequencing effort (RSE) i.e. number of 2	

final reads required to observe a given fraction of the total richness in a new sample (e.g. 3	

0.7S means 70% of the total richness).  For each of four parametric distributions (Table 4	

D1) Poisson log-normal, Poisson log-student and Table D2 Poisson inverse-Gaussian, 5	

and Sichel) an ensemble of 80 sets of community abundances were randomly sampled 6	

from the parametric distribution; species data were then simulated by sampling from 7	

multinomial distributions with probabilities defined by the community abundances for 8	

each ensemble member.  Distribution parameter values, including the total species 9	

richness, were also varied between ensemble members by sampling from the posterior 10	

distributions fitted to the observed data.  Estimator performance is summarized by the 11	

%BIAS (ensemble average of estimate minus true value) and %RMSE (root-mean-square 12	

error), normalizing by the ensemble mean of the true value in both cases.  Non-13	

parametric species richness estimators included the Chao1 lower bound estimate (Chao, 14	

1984), the coverage-based estimator for highly heterogeneous communities (ACE-1; 15	

Chao and Lee, 1992; Chao et al., 2000) and the bias-corrected Chao estimate iChao (Chiu 16	

et al., 2014).  The ACE-1 estimator was tested using two values of the cut-off count k to 17	

define "rare" species: the default value k = 10 and a larger value k = 100 as recommended 18	

by Chao and Shen (2012) for microbial communities (note, the estimated CV of the 19	

"rare" species was < 0.8 for k = 10 but > 0.8 for k = 100, where 0.8 is a threshold above 20	

which Chao and Shen (2012) recommend ACE-1 in preference to ACE).  RSE was 21	

estimated for each nonparametric estimator by inverting the expression in Table 1 of 22	

Chao et al. (2014) and substituting the corresponding estimates of the zero-count 23	
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frequency f0 = (S - Sobs) (using ACE-1 this is identical to the method proposed in Chao 1	

and Shen (2012) based on Shen et al. (2003) except for a negligible bias correction).  2	

Similar results (not shown) were obtained by substituting into equation (12) in Chao et al. 3	

(2009) (see also Colwell et al., 2012, equation 11).  A semi-parametric AICc-selected 4	

estimator SP (AICc) was constructed by fitting 12 different functions to the collector's 5	

curves (rarefied species richness vs. sampling effort) and choosing the function with the 6	

lowest Akaike's Information Criterion (AICc).  Total richness was then estimated as the 7	

asymptotic value of the selected function (see Table S2), and RSE was estimated by 8	

inverting the selected function for sampling effort given the required fraction of 9	

asymptotic richness.  Nonparametric estimates were calculated using the R package 10	

SPECIES (Wang, 2011) and semiparametric functions were fitted using the nonlinear 11	

least squares function "nls" in R (R Core Team, 2013). 12	

 13	

 14	

 15	
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Table D1 1	
 2	
 3	

 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	

Estimator Sample S(lognormal)   RSE(0.7S, lognormal) S(logstudent)   RSE(0.8S, logstudent) 
    %BIAS %RMSE %BIAS %RMSE %BIAS %RMSE %BIAS %RMSE 

Chao Surface -25.8 26.8 -86.2 116.1 -22.1 22.9 -76.2 90.1 
ACE-1 
(k=10) Surface -24.5 25.4 -85.5 114.4 -18.9 19.4 -71.3 84.0 

ACE-1 
(k=100) Surface 0.9 4.3 -21.0 54.4 50.2 60.0 95.2 113.4 

iChao Surface -23.4 24.5 -84.8 114.1 -19.1 19.9 -72.1 85.9 
SP(AICc) Surface -1.0 4.5 -6.2 33.3 -2.4 11.6 -2.8 70.3 

Chao Bottom -14.9 15.1 -70.1 71.9 -24.3 24.8 -73.9 81.3 
ACE-1 Bottom -14.2 14.4 -70.8 72.4 -18.8 19.0 -66.2 72.6 
ACE-1 
(k=100) Bottom 7.5 8.1 54.1 55.2 93.8 101.5 167.0 178.3 

iChao Bottom -12.7 12.9 -71.1 72.5 -20.6 21.0 -69.0 76.4 
SP(AICc) Bottom 3.7 4.1 23.3 27.5 3.6 10.0 31.3 60.8 



	 13	

Table D2 1	
 2	

Estimator Sample S(inverse Gaussian) RSE 
(0.9S, inverse Gaussian) S(Sichel)   RSE(0.9S, Sichel) 

    %BIAS %RMSE %BIAS %RMSE %BIAS %RMSE %BIAS %RMSE 
Chao Surface -5.7 6.6 -36.6 49.6 -6.3 7.8 -38.3 53.9 

ACE-1 
(k=10) Surface -3.5 4.2 -26.9 36.6 -3.7 4.9 -27.5 40.3 

ACE-1 
(k=100) Surface 40.6 45.9 283.0 313.4 53.2 60.5 323.0 361.5 

iChao Surface -3.3 4.3 -25.9 39.2 -3.6 5.5 -27.5 43.8 
SP(AICc) Surface 1.4 6.8 81.6 448.9 4.1 12.2 237.9 921.5 

Chao Bottom -5.9 6.0 -33.5 34.9 -7.4 7.9 -38.5 44.1 
ACE-1 Bottom -3.7 3.8 -23.8 25.0 -3.6 3.9 -24.7 28.5 
ACE-1 
(k=100) Bottom 43.5 44.3 306.2 309.8 76.0 81.2 396.9 416.9 

iChao Bottom -3.2 3.5 -21.6 23.3 -4.2 4.8 -27.2 33.0 
SP(AICc) Bottom 1.3 7.1 51.6 206.8 3.1 12.5 138.5 391.6 
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