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1 Supporting Information S1

1.1 Numerical simulation
MA and SSE yield ordinary differential equation models. For these models the forward sensitivity equations
are derived. These equations describe the derivative of the time-dependent state of the ODE with respect to
the parameter. To solve the ODE system for states and forward sensitivities simultaneously the SUNDIALS
library CVODES [1,2] is used. CVODES allows for highly efficient numerical integration and is usually
significantly faster than the corresponding MATLAB implementation. For the simulation we used the BDF
integrator with a Newton dense non-linear solver. For relative and absolute tolerances we used 10−8 for the
state equations and estimated tolerances for the sensitivity equations via the CVodeSensEEtolerances
command. To prevent numerical problems for systems that exhibit weakly damped oscillations, we activated
stability limit detection via the CVodeSetStabLimDet command.

We compared the resulting simulation time to those of the SSA method used for data generation. The
results are shown in Figure 1. Even for the considered small-scale examples, the simulation of IOS and 3MA
is on average faster than computing an emsemble of 100 SSA runs. Typically thousands of SSA runs are
necessary to obtain reliable statistics.

PLOS 1/10



(a) (b)

volume Ω [µm3]

process = trimerization process = enzyme

10x SSA

100x SSA

1000x SSA

IOS

3MA

100

100

10-2

10-2

101 102 103 104

volume Ω [µm3]
100 101 102 103 104

c
o
m

p
u
ta

ti
o
n
 t
im

e
 [

s
]

100

10-2

10-2
c
o
m

p
u
ta

ti
o
n
 t
im

e
 [

s
]

Figure 1. Comparison of the computation time of SSA and 3MA and IOS approximations for the
trimerization and enzymatic degradation model. For SSA, the computation time for ensembles of size 10, 100
and 1000 are shown. For IOS and 3MA the average computation time across 1000 simulations is shown. All
simulations were carried out at the true parameter which were also used for data generation.

1.2 Model Definitions
In the following we specify the reactions in the trimerization model, the model of enzymatic protein
degradation and the JAK/STAT signaling pathway. We do not deem a definition of the individual equations
reasonable, as the systems of equations become quite large for higher order expansions. This renders a
manual implementation of the equations error-prone and an automatic generation of differential equations
via e.g. the ACME toolbox much more tractable. Where applicable the models were reduced by their
conservation laws.

Trimerization Model The trimerization model was formulated using mass-action kinetics leading to the
reactions provided in Table 1 with the parameters provided in Table 2. The three species were initialized
with zero molecules at time t = 0.

Enzymatic Degradation Model The reactions of the reduced system are given in Table 2 while
parameters are provided in Table 4. The model was then reduced by the enzyme-protein complex exploiting
the conservation law

[Complex] = [Enzyme]0 − [Enzyme],

where we assumed that all species have zero molecules initially except the enzyme species whose initial
concentration is [Enzyme]0.

JAK/STAT model The JAK/STAT model consists of nine species of nuclear and cytosol compartments.
The respective compartment volumes of BaF3 cells are Ωnuc = 450µm3 and Ωcyt = 1400µm3 [3]. We assume
that initially only STAT is present in the cytosol at a concentration of [STAT]0. The reactions in this
pathway are given in Table 5. Note that the overall concentration of STAT is constant and hence the model
can be reduced by the concentration of the nuclear complex which is given by

2[npSTAT:npSTAT] =
Ωcyt

Ωnuc

(
[STAT]0 − [pSTAT]− 2[pSTAT:pSTAT]

)
−
(
[nSTAT1] + [nSTAT2] + [nSTAT3] + [nSTAT4] + [nSTAT5]

)
.

Note that pEpoR(t) in Table 5 denotes a time-dependent function describing phosphorylation of STAT which
is parametrized by a cubic spline between the time points 0, 5, 10, 20 and 60. Its five parameters are
estimated along with scaling parameters and the biologically relevant parameters p1, p2,p3, p4 and [STAT]0.

Since the SSE is commonly formulated for a single compartment, we performed the multi-compartment
analysis by rescaling the bimolecular reaction rate constant p2 by the cytosolic volume and performing the
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Table 1. Reactions of the trimerization model.

index educts product rate constant
R1 ∅ → 30X1 k0
R2 2X1 → X2 k1
R3 X1 +X2 → X3 k1m
R4 X1 → ∅ k2
R5 X2 → ∅ k3
R6 X3 → ∅ k4

Table 2. Parameter values of the trimerization model from which reference dataset was obtained.

Parameters value unit lower bound upper bound
k0

1
3 1/(µm3 · h) 10−2 104

k1 0.5 µm3/h 10−2 104

k1m 1 µm3/h 10−2 104

k2 1 1/h 10−2 104

k3 1 1/h 10−2 104

k4 1 1/h 10−2 104

Table 3. Reactions of the enzymatic degradation model.

index educts product rate constant
R1 ∅ → mRNA k0
R2 mRNA → mRNA+Protein ks
R3 Protein + Enzyme → Complex k1
R4 Complex → Protein + Enzyme km2

R5 Complex → Enzyme k2
R6 mRNA → ∅ kdm

Table 4. Parameter values of the trimerization model from which reference dataset was obtained.

Parameters value unit lower bound upper bound
k0 2.25 1/(µm3 · h) 10−4 104

ks 4 1/h 10−4 104

k1 100 µm3/h 10−4 104

km2 1 1/h 10−4 104

k2 1 1/h 10−4 104

kdm 10 1/h 10−4 104

[Enzyme]0 1 1/µm3 10−4 104
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Table 5. Reactions of the JAK/STAT Model. The function pEpoR(t) is described in the text.

index educts product rate constant
R1 STAT → pSTAT p1 · pEpoR(t)
R2 2 pSTAT → pSTAT:pSTAT p2/(Ωcyt[STAT]0)
R3 pSTAT:pSTAT → npSTAT:npSTAT p3
R4 npSTAT:npSTAT → 2 nSTAT1 p4
R5 nSTAT1 → nSTAT2 p4
R6 nSTAT2 → nSTAT3 p4
R7 nSTAT3 → nSTAT4 p4
R8 nSTAT4 → nSTAT5 p4
R9 nSTAT5 → STAT p4

Table 6. Parameter estimates and minimal objective function values for the JAK/STAT model for different
descriptions of the mean behavior.

parameter estimate estimate estimate unit lower upper
RRE EMRE 2MA bound bound

p1 3.82 5.79 4.01 1/min 10−5 103

p2 9.58 · 105 6 · 106 3.98 · 105 1/min 10−3 106

p3 0.11 0.11 0.11 1/min 10−5 103

p4 0.98 0.95 0.86 1/min 10−5 103

[STAT]0 3.55 · 105 2.06 1.28 · 105 nM 10−3 106

JM (θ̂) 73.7261 74.9429 73.7200

SSE for a unit volume. Effectively, this procedure yields expressions for the moments in units of molecules
numbers. The resulting averages are then divided by the compartment volume of the respective species while
the variances are divided by the volume squared to obtain the concentration moments. Similarly, the MA
estimates were obtained. Equivalent formulations for the SSE and MA with multiple compartments have
given in Refs. [4, 5] and [6], respectively.

2 Parameter Estimation for the Simulation Examples
We carried out parameter estimation for all generated datasets. In the following we will outline the results
found for one of the datasets for the trimerization model at Ω = 100µm3. These results are representative for
both models and other sample size and volume scenarios. Figure 4 (a) shows the simulation of the different
description at the respective estimated parameters and the data which was used to estimate parameters for
the trimerization model. We find that there is a good agreement between simulation and data. To
demonstrate the efficiency of optimization using sensitivity (SE) based gradients over finite difference (FD)
based gradients we compared convergence rate and computation time for both approaches (c.f. Figure 4
(b-c)). Both approaches yield comparable convergence rates to the lowest found objective function values
across all descriptions. In contrast, we find pronounced differences in computation time. FD optimization
takes almost 10 times longer than SE optimization. This means that SE optimization yield 10 times more
converged starts than FD optimization in the same amount of time. Comparing the optimization time
between different descriptions, we find that on average the required time is of the same order of magnitude
for all descriptions. Hence for problems where RRE based parameter estimation is feasible, MA and SSE
based parameter estimation should be feasible as well.

For the MA a large fraction of optimizer runs ended in parameter domains where numerical integration
was not possible. Figure 4(b) therefore only includes runs where no such difficulties occurred. For the SSE
all runs are shown, which indicates no problems with integrability. This means that for this systems MA will
in general require more starts to obtain the same number of convergent runs. Similar problems were
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Figure 2. Comparison of uncertainties of parameter estimates for the JAK/STAT pathway. (a) Profile
densities for the 5 biologically relevant parameters. (b) Histogram approximation of marginal densities.
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Figure 3. Workflow schematic for error analysis of the parameter estimation. The left panel shows two
exemplary datasets generated via SSA. From these either mean or mean and variance is used to estimate
parameters for the different models, which is represented symbolically in the middle panel. Parameters are
optimized using a local gradient based optimizer in a multi-start optimization resulting in a global
optimization scheme. The estimated parameters are subsequently compared to the true parameters via the
euclidean distance. Exemplary statistics of this squared error across all datasets are shown in the right panel.
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Figure 4. Parameter estimation for the trimerization model. (a) Objective function values for different
initializations using finite difference (FD, o) and sensitivity based gradients (SE, *). Function values are
colored according to the employed description. (b) Comparison of optimization times for finite differences
and sensitivity based gradients for a single start. Crosses indicate 90% percentiles of optimization times
across finished starts and are centered around mean optimization times. Crosses are colored according to the
employed description.

encountered for the MA of the enzymatic degradation model as well.

2.1 Further Quantification of Estimation Error and Model Selection Criteria
In the following we provide a comparison of the estimation error and uncertainty analysis for all model
parameters between RRE and EMRE as well as LNA and IOS. Moreover we provide a comparison of
estimation errors and model selection between EMRE and 2MA as well as IOS and 3MA.
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Figure 5. Decomposition of volume dependence of estimation error. Medians squared, squared
bias and trace of variance of the estimator for two representative parameters of (a) the trimerization process
and (b) enzymatic degradation process. Results for different meso- and macroscopic models are color-coded
and panels show datasets computed from 105 single-cell measurements: (left) data = {mean}; and (right)
data = {mean,variance}. The estimated convergence order for the intermediate and high-volume regimes
is indicated as grey dotted lines.
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Figure 6. Qualitative comparison between estimation errors of SSE and MA for the trimerization and
enzymatic degradation model. Coloring indicates the fraction of datasets for which MA resulted in a smaller
error than SSE. The fraction was computed from 100 datasets for every volume/sample size scenario.

Figure 7. Quantitative comparison between estimation errors of SSE and MA for the trimerization and
enzymatic degradation model. Coloring indicates the median of the logarithm of the ratio between squared
MA error and squared SSE error. The median was computed from 100 datasets for every volume/sample size
scenario.
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Figure 8. Model selection results with AIC for the trimerization and enzymatic degradation model. Median
AIC weight for 2MA and 3MA at respective estimated parameters. A green color indicates that the 2MA and
3MA description is more probable and a blue color indicates the RRE and LNA description is more probable.
The median was computed from 100 datasets for every volume/sample size scenario.

Figure 9. Model selection results with BIC for the trimerization and enzymatic degradation model. Median
BIC weight for 2MA and 3MA at respective estimated parameters. A green color indicates that the 2MA and
3MA description is more probable and a blue color indicates the RRE and LNA description is more probable.
The median was computed from 100 datasets for every volume/sample size scenario.
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