
Additional File 3: Modelling calcium diffusion on
the nuclear surface

0.1 Analytic solution to diffusion equation

As described in the Methods, the calcium concentration, c(r, t), on the surface of the nucleus

evolves as
∂c

∂t
= D∇2c− ksc+ σ

N∑
i=1

∑
k=1,2,...

δ(t− tki )δ(r− ri), (1)

for diffusion constant, D, uptake rate, ks, and release strength σ. The form of this diffusion

equation allows us to derive an analytic solution using Green’s method. On the surface of a

sphere of radius, R, Green’s function satisfies

∂G

∂t
= D∇2G− ksG+

1

R2sinθ′
δ(θ − θ′)δ(t− t′), (2a)

G(r, θ, t|r′, θ′, t′) = 0, t < t′ (2b)

where, thanks to the symmetry, we can neglect the φ dependence for now, including it later via

trigonometric properties [1]. The resulting calcium concentration for the given source term (1)

is,

c(r, t) = σ

N∑
k=0

G(r, t|rk, tk). (3)

We shall now derive an exact expression for the Green’s function which will enable us to eval-

uate the behaviour of the calcium on the surface in a numerically efficient way. We follow the

approach of Skupin et al. [1]. After Laplace transform with respect to t, the governing equation

of the transformed Green’s function G̃(θ, s|θ′, t′) is

sG̃ = D∇2G̃− ksG̃+
1

R2sinθ′
δ(θ − θ′)e−st′ . (4)
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The homogeneous problem

1

R2 sin θ

∂

∂θ

[
sin θ

∂ψ

∂θ

]
= − l(l + 1)

R2
ψ, (5)

is the well known Legendre differential equation, whose solution are the Legendre polynomials

ψl(θ) = Pl(cos θ). l = 0, 1, 2, . . . (6)

We then consider the ansatz

G̃(θ, s|θ′, t′) =
∞∑

l,p=0

βlψl(θ), (7)

which, upon substitution into (4), yields

s
∞∑
l=0

βlPl(cos θ) = −D
∞∑
l=0

βl
l(l + 1)

R2
Pl(cos θ)− ks

∞∑
l=0

βlPl(cos θ) +
1

R2sinθ′
δ(θ − θ′)e−st′ .

(8)

To determine the normalisation βl, we apply the integral operator∫ +1

−1
dµPm(µ) (9)

to obtain

sβm = −βm
l(l + 1)

R2
D − ksβl +

1

R2N (m)
Pl(cos θ′)e−st

′
, (10)

where

N (l) =

∫ +1

−1
dµP 2

l (µ) =
2

2l + 1
. (11)

Using (10) to find βl, we find the solution in Laplace space

G̃(θ, s|θ′, t′) =
∞∑
l=0

1

N (l)(s+Dl(l + 1)/R2 + ks)
Pl(cos θ′)e−st

′
Pl(cos θ). (12)

This can be transformed back using the inverse Laplace transform and the residue theorem,

since we have first order poles, s+Dl(l+1)/R2 +ks along the negative axis only. The Green’s

function solution to the inhomogeneous problem (2a) without the φ dependence is

G(θ, t|θ′, t′) =
∞∑
l=0

1

R2N (l)
Pl(cos θ′)e(l(l+1)D/R2+ks)t′Pl(cos θ)e−(l(l+1)D/R2+ks)t. (13)
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When we wish to consider multiple sources, the assumption of spherical symmetry is no longer

valid and we must reintroduce explicitly the φ dependence of the Green’s function. This only

depends on the cosines of the angles between P (r) and P (r′), and hence we can rotate the

coordinate system such that one of the angles is zero. The angle Θ between the points is given

by

cos Θ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′). (14)

The final form of the Green’s function is therefore

G(θ, φ, t|θ′, φ′, t′) =
∞∑
l=0

Pl(cos Θ)

2πR2N (l)
e−l(l+1)D(t−t′)/R2−ks(t−t′), (15)

and the corresponding concentration due to a set of sources at ri, i = 1, . . . , N firing at times tik

for the ith location is

c(θ, φ, t) = σ
∑
i,k

∞∑
l=0

Pl(cos Θ)

2πR2N (l)
e−l(l+1)D(t−tik)/R

2−ks(t−tik). (16)

cos Θ = cos θ cos θi + sin θ sin θi cos(φ− φi) (17)

0.2 Free space Green’s function as an approximation to the
full solution

Equation (15) is the mathematically precise solution, however evaluating it numerically could

be a computationally expensive procedure if a large number of sources are considered (with

a large number of pores, for example). It is likely that the dynamics of diffusing calcium on

the nuclear surface are such that the dominant contribution from a single source at some point

of interest (another channel or the point corresponding to an image pixel say) will be due to

calcium that has performed less than one journey around the surface. That is, although strictly

speaking the sphere has periodic boundary conditions, on the time scales of interest diffusion

would not have been sufficient to allow the periodicity to have an observable effect. It might

3



be reasonable then to treat the surface as being without a boundary. On the surface of a sphere

then, we believe the concentration due to sources at ri for i = 1, . . . , N firing at times tik at the

ith location to be well approximated by

c(rj, t) = σ
∑
i,k

1

4πD(t− tik)
exp(−∆rij/4D(t− tik)− ks(t− tik)), (18)

where ∆rij is, as described in the main text, the length of the great arc connecting the points

ri and rj on the surface of the nucleus. In the long time limit, this gives a vanishing calcium

concentration regardless of whether an uptake rate ks is included, but since we always consider

pumps to be present this will not become an issue. In Figure 1A we compare (18) with (16) by

calculating the calcium profile for a single point source at φ = 0, for a number of time points.

This clearly shows that any difference between the full solution (16; points) and the approximate

solution (18; lines) is small. Figure 1B calculates the ratio of the full solution to the approximate

solution at the source where the error is largest, for a variety of diffusion constants. While the

relative error grows with time, and with larger diffusion constants, the absolute amplitude falls

much faster, preventing this effect from becoming a substantial issue. As can be seen in Figures

5 & 6 in the main text, the timescale over which these relative errors grow large is greater than

the timescales of oscillations that are studied. Given the approximate solution offers around a

10-fold improvement in the speed of simulation, we are justified in using this simpler model in

simulating the surface diffusion of Ca2+.
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Figure 1: Boundary free solution provides a good fit to full periodic solution. Comparing
the full periodic solution to the 2D diffusion equation on a spherical surface (16) with the free
space solution in 2D (18). (A) Ca2+ profiles in cross section (θ = π/2). A single channel at
φ = 0 releases Ca2+ at t = 0 and the concentration of Ca2+ is calculated at points around the
equator of the sphere at different times, t = 0.1s (red), t = 0.5s (black) and t = 1.0s (blue).
Lines show the boundary free solution, points are for the periodic solution. Parameters D = 20
µm2s−1, ks = 1.0 s−1, σ = 1. (B) Relative on peak (φ = 0) amplitude in the periodic compared
to the boundary free solution against time, and for different diffusion constants. While there can
be a large relative shift in amplitude between the two models, as illustrated in (A) the absolute
amplitude in both models at these times is very small. The use of M* units indicates that it is
not strictly a volumetric concentration, see the first subsection of Methods.
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